QOutline of the Proof of the Prime Number Theorem

Definition: Let n be a natural number. Then 7(n) is the number of prime
numbers < n. A graph of % suggests that % ~ logn:
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Prime Number Theorem:
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Analytic Continuation: Let f : S — C be holomorphic on S. If S C T
and F': T'— C is holomorphic on 7" and satisfies F'(z) = f(z) for all z € 5,
then we say that I’ is an analytic continuation of f to the set T

Riemann Zeta Function: For all z € C with rez > 1,
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It is holomorphic on its domain.

The Euler Product Formula: For all z € C with re z > 1,
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The Logarithmic Derivative of ((z): For all z € C with re z > 1,
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Analytic Continuation of ((z) to {xr € C:rez >0} — {1}:
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Theorem: For all z # 1 with re 2 =1, (1(2) # 0.
Tchebychev Theta Function:

0(x) = logp,
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the sum ranging over prime numbers bounded above by z.
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Theorem:
=1.

Theorem: If the improper integral
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converges then lim, . @ =1.

Theorem: For all z € C with re z > 0,
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Theorem: An analytic continuation of ﬁ >, lzg% — 1 toall z € C with

re z > 0 is I(z), the Laurent series expansion of
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about z = 0, which has no negative powers of z.
Theorem: limy fOT O(et)e ™t — 1 dt = I1(0).



