Complex Analysis Notes
 Princeton Lectures In Analysis II
 Dan Singer

The Field \mathbb{C}

Definition: $\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}$

Addition:

$$
(a+b i)+\left(a^{\prime}+b^{\prime} i\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) i .
$$

This is associative and commutative.
\mathbb{C} is a group under addition, with identity element $0+0 i$ and inverse operation

$$
-(a+b i)=(-a)+(-b) i
$$

Multiplication:

$$
(a+b i)\left(a^{\prime}+b^{\prime} i\right)=\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+a^{\prime} b\right) i .
$$

This is associative and commutative:
\mathbb{C}^{*} is a group under multiplication, with identity element $1+0 i$ and inverse operation

$$
(a+b i)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i
$$

One check that multiplication is distributive. Hence \mathbb{C} is a field.

Complex Conjugation:

$$
\overline{a+b i}=a-b i
$$

One can check that complex conjugation is a field isomorphism, i.e. that $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\overline{z w}$ for all $z, w \in \mathbb{C}$.

Norm:

$$
\begin{gathered}
\|a+b i\|=\sqrt{a^{2}+b^{2}} \\
z \bar{z}=\|z\|^{2}
\end{gathered}
$$

Real and Imaginary Parts:

$$
\operatorname{re}(z)=\frac{z+\bar{z}}{2}, \quad \operatorname{im}(z)=\frac{z-\bar{z}}{2 i}
$$

Lemma: re $(z) \leq\|z\|$.
Proof: This follows from $a \leq \sqrt{a^{2}+b^{2}}$.
Triangle Inequality: For all $z, w \in \mathbb{C},\|z+w\| \leq\|z\|+\|w\|$.
Proof:

$$
\begin{gathered}
\|z+w\|^{2}=(z+w)(\bar{z}+\bar{w})=\|z\|^{2}+z \bar{w}+w \bar{z}+\|w\|^{2}= \\
\|z\|^{2}+2 \operatorname{re}(z \bar{w})+\|w\|^{2} \leq\|z\|^{2}+2\|z \bar{w}\|+\|w\|^{2}= \\
\|z\|^{2}+2\|z\|\|w\|+\|w\|^{2}=(\|z\|+\|w\|)^{2} .
\end{gathered}
$$

Corollary: For all $z, w \in \mathbb{C},|||z\|-\| w|\|\leq\| z-w \|$.
Proof: This follows from $\|z\| \leq\|z-w\|+\|w\|$ and $\|w\| \leq\|w-z\|+\|z\|$.
Euler's Notation: For $\theta \in \mathbb{R}$,

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

Trigonometric identities yield

$$
e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Polar Form: Every $z \in \mathbb{C}$ lies on a circle of radius $r \geq 0$ about the origin and can be expressed in the form $z=r e^{i \theta}$ where $r>0$ and $\theta \in \mathbb{R}$. In fact, $r=\|z\|$ and θ is any angle satisfying $r \cos \theta=\mathrm{re} z$ and $r \sin \theta=\mathrm{im} z$. Using Euler's notation we can see that complex multiplication can be interpreted in terms of rotation and dilation.

Solutions to $z^{n}=c$ where $c \neq 0$: Write $c=r e^{i \theta}$ where $r>0$. We seek all $z=s e^{i \psi}$ with $s>0$ satisfying

$$
s^{n} e^{i n \psi}=r e^{i \theta}
$$

We must have $s=r^{\frac{1}{n}}$ and $e^{i n \psi}=e^{i \theta}$. This forces $n \psi=\theta+2 k \pi$ where $k \in \mathbb{Z}$, or $\psi=\frac{\theta}{n}+\frac{2 k}{n} \pi$, which yields

$$
z=r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n}+\frac{2 k}{n} \pi\right)}
$$

There are n distinct values of z, corresponding to $0 \leq k<n$.
Example: The three complex solutions to $z^{3}=1$ are

$$
\frac{-1}{2}+\frac{\sqrt{3}}{2} i, \frac{-1}{2}-\frac{\sqrt{3}}{2} i, 1 .
$$

Sequences in \mathbb{C}

Definition: $\lim _{n \rightarrow \infty} z_{n}=z$ if and only if

$$
\forall \epsilon>0: \exists N: n \geq N \Longrightarrow\left\|z_{n}-z\right\|<\epsilon
$$

Example: $\lim _{n \rightarrow \infty}\left(\frac{1+n}{2 n}+\frac{2 n^{5}}{3 n^{5}-1000} i\right)=\frac{1}{2}+\frac{2}{3} i$.
Proof: Let $\epsilon>0$ be given. We wish to find N so that $n>N$ implies $\left\|\left(\frac{1+n}{2 n}+\frac{2 n^{5}}{3 n^{5}-1000} i\right)-\left(\frac{1}{2}+\frac{2}{3} i\right)\right\|<\epsilon$, or equivalently $\left\|\frac{1}{2 n}+\frac{2000}{9 n^{5}-3000} i\right\|<\epsilon$. Given that

$$
\left\|\frac{1}{2 n}+\frac{2000}{9 n^{5}-3000} i\right\| \leq\left\|\frac { 1 } { 2 n } \left|\|+\| \frac{2000}{9 n^{5}-3000} i \|=\left|\frac{1}{2 n}\right|+\left|\frac{2000}{9 n^{5}-3000}\right|,\right.\right.
$$

it suffices to require $\frac{1}{2 n}<\frac{\epsilon}{2}$ and $\frac{2000}{9 n^{5}-3000}<\frac{\epsilon}{2}$. The first inequality occurs when $n>\frac{2}{2 \epsilon}$. Given that $9 n^{5}-3000>8 n^{5}$ when, for examle, $n>10$, we have

$$
\frac{2000}{9 n^{5}-3000}<\frac{2000}{8 n^{5}} \leq \frac{2000}{8 n}<\frac{\epsilon}{2}
$$

when $n>\frac{4000}{8 \epsilon}$. So we can choose any N greater than all three of the numbers $\frac{2}{2 \epsilon}, 10, \frac{4000}{8 \epsilon}$.
Example: Let $z \in \mathbb{R}$ satisfying $0<\|z\|<1$. Then $\lim _{n \rightarrow \infty} z^{n}=0$.
Proof: Let $\epsilon>0$ be given. We wish to find N so that $n>N$ implies $\left\|z^{n}\right\|<\epsilon$, or equivalently $\left(\frac{1}{\|z\|}\right)^{n}>\frac{1}{\epsilon}$. Write $\frac{1}{\|z\|}=1+\theta$ where $\theta>0$. By
the Binomial Theorem, $\left(\frac{1}{\|z\|}\right)^{n}=(1+\theta)^{n} \geq 1+n \theta$. We wish to require $1+n \theta>\frac{1}{\epsilon}$. We just need any natural N satisfying $N>\frac{\frac{1}{\epsilon}-1}{\theta}=\frac{\frac{1}{\epsilon}-1}{\|z\|}$.
Theorem: A convergent sequence cannot have two distinct limits.
Proof: Suppose $z_{n} \rightarrow w$ and $z_{n} \rightarrow w^{\prime}$ where $w \neq w^{\prime}$. Then for each n we have $\left\|w-w^{\prime}\right\| \leq\left\|w-z_{n}\right\|+\left\|z_{n}-w^{\prime}\right\|$, and for sufficiently large n, $\left\|z_{n}-w\right\|<\frac{\left\|w-w^{\prime}\right\|}{2}$ and $\left\|z_{n}-w^{\prime}\right\|<\frac{\left\|w-w^{\prime}\right\|}{2}$, which implies $\left\|w-w^{\prime}\right\|<$ $\left\|w-w^{\prime}\right\|$, a contradiction.

Theorem: Assume $\left(z_{n}\right)$ converges to z. Then every subsequence $\left(z_{n_{k}}\right)$ converges to z.
Proof: Let $\epsilon>0$ be given. Then there exists N such that $k \geq N$ implies $\left\|z_{k}-z\right\|<\epsilon$, hence $k \geq N$ implies $n_{k} \geq k \geq N$ implies $\left\|z_{n_{k}}-z\right\|<\epsilon$.
Theorem: Assume that $\left(z_{n}\right)$ is convergent and that a subsequence $\left(z_{n_{k}}\right)$ converges to z. Then $\left(z_{n}\right)$ converges to z.
Proof: If $\left(z_{n}\right)$ converges to w then $\left(z_{n_{k}}\right)$ converges to w. By uniqueness of limits, $w=z$. Hence $\left(z_{n}\right)$ converges to z.
Theorem: If $z_{n} \rightarrow z$ then $\left\|z_{n}\right\| \rightarrow\|z\|$.
Proof: This follows from $\left\|\left|\mid z_{n}\|-\| z\| \| \leq\left\|z_{n}-z\right\| \rightarrow 0\right.\right.$.
The Sum, Product, and Quotient Rules
Theorem: Assume $\lim _{n \rightarrow \infty} z_{n}=z$ and $\lim _{n \rightarrow \infty} w_{n}=w$. Then:
(1) $\lim _{n \rightarrow \infty} z_{n}+w_{n}=z+w$
(2) $\lim _{n \rightarrow \infty} z_{n} w_{n}=z w$
(3) When $w_{n} \neq 0$ for all n and $w \neq 0, \lim _{n \rightarrow \infty} \frac{z_{n}}{w_{n}}=\frac{z}{w}$.

Proof:
(1) We have

$$
\left\|\left(z_{n}+w_{n}\right)-(z+w)\right\| \leq\left\|z_{n}-z\right\|+\left\|w_{n}-w\right\| .
$$

In order to make this quantity $<\epsilon$, it suffices to make $\left\|z_{n}-z\right\|<\frac{\epsilon}{2}$ and $\left\|w_{n}-w\right\|<\frac{\epsilon}{2}$. Given $\epsilon>0$, we will choose N so that $n \geq N$ forces both inequalities.
(2) We have

$$
\left\|z_{n} w_{n}-z w\right\| \leq\left\|z_{n} w_{n}-z w\right\|+\left\|z w-z w_{n}\right\|=\left\|z_{n}-z\left|\|| | w| |+\| w_{n}-w\right|\right\| \mid\|z\| .
$$

In order to make this quantity $<\epsilon$, it suffices to make $\left\|z-z_{n}\right\|<\frac{\epsilon}{2(1+\|w\|)}$ and $\left\|w-w_{n}\right\|<\frac{\epsilon}{2(1+\|z\|)}$. Given $\epsilon>0$, we will choose N so that $n \geq N$ forces both inequalities.
(3) We have

$$
\left\|\frac{z_{n}}{w_{n}}-\frac{z}{w}\right\|=\left\|\frac{z_{n} w-z w_{n}}{w w_{n}}\right\| \leq \frac{\left\|z_{n}-z\right\|\|w\|}{\|w\|\left\|w_{n}\right\|}+\frac{\left\|w-w_{n}\right\|\|z\|}{\|w\|\left\|w_{n}\right\|} .
$$

We will first show that the denominator contribution can be bounded above. Since $w_{n} \rightarrow w$ and $\|w\|>0$, there exists N_{1} such that $n \geq N_{1}$ implies $\left\|\mid w_{n}\right\|-\|w\|\|\leq\| w_{n}-w \|<\frac{\|w\|}{2}$, which implies $\left\|w_{n}\right\|>\frac{\|w\|}{2}$. Hence $n \geq N$ implies

$$
\frac{1}{\|w\|\left\|w_{n}\right\|} \leq \frac{2}{\|w\|^{2}}
$$

Now let $\epsilon>0$ be given. Then there exists N_{2} such that $n \geq N_{2}$ implies $\left\|z-z_{n}\right\|\|w\|<\frac{\epsilon\|w\|^{2}}{4}$ and $\left\|w_{n}-w\right\|\left\|\|z\|<\frac{\epsilon\|w\|^{2}}{4}\right.$. Hence for any n larger than both N_{1} and N_{2},

$$
\left\|\frac{z_{n}}{w_{n}}-\frac{z}{w}\right\|<\epsilon
$$

A Brief Review of the Topology of \mathbb{R}

Least Upper Bound Axiom: Every $S \subseteq \mathbb{R}$ that has an upper bound has a least upper bound.
Example: The set $(-\infty, 1)$ has many upper bounds, including the number 1. None of the numbers in $(-\infty, 1)$ is an upper bound, because if $t \in(-\infty, 1)$ then $\frac{t+1}{2} \in(-\infty, 1)$ as well, and since $t<\frac{t+1}{2}, t$ cannot be an upper bound. Therefore 1 is the least upper bound of $(-\infty, 1)$.

Example: Fix $\sigma>1$. Let $S=\left\{s_{n}: n \in \mathbb{N}\right\}$ where

$$
s_{n}=\sum_{k=1}^{n} \frac{1}{k^{\sigma}}=\frac{1}{1^{\sigma}}+\frac{1}{2^{\sigma}}+\cdots+\frac{1}{n^{\sigma}} .
$$

The set S is bounded above: for any $p \in \mathbb{N}$ we have

$$
\begin{gathered}
s_{2^{p}-1}=\sum_{i=1}^{p}\left(\sum_{k=2^{i-1}}^{2^{i}-1} \frac{1}{k^{\sigma}}\right) \leq \sum_{i=1}^{p}\left(\sum_{k=2^{i-1}}^{2^{i}-1} \frac{1}{\left(2^{i-1}\right)^{\sigma}}\right)=\sum_{i=1}^{p}\left(\frac{1}{2^{\sigma-1}}\right)^{i-1}= \\
\frac{1-\left(\frac{1}{2^{\sigma-1}}\right)^{p}}{1-\frac{1}{2^{\sigma}}} \leq \frac{1}{1-\frac{1}{2^{\sigma}}} .
\end{gathered}
$$

For any $n \in \mathbb{N}, n \geq 2^{p}-1$ for some $p \in \mathbb{N}$, hence $s_{n} \leq s_{2^{p}-1} \leq \frac{1}{1-\frac{1}{2^{\sigma}}}$ for all $n \in \mathbb{N}$. So S has a least upper bound.

Theorem: Let $a_{1} \leq a_{2} \leq a_{3} \leq \cdots$ be a bounded sequence of real numbers. Then $\left(a_{n}\right)$ is convergent, and

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

where a is the least upper bound of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
Proof: Let $\epsilon>0$ be given. Since $a-\epsilon$ is not an upper bound of $\left\{a_{n}: n \in \mathbb{N}\right\}$, there exists a natural number N such that $a_{N}>a-\epsilon$. For $n \geq N$ we have

$$
a-\epsilon<a_{N} \leq a_{n} \leq a<a+\epsilon,
$$

hence

$$
\left|a_{n}-a\right|<\epsilon
$$

Example: Fix $\sigma>1$. Let $s_{n}=\sum_{k=1}^{n} \frac{1}{k^{\sigma}}$. Then $s_{1}<s_{2}<\cdots$ is a bounded sequence of real numbers. Let s be the least upper bound of this sequence. Then

$$
\sum_{k=1}^{\infty} \frac{1}{k^{\sigma}}=\lim _{n \rightarrow \infty} s_{n}=s
$$

Bolzano-Weierstrass Theorem: Let $M>0$ be given. Then every sequence in $[-M, M]$ has a convergent monotonic subsequence in $[-M, M]$.
Proof: Let $\left(a_{n}\right) \subseteq[-M, M]$ be an arbitrary sequence of real numbers. If there is a strictly decreasing subsequence $a_{n_{1}}>a_{n_{2}}>a_{n_{3}} \cdots$, then the sequence $\left(-a_{n_{k}}\right)$ is increasing and bounded, hence converges to a limit $a \in$ $[-M, M]$ by the previous theorem. Therefore $\lim _{n \rightarrow \infty} a_{n_{k}}=-a \in[-M, M]$.

Now suppose that $\left(a_{n}\right)$ does not have a strictly decreasing sequence. Then there must be a minimum number $a_{n_{1}}$. The sequence $a_{n_{1}+1}, a_{n_{1}+2}, \ldots$ cannot have a strictly decreasing sequence, so there must be a minimum number $a_{n_{2}}$. The sequence $a_{n_{2}+1}, a_{n_{2}+2}, \ldots$ cannot have a strictly decreasing sequence, so there must be a minimum number $a_{n_{3}}$. Keep on going. Then the subsequence $a_{n_{1}} \leq a_{n_{2}} \leq a_{n_{3}} \leq \cdots$ converges to a number $a \in[-M, M]$.

Real and Complex Cauchy Sequences

Definition: A sequence of real numbers $\left(a_{n}\right)$ is Cauchy if and only if for all $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
n>m \geq N \Longrightarrow\left|a_{n}-a_{m}\right|<\epsilon .
$$

Theorem: A real sequence converges if and only if it is Cauchy.
Proof: Suppose $\left(a_{n}\right)$ converges to a. Given $\epsilon>0$, there exists N such that $n \geq N$ implies $\left|a_{n}-a\right|<\frac{\epsilon}{2}$, hence $n>m \geq N$ implies $\left|a_{n}-a_{m}\right| \leq$ $\left|a_{n}-a\right|+\left|a_{m}-a\right|<\epsilon$. Hence $\left(a_{n}\right)$ is Cauchy.
Conversely, assume that $\left(a_{n}\right)$ is Cauchy. Then it is bounded, since there exists N such that $n>N \Longrightarrow\left|a_{n}-a_{N}\right|<1$. Let $\left(a_{n_{k}}\right)$ be a monotonic subsequence of $\left(a_{n}\right)$. Then $\left(a_{n_{k}}\right)$ converges to a limit a. This implies that $\left(a_{n}\right)$ converges to a : let $\epsilon>0$ be given. Then there exists N_{1} such that $n>m \geq N_{1}$ implies $\left|a_{n}-a_{m}\right|<\frac{\epsilon}{2}$, and there exists N_{2} such that $k \geq N_{2}$ implies $\left|a_{n_{k}}-a\right|<\frac{\epsilon}{2}$, hence $k>N_{1}, N_{2}$ implies

$$
\left|a_{k}-a\right| \leq\left|a_{k}-a_{n_{N_{2}}}\right|+\left|a_{n_{N_{2}}}-a\right|<\epsilon .
$$

Definition: A sequence of complex numbers $\left(z_{n}\right)$ is Cauchy if and only if for all $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
n>m \geq N \Longrightarrow\left\|z_{n}-z_{m}\right\|<\epsilon
$$

Theorem: A complex sequence converges if and only if it is Cauchy.
Proof: Suppose $\left(z_{n}\right)$ converges to z. Given $\epsilon>0$, there exists N such that $n \geq N$ implies $\left\|z_{n}-z\right\|<\frac{\epsilon}{2}$, hence $n>m \geq N$ implies $\left\|z_{n}-a_{z}\right\| \leq$ $\left\|z_{n}-z\right\|+\left\|z_{m}-z\right\|<\epsilon$. Hence $\left(z_{n}\right)$ is Cauchy.

Conversely, suppose $\left(z_{n}\right)$ is Cauchy. If $z_{n}=a_{n}+b_{n} i$ for each n, then $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are both Cauchy because $\left|a_{n}-a_{m}\right| \leq\left\|z_{m}-z_{n}\right\|$ and $\left|b_{n}-b_{m}\right| \leq\left\|z_{n}-z_{m}\right\|$. Hence $\left(a_{n}\right)$ converges to a limit a and $\left(b_{n}\right)$ converges to a limit b, which implies that $\left(z_{n}\right)$ converges to $a+b i$.
Topology of \mathbb{C}
Definition: A set $S \subseteq \mathbb{C}$ is bounded by M if $\|z\| \leq M$ for all $z \in S$. Geometrically, all the points in S lie within the circle of radius M about the origin.

Definition: A set $S \subseteq \mathbb{C}$ is closed if and only if every convergent sequence in S has its limit in S.

Example: Consider the set $S=\{z \in \mathbb{C}:\|z\| \geq 1\}$. Suppose $\left(z_{n}\right) \subseteq S$ and $z_{n} \rightarrow z$. If $z \notin S$ then $\|z\|<1$, and there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $\left|\mid z_{n}-z\|<1-\| z \|\right.$, which implies $|\left|\mid z_{N}\|-\| z\| \|<\left\|z_{N}-z\right\|<1-\|z\|\right.$, which implies $\left\|z_{N}\right\|<1$, a contradiction. Therefore $z \in S$. Hence S is closed.
Definition: A set $S \subseteq \mathbb{C}$ is open if and only if for each $z \in S$ there exists $\epsilon>0$ such that $B_{\epsilon}(z) \subseteq S$, where

$$
B_{\epsilon}(z)=\{w \in \mathbb{C}:\|w-z\|<\epsilon\} .
$$

Example: Consider the set $S=\{z \in \mathbb{C}:\|z\|>1\}$. Given $z \in S$, we claim that $B_{1-\|z\|}(z) \subseteq S$. To prove this, we have
$w \in B_{1-\|z\|}(z) \Longrightarrow\|w\| \leq\|w-z\|+\|z\|<1-\|z\|+\|z\|=1 \Longrightarrow w \in S$.

Theorem: A set $S \subseteq \mathbb{C}$ is closed if and only if S^{c} is open.
Proof: Assume S is closed. If S^{c} is not open, then there exists $z \in S^{c}$ such that for each $n \in \mathbb{N}$ there exists $z_{n} \in B_{\frac{1}{n}}(z) \cap S$, which yields a sequence $\left(z_{n}\right) \subseteq S$ converging to $z \notin S$, a contradiction. Therefore S^{c} is open.

Conversely, Assume S^{c} is open. Let $\left(z_{n}\right) \subseteq S$ be convergent sequence with limit z. If $z \notin S$ then there exists $\epsilon>0$ such that $B_{\epsilon}(z) \subseteq S^{c}$. Since $z_{n} \rightarrow z$, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $\left\|z_{n}-z\right\|<\epsilon$, which implies $z_{N} \in B_{\epsilon}(z) \subseteq S^{c}$, a contradiction. Therefore $z \in S$. Hence S is closed.

Compact Subsets of \mathbb{C}

Definition: A set $S \subseteq \mathbb{C}$ is compact if and only if every sequence in S has a subsequence converging to a limit in S.

Example: Let $M>0$ and $S=\{z \in \mathbb{C}:\|z\| \leq M\}$. If $\left(a_{n}+b_{n} i\right)$ is a sequence in S then $\left(a_{n}\right)$ is a sequence in $[-M, M]$, hence a subsequence $\left(a_{n}: n \in I\right)$ converges to some $a \in[-M, M]$ by the Bolzano-Weierstrass Theorem. The sequence $\left(b_{n}: n \in I\right)$ is another sequence in $[-M, M]$, and a subsequence $\left(b_{n}: n \in J\right)$ converges some $b \in[-M, M]$, where $J \subseteq I$. Hence $\left(a_{n}+b_{n} i: n \in J\right)$ converges to $a+b i$. Since $\left\|a_{n}+b_{n} i\right\| \leq M$ for each n, $\|a+b i\| \leq M$, hence $a+b i \in S$. Hence S is compact.
Theorem: A set $S \subseteq \mathbb{C}$ is compact if and only if it is closed and bounded.
Proof: Assume S is compact. Then it must be bounded, otherwise S would contain a sequence of the form $\left(z_{n}\right)$ where $\left\|z_{n}\right\|>n$ for each n, and no subsequence of $\left(z_{n}\right)$ converges. To show that S is closed, let $\left(z_{n}\right) \subseteq S$ be a convergent sequence. By compactness, a subsequence of $\left(z_{n}\right)$ converges to a point $z \in S$, which implies that $\left(z_{n}\right)$ converges to $z \in S$.

Conversely, assume that S is closed and bounded. Then there exists $M>0$ such that $\|z\| \leq M$ for all $z \in S$. Let $\left(z_{n}\right)$ be an arbitrary sequence in S. By the example above, $\left(z_{n}\right)$ has a subsequence $\left(z_{n_{k}}\right)$ that converges to a point z in $\{z \in \mathbb{C}:\|z\| \leq M\}$. Since S is closed, $z \in S$. Hence S is compact.
Definition: Let $X \subseteq \mathbb{C}$ be a compact set. The diameter of X is

$$
\operatorname{diam}(X)=\sup \{\|x-y\|: x, y \in X\}
$$

Theorem: Let $\left(X_{n}\right)$ be a sequence of non-empty compact sets satisfying

$$
X_{1} \supseteq X_{2} \supseteq \cdots
$$

and

$$
\lim _{n \rightarrow \infty} \operatorname{diam}\left(X_{n}\right)=0
$$

Then:
(1) $\bigcap_{n \in \mathbb{N}} X_{n}$ consists of a single point x_{0}.
(2) For any sequence $\left(x_{n}\right)$ where $x_{n} \in X_{n}$ for each $n, x_{n} \rightarrow x_{0}$.

Proof: Let $\left(x_{n}\right)$ be an arbitrary sequence satisfying $x_{n} \in X_{n}$ for each n. Then $\left(x_{n}\right)$ is a Cauchy sequence: Let $\epsilon>0$ be given. Then we can choose N so that diam $\left(X_{N}\right)<\epsilon$. When $n>m \geq N, x_{n}$ and x_{m} belong to X_{N}, hence $\left\|x_{n}-x_{m}\right\| \leq \operatorname{diam}\left(X_{N}\right)<\epsilon$. Therefore $\left(x_{n}\right)$ converges to a limit x. Since the subsequence $\left(x_{n}, x_{n+1}, \ldots\right)$ resides in X_{n} and converges to x, $x \in X_{n}$. Therefore $x \in \bigcap_{n \in \mathbb{N}} X_{n}$. If y is any other point in $\bigcap_{n \in \mathbb{N}} X_{n}$ then $\|x-y\| \leq \operatorname{diam}\left(X_{n}\right)$ for each n, hence $\|x-y\|=0$, hence $x=y$. Hence both (1) and (2) must be true.

Compact Sets, Open Covers, and Lebesgue Numbers

Open Cover: Let S be a subset of \mathbb{C}. We say that $\left\{U_{i}: i \in I\right\}$ is an open cover of S if each U_{i} is open and $S \subseteq \bigcup_{i \in I} U_{i}$.
Example: Let $S=\{x+i y \in \mathbb{C}: 0 \leq x \leq 1,0 \leq y \leq 1\}$. An open cover of S is $\left\{B_{\frac{1}{100}}(z): z \in S\right\}$.
Definition: Let $S \subseteq \mathbb{C}$ be a set and let \mathcal{U} be an open cover of S. If $\epsilon>0$ has the property that $B_{\epsilon}(z)$ is a subset of some $U \in \mathcal{U}$ for each $z \in S$, then ϵ is called a Lebesgue number of \mathcal{U} with respect to S.

Theorem: Let $S \subseteq \mathbb{C}$ be a compact set and let \mathcal{U} be an open cover of S. Then \mathcal{U} has a Lebesgue number with respect to S.
Proof: Let $i \in \mathbb{N}$ be given. If $\frac{1}{i}$ is not a Lebesgue number then we can find $z_{i} \in S$ such that $B_{\frac{1}{i}}\left(z_{i}\right)$ is not a subset of any $U \in \mathcal{U}$. Now suppose that for each $i \in \mathbb{N}, \frac{1}{i}$ is not a Lebesgue number. By compactness of S, the sequence $\left(z_{i}\right)$ must have a subsequence $\left(z_{n_{i}}\right)$ that converges to a point $z \in S$. We have $z \in U_{0}$ for some $U_{0} \in \mathcal{U}$. For each $i \in \mathbb{N}, B_{\frac{1}{n_{i}}}\left(z_{n_{i}}\right) \nsubseteq U_{0}$, so we can find $w_{n_{i}} \in B_{\frac{1}{n_{i}}}\left(z_{n_{i}}\right)$ such that $w_{n_{i}} \notin U_{0}$. We have $z_{n_{i}} \rightarrow z$, hence $\left\|z_{n_{i}}-z\right\| \rightarrow 0$. We also have $\left\|w_{n_{i}}-z_{n_{i}}\right\| \rightarrow 0$. Hence $\left\|w_{n_{i}}-z\right\| \leq\left\|w_{n_{i}}-z_{n_{i}}\right\|+\left\|z_{n_{i}}-z\right\| \rightarrow 0$, hence $w_{n_{i}} \rightarrow z \in U_{0}$. This is impossible since $\left(w_{n_{i}}\right)$ is a convergent sequence in the closed set $\mathbb{C}-U_{0}$ and so must converge to a point in $\mathbb{C}-U_{0}$. So for some $i \in \mathbb{N}, \frac{1}{i}$ is a Lebesgue number.

Complex Functions and Continuity

A complex function is a mapping $f: S \rightarrow \mathbb{C}$ where $S \subseteq \mathbb{C}$. We will say that f is continuous at $z_{0} \in S$ if and only if for all for all sequences $\left(z_{n}\right)$ in S

$$
\lim _{n \rightarrow \infty} z_{n}=z_{0} \Longrightarrow \lim _{n \rightarrow \infty} f\left(z_{n}\right)=f\left(z_{0}\right)
$$

We will also say that f is continuous on S if and only if it is continuous at each $z \in S$.

Example: Using the sum and product rule it is easy to show that polynomial functions $f: \mathbb{C} \rightarrow \mathbb{C}$ of the form $f(z)=c_{0}+c_{1} z+\cdots+c_{n} z^{n}$ are continuous on \mathbb{C}.

Example: Let $f(z)$ and $g(z)$ be polynomial functions, and assume that $g(z) \neq 0$ for all $z \in S$. Using the quotient rule combined with continuity of polynomial functions, the function $q: S \rightarrow \mathbb{C}$ defined by $g(z)=\frac{f(z)}{g(z)}$ is continuous on S.

Theorem: A function $f: S \rightarrow \mathbb{C}$ is continuous at $z \in S$ if and only if for all $\epsilon>0$ there exists $\delta>0$ such that for all $w \in S,\|w-z\|<\epsilon$ implies $\|f(w)-f(z)\|<\epsilon$.

Proof: Assume that f is continuous at z. If the $\epsilon-\delta$ condition were false, then there exists $\epsilon>0$ such that for all $n \in \mathbb{N}$ there would have to exist a $w_{n} \in S$ such that $\left\|w_{n}-z\right\|<\frac{1}{n}$ and $\left\|f\left(w_{n}\right)-f(z)\right\| \geq \epsilon$. Hence $\lim _{n \rightarrow \infty} w_{n}=z$ yet $\lim _{n \rightarrow \infty} f\left(w_{n}\right) \neq f(z)$, a contradiction. So the $\epsilon-\delta$ condition must be true.

Conversely, if the $\epsilon-\delta$ condition is true, let $z_{n} \rightarrow z$ in S. We will show that $f\left(z_{n}\right) \rightarrow f(z)$. Let $\epsilon>0$ be given. Then there exists $\delta>0$ such that $w \in S$ and $\|w-z\|<\delta$ implies $\|f(w)-f(z)\|<\epsilon$. Since $z_{n} \rightarrow z$, there exists N such that $n \geq N$ implies $\left\|z_{n}-z\right\|<\delta$, which implies $\left\|f\left(z_{n}\right)-f(z)\right\|<\epsilon$.

Theorem: Let $S \subseteq \mathbb{C}$ be a compact set and let $f: S \rightarrow \mathbb{C}$ be continuous on S. Then $f(S)$ is compact.
Proof: Let $\left(f\left(z_{k}\right)\right)$ be a sequence in $f(S)$. Then $\left(z_{k}\right)$ is a sequence in S, hence there must be a convergent subsequence $\left(z_{n_{k}}\right)$ which has a limit $z \in S$. Since $z_{n_{k}} \rightarrow z$ and f is continous, $f\left(z_{n_{k}}\right) \rightarrow f(z)$.

Holomorphic Complex Functions

A complex function $f: S \rightarrow \mathbb{C}$ is said to be holomorphic at $z_{0} \in S$ if and only if z_{0} is an interior point of S and there exists a complex number w such that

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=w
$$

If w exists then we write $f^{\prime}\left(z_{0}\right)=w$.

The precise definition of the limit above is
$\forall \epsilon>0: \exists \delta>0: 0<\left\|z-z_{0}\right\|<\delta$ and $z \in S \Longrightarrow\left\|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-w\right\|<\epsilon$.

Equivalent Definitions of $f^{\prime}(z)$:

$$
\begin{equation*}
\frac{f\left(z_{n}\right)-f\left(z_{0}\right)}{z_{n}-z_{0}} \rightarrow f^{\prime}\left(z_{0}\right) \tag{1}
\end{equation*}
$$

for all sequences $\left(z_{n}\right) \subseteq S$ satisfying $z_{n} \neq z_{0}$ and $z_{n} \rightarrow z_{0}$.
(2) The function $\Delta_{f, z_{0}}: S \rightarrow \mathbb{C}$ defined by

$$
\Delta_{f, z_{0}}(z)= \begin{cases}\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} & z \neq z_{0} \\ f^{\prime}\left(z_{0}\right) & z=z_{0}\end{cases}
$$

is continuous at z_{0}.
Example: Let n be a positive integer and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $f(z)=z^{n}$. Then for any $z_{0} \in \mathbb{C}$ we have
$f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{z \rightarrow z_{0}}\left(z^{n-1}+z^{n-2} z_{0}+\cdots+z z_{0}^{n-2}+z_{0}^{n-1}\right)=n z_{0}^{n-1}$.

Example: Let $g: \mathbb{C}-\{0\} \rightarrow \mathbb{C}$ be defined by $g(z)=\frac{1}{z}$. Then for any $z_{0} \in \mathbb{C}-\{0\}$ we have

$$
g^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}=\lim _{z \rightarrow z_{0}} \frac{-1}{z z_{0}}=-\frac{1}{z_{0}^{2}}
$$

Theorem: If $f: S \rightarrow \mathbb{C}$ is holomorphic at z_{0} then f is continuous at z_{0}.
Proof: We have

$$
f(z)=f\left(z_{0}\right)+\left(z-z_{0}\right) \Delta_{f, z_{0}}(z)
$$

for all $z \in S$. Let $\left(z_{n}\right)$ be a sequence in S satisfying $z_{n} \rightarrow z_{0}$. By Equivalent Definition (2) of differentiability we have

$$
f(z) \rightarrow f\left(z_{0}\right)+0 \cdot f^{\prime}\left(z_{0}\right)
$$

The Sum, Product, and Chain Rule for Complex Differentiation

Theorem: Let $f: S \rightarrow \mathbb{C}$ and $g: S \rightarrow \mathbb{C}$ be holomorphic at $z_{0} \in \mathbb{C}$. Then $f+g: S \rightarrow \mathbb{C}$ and $f g: S \rightarrow \mathbb{C}$ are holomorphic at z_{0} and we have

$$
(f+g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)+g^{\prime}\left(z_{0}\right)
$$

and

$$
(f g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)
$$

Proof: The sum rule is a consequence of Equivalent Definition (1) of differentiability. To prove the product rule, observe that

$$
\frac{f\left(z_{n}\right) g\left(z_{n}\right)-f\left(z_{0}\right) g\left(z_{0}\right)}{z-z_{0}}=\frac{f\left(z_{n}\right)-f\left(z_{0}\right)}{z-z_{0}} g\left(z_{n}\right)+f\left(z_{0}\right) \frac{g\left(z_{n}\right)-g\left(z_{0}\right)}{z_{n}-z_{0}} .
$$

When $z_{n} \rightarrow z_{0}$ we have $g\left(z_{n}\right) \rightarrow g\left(z_{0}\right)$, hence

$$
\frac{f\left(z_{n}\right) g\left(z_{n}\right)-f\left(z_{0}\right) g\left(z_{0}\right)}{z-z_{0}} \rightarrow f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)
$$

Theorem: Let $g: S \rightarrow \mathbb{C}$ be holomorphic at z_{0}, let T be a subset of \mathbb{C} containing $g(S)$, and let $f: T \rightarrow \mathbb{C}$ be holomorphic at $g\left(z_{0}\right)$. Then $f \circ g: S \rightarrow \mathbb{C}$ is holomorphic at z_{0} and

$$
(f \circ g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(g\left(z_{0}\right)\right) g^{\prime}\left(z_{0}\right)
$$

Proof: Let $z_{n} \rightarrow z_{0}$ in S. Then $g\left(z_{n}\right) \rightarrow g\left(z_{0}\right)$ in $g(S)$, hence

$$
\begin{gathered}
\Delta_{f, g\left(z_{0}\right)}\left(g\left(z_{n}\right)\right) \rightarrow f^{\prime}\left(g\left(z_{0}\right)\right), \\
\Delta_{g, z_{0}}\left(z_{n}\right) \rightarrow g^{\prime}\left(z_{0}\right), \\
\Delta_{f \circ g, z_{0}}\left(z_{n}\right)=\Delta_{f, g\left(z_{0}\right)}\left(g\left(z_{n}\right)\right) \cdot \Delta_{g, z_{0}}\left(z_{n}\right) \rightarrow f^{\prime}\left(g\left(z_{0}\right)\right) \cdot g^{\prime}\left(z_{0}\right) .
\end{gathered}
$$

Example: Let $f: S \rightarrow \mathbb{C}$ be holomorphic at z_{0} and let $g: S \rightarrow \mathbb{C}$ be holomorphic at z_{0} and non-zero on S. We can express the mapping $h: S \rightarrow \mathbb{C}$ defined by $h(z)=\frac{f(z)}{g(z)}$ in the form

$$
h=f \cdot(r \circ g),
$$

where $r: \mathbb{C}-\{0\} \rightarrow \mathbb{C}$ is defined by $r(z)=\frac{1}{z}$. Given that $r^{\prime}(z)=-\frac{1}{z^{2}}$, the product and chain rules yield

$$
h^{\prime}\left(z_{0}\right)=\frac{f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)-f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)^{2}} .
$$

Some Real Analysis

Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then $f([a, b])$ is compact.
Proof: Let $\left(f\left(x_{n}\right)\right)$ be a sequence in $f([a, b])$. Then $\left(x_{n}\right)$ is a sequence in $[a, b]$, and by the Bolzano-Weierstrass Theorem there is a convergent subsequence $\left(x_{n_{k}}\right)$ with a limit x which must belong to $[a, b]$ by closure of $[a, b]$. By continuity of $f,\left(f\left(x_{n_{k}}\right)\right)$ converges to $f(x) \in f([a, b])$.
Extreme Value Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then $f([a, b])$ is bounded and there exists $c \in[a, b]$ such that the least upper bound of $f([a, b])$ is $f(c)$.
Proof: Since $f([a, b])$ is compact, it is bounded. Let y be the least upper bound of $f([a, b])$. Then for each n there exists $f\left(x_{n}\right) \in f([a, b])$ such that $y-\frac{1}{n}<f\left(x_{n}\right) \leq y$, hence $\left(f\left(x_{n}\right)\right)$ converges to y. Since $f([a, b])$ is compact, it is closed, hence $y \in f([a, b])$. Hence $y=f(c)$ for some $c \in[a, b]$.
Mean Value Theorem: Assume $a<b$. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable at each $x \in(a, b)$. Then

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

for some $c \in(a, b)$.
Proof: Let $h:[a, b] \rightarrow \mathbb{R}$ be the function defined by

$$
h(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) .
$$

Then h is differentiable on $[a, b]$, and it suffices to prove that $h^{\prime}(c)=0$ for some $c \in(a, b)$. We have $h(a)=h(b)$, and we will assume without loss of
generality that $h(a)$ is not the maximum output of h along $[a, b]$. Since h is continuous on $[a, b]$, by the Extreme Value Theorem there exists $c \in[a, b]$ such that $f(c) \geq f(x)$ for all $c \in[a, b]$, and clearly $a<c<b$. Therefore

$$
h^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{h\left(c+\frac{1}{n}\right)-h(c)}{\frac{1}{n}} \leq 0
$$

and

$$
h^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{h\left(c-\frac{1}{n}\right)-h(c)}{\frac{-1}{n}} \geq 0
$$

therefore $h^{\prime}(c)=0$.
Intermediate Value Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then for each k between $f(a)$ and $f(b)$ there exists $c \in[a, b]$ such that $f(c)=k$.

Proof: We will assume without loss of generality that $f(a)<k<f(b)$. Suppose that $f(c) \neq k$ for all $k \in[a, b]$. Then the set

$$
A=\{x \in[a, b]: f(x)<k\}
$$

is closed: if $\left(x_{k}\right) \subseteq A$ converges to a point x then $x \in[a, b]$, hence by continuity $f\left(x_{k}\right) \rightarrow f(x)$, and since $f\left(x_{k}\right)<k$ for all $k, f(x)<k$, hence $x \in A$. Since A is closed and bounded, it is compact. Let $a_{0} \in A$ be the least upper bound of A. Then for all natural numbers $n \geq \frac{1}{b-a_{0}}, a+\frac{1}{n} \in[a, b]-A$, hence $f\left(a_{0}+\frac{1}{n}\right)>k$, hence

$$
f\left(a_{0}\right)=\lim _{n \rightarrow \infty} f\left(a_{0}+\frac{1}{n}\right)>k,
$$

a contradiction. Therefore $f(c)=k$ for some $c \in[a, b]$.
Corollary: Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and injective. If $f(a)<f(b)$ then f is strictly increasing on $[a, b]$, and if $f(a)>f(b)$ then f is strictly decreasing on $[a, b]$.

Proof: Assume $f(a)<f(b)$. If there exist $x_{1}<x_{2}$ in $[a, b]$ such that $f\left(x_{1}\right)>f\left(x_{2}\right)$, then we must have $f(a)>f\left(x_{2}\right)$, otherwise $f\left(x_{1}\right)>f\left(x_{2}\right)>$ $f(a)$ implies $f\left(x_{2}\right)=f(t)$ for some $t \in\left[a, x_{1}\right]$ by the Intermediate Value Theorem, which is impossible given that $x_{2} \neq t$. Given $f\left(x_{2}\right)<f(a)<f(b)$, we must have $f(a)=f(t)$ for some $t \in\left[x_{2}, b\right]$ by the Intermediate Value Theorem, which is impossible given that $a \neq t$. , Therefore no such x_{1} and x_{2} exist, hence f strictly increases along $[a, b]$. The other case is similar.

Inverse Function Theorem: Let $a<b$ and let $f:[a, b] \rightarrow[c, d]$ be a bijective function.
(i) If f is continuous on $[a, b]$ then f^{-1} is continuous on $[c, d]$.
(ii) If f is differentiable on (a, b) then f^{-1} is differentiable on (c, d).

Proof: (1) We will assume without loss of generality that f is increasing on $[a, b]$. The Intermediate Value Theorem implies that for each $a^{\prime}<b^{\prime}$ in $[a, b]$, $f\left(\left[a^{\prime}, b^{\prime}\right]\right)=\left[f\left(a^{\prime}\right), f\left(b^{\prime}\right)\right]$.
Let $c<y<d$ and $\epsilon>0$ be given. Write $f^{-1}(y)=x$. Then $\left[x-\epsilon_{1}, x+\epsilon_{1}\right] \subseteq$ $[a, b]$ for some $0<\epsilon_{1} \leq \epsilon$, and $f\left(\left[x-\epsilon_{1}, x+\epsilon_{1}\right]\right)=\left[y-\delta_{1}, y+\delta_{2}\right]$ for some $\delta_{1}, \delta_{2}>0$. Hence $f^{-1}\left(\left[y-\delta_{1}, y+\delta_{2}\right]\right)=\left[x-\epsilon_{1}, x+\epsilon_{2}\right]$. Setting $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, we have $f^{-1}((y-\delta, y+\delta)) \subseteq(x-\epsilon, y+\epsilon)$. In other words, $|t-y|<\delta$ implies $\left|f^{-1}(t)-f^{-1}(y)\right|<\epsilon$. Hence f^{-1} is continuous at y.
f^{-1} is continuous at c : Let $\epsilon>0$ be given. Choose $0<\epsilon_{1} \leq \epsilon$ such that $\left[a, a+\epsilon_{1}\right] \subseteq[a, b]$. Then $f\left(\left[a, a+\epsilon_{1}\right]\right)=[c, c+\delta]$ for some $\delta>0$, hence $f^{-1}([c, c+\delta])=\left[a, a+\epsilon_{1}\right]$. This implies $t \in[c, d]$ and $|t-c|<\delta$ implies $\left|f^{-1}(t)-f^{-1}(c)\right|<\epsilon . f^{-1}$ is continuous at d by a similar argument.
(2) Let $y \rightarrow y_{0}$ in (c, d). Since f is differentiable on (a, b), it is continuous on (a, b), therefore f^{-1} is continuous on (c, d), therefore $f^{-1}(y) \rightarrow f^{-1}\left(y_{0}\right)$. Moreover, since f is strictly monotonic on $[a, b]$, the Mean Value Theorem implies that $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Write $f^{-1}(y)=x$ and $f^{-1}\left(y_{0}\right)=x_{0}$. Then we have

$$
\frac{f^{-1}(y)-f^{-1}\left(y_{0}\right)}{y-y_{0}}=\frac{x-x_{0}}{f(x)-f\left(x_{0}\right)} \rightarrow \frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{f^{\prime}\left(f^{-1}\left(y_{0}\right)\right)}
$$

Hence f^{-1} is differentiable at y_{0}.

Complex Extreme Value Theorem

Let $S \subseteq \mathbb{C}$ be a compact set and let $f: S \rightarrow \mathbb{C}$ be continuous on S. Then

$$
\sup \{\|f(z)\|: z \in S\}=\left\|f\left(z_{0}\right)\right\|
$$

for some $z_{0} \in S$.
Proof: It will suffice to show that the set $X=\{\|f(z)\|: z \in S\}$ is compact, for then the least upper bound of X will be an element of X.

Let $\left(\left\|f\left(z_{n}\right)\right\|\right)$ be an arbitrary sequence in X. Then $\left(z_{n}\right)$ is a sequence in S, and by compactness of S there must be a subsequence $\left(z_{n_{k}}\right)$ converging to a
point z_{*} in S. By continuity of $f, f\left(z_{n_{k}}\right) \rightarrow f\left(z_{*}\right)$, hence $\left\|f\left(z_{n_{k}}\right)-f\left(z_{*}\right)\right\| \rightarrow$ 0 , hence

$$
\left\|\left\|f\left(z_{n_{k}}\right)\right\|-\right\| f\left(z_{*}\right)\|\leq \leq\| f\left(z_{n_{k}}\right)-f\left(z_{*}\right) \| \rightarrow 0
$$

hence $\left\|f\left(z_{n_{k}}\right)\right\| \rightarrow\left\|f\left(z_{*}\right)\right\|$. Since every sequence in X has a subsequence converging to a limit in X, X is compact.

The Cauchy-Riemann Equations

Let $f: S \rightarrow \mathbb{C}$ be holomorphic at $z_{0}=a_{0}+b_{0} i$. For any sequence $\left(t_{n}\right) \subseteq$ $\mathbb{R}-\{0\}$ satisfying $t_{n} \rightarrow 0$ we have

$$
f^{\prime}\left(z_{0}\right)=\lim _{n \rightarrow \infty} \frac{f\left(z_{0}+t_{n}\right)-f\left(z_{0}\right)}{t_{n}}
$$

and

$$
f^{\prime}\left(z_{0}\right)=\lim _{n \rightarrow \infty} \frac{f\left(z_{0}+t_{n} i\right)-f\left(z_{0}\right)}{t_{n} i}
$$

If we write $f(x+i y)=u(x, y)+v(x, y) i$ for all $x+y i \in \mathbb{C}$, then these two equations imply

$$
\begin{gathered}
f^{\prime}\left(z_{0}\right)=\lim _{n \rightarrow \infty} \frac{u\left(a_{0}+t_{n}, b_{0}\right)-u\left(a_{0}, b_{0}\right)}{t_{n}}+\frac{v\left(a_{0}+t_{n}, b_{0}\right)-v\left(a_{0}, b_{0}\right)}{t_{n}} i= \\
u_{x}\left(a_{0}, b_{0}\right)+v_{x}\left(a_{0}, b_{0}\right) i
\end{gathered}
$$

and

$$
\begin{gathered}
f^{\prime}\left(z_{0}\right)=\lim _{n \rightarrow \infty} \frac{u\left(a_{0}, b_{0}+t_{n}\right)-u\left(a_{0}, b_{0}\right)}{t_{n} i}+\frac{v\left(a_{0}, b_{0}+t_{n}\right)-v\left(a_{0}, b_{0}\right)}{t_{n} i} i= \\
-i u_{y}\left(a_{0}, b_{0}\right)+v_{y}\left(a_{0}, b_{0}\right) .
\end{gathered}
$$

Comparing the two expressions for $f^{\prime}\left(z_{0}\right)$, we obtain

$$
u_{x}\left(a_{0}, b_{0}\right)=v_{y}\left(a_{0}, b_{0}\right)
$$

and

$$
u_{y}\left(a_{0}, b_{0}\right)=-v_{x}\left(a_{0}, b_{0}\right) .
$$

These are called the Cauchy-Riemann Equations.
Example: Let $f(z)=z^{2}$. Then f is holomorphic on \mathbb{C}. We have $f(x+i y)=$ $(x+i y)^{2}=x^{2}+2 x y i-y^{2}$, hence $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=2 x y$, and
we can see that $u_{x}(a, b)=2 a=v_{y}(a, b)$ and $u_{y}(a, b)=-2 b=-v_{x}(a, b)$ for all $a, b \in \mathbb{R}$.

Example: Let $f(z)=\bar{z}$. Then $f(x+i y)=x-i y$, hence $u(x, y)=x$ and $v(x, y)=-y$. Since $u_{x}(a, b)=1$ and $v_{y}(a, b)=-1$ for all $a, b \in \mathbb{R}$, the Cauchy-Riemann equations do not hold at any $a+b i \in \mathbb{C}$, hence f is nowhere holomorphic.

Example: Satisfaction of the Cauchy-Riemann equations is necessary but not sufficient for differentiability: Let $f(x+i y)=x^{\frac{1}{3}} y^{\frac{2}{3}}+0 i$. Then f is identically 0 along the real and imaginary axes, hence

$$
u_{x}(0,0)=u_{y}(0,0)=v_{x}(0,0)=v_{y}(0,0)=0
$$

so the Cauchy-Riemann equations are satisfied at $0+0 i$. If $f^{\prime}(0+0 i)$ exists then for all $m \in \mathbb{R}$ we have

$$
f^{\prime}(0+0 i)=\lim _{t \rightarrow 0} \frac{f(t+i m t)-f(0)}{t+i m t}=\frac{m^{\frac{2}{3}}}{1+i m}
$$

which is impossible. Hence f is not holomorphic at $0+0 i$.
Theorem: Assume that $f: S \rightarrow \mathbb{C}$ satisfies the Cauchy-Riemann equations at $a+b i$, that $B_{\epsilon}(a+b i) \subseteq S$, and that $u_{x}, u_{y}, v_{x}, v_{y}$ exist and are continuous on $B_{\epsilon}(a+b i)$. Then f is holomorphic at $a+b i$ and

$$
f^{\prime}(a+b i)=u_{x}(a, b)+v_{x}(a, b) i .
$$

Proof: For any $(r, s) \in \mathbb{R}^{2}$ satisfying $\|r+s i\|<\epsilon$ we have

$$
\begin{gathered}
u(a+r, b+s)-u(a, s)= \\
u(a+r, b+s)-u(a, b+s)+u(a, b+s)-u(a, b)= \\
u_{x}\left(a_{r}, b+s\right) r+u_{y}\left(a, b_{s}\right) s
\end{gathered}
$$

for some a_{r} between a and $a+r$ and some b_{s} between b and $b+s$ by the Mean Value Theorem. By continuity of u_{x} and u_{y} on $B_{\epsilon}(a+b i)$, we can write

$$
u_{x}\left(a_{r}, b+s\right)=u_{x}(a, b)+\psi_{1}(r, s)
$$

where $\psi_{1}(r, s) \rightarrow 0$ as $r+s i \rightarrow 0+0 i$. Similarly, we can write

$$
u_{y}\left(a, b_{s}\right)=u_{y}(a, b)+\psi_{2}(r, s)
$$

where $\psi_{2}(r, s) \rightarrow 0$ as $r+s i \rightarrow 0+0 i$. This yields

$$
u(a+r, b+s)-u(a, s)=u_{x}(a, b) r+u_{y}(a, b) s+\psi_{1}(r, s) r+\psi_{2}(r, s) s .
$$

Similarly, we have

$$
v(a+r, b+s)-v(a, s)=v_{x}(a, b) r+v_{y}(a, b) s+\psi_{3}(r, s) r+\psi_{4}(r, s) s .
$$

Suppressing some of the notation, and applying the Cauchy-Riemann equations, this yields

$$
\begin{gathered}
f((a+b i)+(r+s i))-f(a+b i)= \\
u_{x} r+u_{y} s+v_{x} r i+v_{y} s i+\left(\psi_{1}+\psi_{3} i\right) r+\left(\psi_{2}+\psi_{4} i\right) s= \\
u_{x} r-v_{x} s+v_{x} r i+u_{x} s i+\left(\psi_{1}+\psi_{3} i\right) r+\left(\psi_{2}+\psi_{4} i\right) s= \\
(r+s i)\left(u_{x}+v_{x} i+\left(\psi_{1}+\psi_{3} i\right) \frac{r}{r+s i}+\left(\psi_{2}+\psi_{4} i\right) \frac{s}{r+i s}\right),
\end{gathered}
$$

hence
$\frac{f((a+b i)+(r+s i))-f(a+b i)}{r+s i}=u_{x}+v_{x} i+\left(\psi_{1}+\psi_{3} i\right) \frac{r}{r+s i}+\left(\psi_{2}+\psi_{4} i\right) \frac{s}{r+i s}$.
Since

$$
\left\|\frac{r}{r+s i}\right\| \leq 1
$$

and

$$
\left\|\frac{s}{r+s i}\right\| \leq 1
$$

and

$$
\psi_{1}+\psi_{3} i \rightarrow 0+0 i
$$

and

$$
\psi_{2}+\psi_{4} i \rightarrow 0+0 i
$$

as $r+s i \rightarrow 0+0 i$,

$$
f^{\prime}(a+b i)=u_{x}(a, b)+v_{x}(a, b) i .
$$

Complex Antiderivatives

Let $S \subseteq \mathbb{C}$ and let $f: S \rightarrow \mathbb{C}$ be holomorphic on S. We say that $F: S \rightarrow \mathbb{C}$ is an antiderivative of f on S if and only if F is holomorphic on S and $F^{\prime}(z)=f(z)$ for all $z \in S$.
Example: $f(z)=z^{2}, F(z)=\frac{z^{3}}{3}, S=\mathbb{C}$.
Example: Let $S \subseteq \mathbb{C}$ be arbitrary, and let $f: S \rightarrow \mathbb{C}$ be defined by $f(x+i y)=x$. Suppose that $F: S \rightarrow \mathbb{C}$ is an antiderivative of f on S. Then by definition, each point of S is interior to S, and we must have $F(x+i y)=u(x, y)+v(x, y) i$ where the partial derivatives of u and v are continuous and satisfy the Cauchy-Riemann equations on S. Since

$$
F^{\prime}(x+i y)=u_{x}(x, y)+v_{x}(x, y)
$$

for all $x+i y \in S$, we must have $u_{x}(x, y)=x$ and $v_{x}(x, y)=0$ for all $x+i y \in S$. This implies that $u(x, y)=\frac{x^{2}}{2}+C(y)$ and $v(x, y)=D(y)$. The Cauchy Riemann equations force $x=D^{\prime}(y)$ for all $x+i y \in S$, so each $y \in \mathbb{R}$ there is at most one $x \in \mathbb{R}$ such that $x+i y \in S$. This contradicts the fact that each point in S must be interior to S. Therefore f cannot have an antiderivative on S.

The Complex Exponential Function

We will define

$$
e^{x+i y}=e^{x} e^{y i}=e^{x}(\cos y+i \sin y)
$$

for all $x+i y \in \mathbb{C}$. One can check that the partial derivatives of $u(x, y)=$ $e^{x} \cos y$ and $v(x, y)=e^{x} \sin y$ are continuous and satisfy the Cauchy-Riemann equations on \mathbb{C}, hence e^{z} is holomorphic on \mathbb{C}. Since $u_{x}(x, y)=u(x, y)$ and $v_{x}(x, y)=v(x, y)$ for all x and $y,\left(e^{z}\right)^{\prime}=e^{z}$ for all $z \in \mathbb{C}$. Moreover, if $z=x+i y$ and $z^{\prime}=x^{\prime}+i y^{\prime}$, then

$$
e^{z+z^{\prime}}=e^{x+x^{\prime}} e^{\left(y+y^{\prime}\right) i}=e^{x} e^{y i} \cdot e^{x^{\prime}} e^{y^{\prime} i}=e^{z} \cdot e^{z^{\prime}}
$$

The complex exponential function is an extension of the real-valued exponential function to the complex plane.

Complex Trigonometric Functions

We will define

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}
$$

and

$$
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

for all $z \in \mathbb{C}$. The following identities hold:

$$
\begin{gathered}
\sin ^{\prime}(z)=\cos (z) \\
\cos ^{\prime}(z)=-\sin (z) \\
\sin ^{2}(z)+\cos ^{2}(z)=1 \\
\sin (z+w)=\sin (z) \cos (w)+\cos (z) \sin (w) \\
\cos (z+w)=\cos (z) \cos (w)-\sin (z) \sin (w)
\end{gathered}
$$

A useful inequality is

$$
\begin{aligned}
\|\sin (x+i y)\|^{2}=\frac{e^{2 y}+e^{-2 y}-2 \cos (2 x)}{4} & \geq \frac{e^{2 y}+e^{-2 y}-2}{4}=\frac{e^{2|y|}+e^{-2|y|}-2}{4}= \\
\left(\frac{e^{|y|}-e^{-|y|}}{2}\right)^{2} & \geq \frac{e^{2|y|}}{16} \geq \frac{1}{16}
\end{aligned}
$$

for all $x, y \in \mathbb{R}$ satisfying $|y| \geq 1$, because

$$
e^{t}-e^{-t}=e^{t}\left(1-e^{-2 t}\right) \geq e^{t}\left(1-e^{-2}\right) \geq \frac{e^{t}}{2}
$$

for all $t \geq 1$.

The Complex Logarithm

Let $S=\{x+i y \in \mathbb{C}: x>0\}$. Then for all $a+b i \in S, B_{a}(a+b i) \subseteq S$. Define $u:(0, \infty) \times(-\infty, \infty) \rightarrow(-\infty, \infty)$ and $v:(0, \infty) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ by

$$
u(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)
$$

and

$$
v(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Then for any $(x, y) \in(0, \infty) \times \mathbb{R}$ we have

$$
\begin{aligned}
& u_{x}=\frac{x}{x^{2}+y^{2}}, \\
& u_{y}=\frac{y}{x^{2}+y^{2}}, \\
& v_{x}=\frac{-y}{x^{2}+y^{2}}, \\
& v_{y}=\frac{x}{x^{2}+y^{2}} .
\end{aligned}
$$

Thefore the function

$$
f: S \rightarrow\left\{x+i y \in \mathbb{C}:(x, y) \in(-\infty, \infty) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right\}
$$

defined by

$$
f(x+i y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+\tan ^{-1}\left(\frac{y}{x}\right) i
$$

is holomorphic at each $a+b i \in S$. Note that for $z=x+i y$ we have

$$
f^{\prime}(z)=u_{x}(x, y)+v_{x}(x, y) i=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} i=\frac{1}{z}
$$

so f can be regarded as a complex analogue of the logarithm function. We will write $\log _{S} z=f(z)$. If we express each $z \in S$ in the form $z=r_{z} e^{\theta_{z} i}$ where $r_{z}>0$ and $-\frac{\pi}{2}<\theta_{z}<\frac{\pi}{2}$, then we have

$$
\log _{S} z=\ln r_{z}+\theta_{z} i
$$

We can extend $\log z$ to the set $\mathbb{C}-\{x+0 i \in \mathbb{C}: x<0\}$ as follows: Define the sets

$$
R=\{x+i y \in \mathbb{C}: x<0, y>0\}=\left\{e^{\frac{-\pi}{4} i} z: z \in S\right\}
$$

and

$$
T=\{x+i y \in \mathbb{C}: x>0, y<0\}=\left\{e^{\frac{\pi}{4} i} z: z \in S\right\}
$$

Then the functions $\log _{R}: R \rightarrow \mathbb{C}$ and $\log _{T}: T \rightarrow \mathbb{C}$ defined by

$$
\log _{R}(z)=\log \left(e^{\frac{-\pi}{4} i} z\right)+\frac{\pi}{4} i
$$

and

$$
\log _{T}(z)=\log \left(e^{\frac{\pi}{4} i} z\right)-\frac{\pi}{4} i
$$

are holomorphic on R and T by the Chain Rule and are equal to $\log _{S} z$ on $R \cap S$ and $T \cap S$, respectively. Note also that

$$
\log _{R}^{\prime}(z)=\frac{1}{e^{\frac{-\pi i}{4} i} z} e^{\frac{-\pi}{4} i}=\frac{1}{z}
$$

and

$$
\log _{T}^{\prime}(z)=\frac{1}{e^{\frac{\pi}{4} i} z} e^{\frac{\pi}{4} i}=\frac{1}{z}
$$

We will define $\log : \mathbb{C}-\{x+0 i \in \mathbb{C}: x<0\} \rightarrow \mathbb{C}$ by

$$
\log z=\left\{\begin{array}{ll}
\log _{R}(z) & z \in R \\
\log _{S}(z) & z \in S \\
\log _{T}(z) & z \in T
\end{array}\right\}=\ln r_{z}+\theta_{z} i
$$

where $z=r_{z} e^{\theta_{z} i}, r_{z}>0$, and $-\pi<\theta_{z}<\pi$.
Properties of $\log z$:

1. The expression $e^{\log z}$ is defined for all $z \in \mathbb{C}-\{x+0 i \in \mathbb{C}: x<0\}$. If we write $z=x+i y=r e^{i \theta}$ where $-\pi<\theta<\pi$ and $r>0$, then

$$
e^{\log z}=e^{\ln r+i \theta}=e^{\ln r} e^{i \theta}=r e^{i \theta}=z
$$

2. The expression $\log \left(e^{z}\right)$ is defined for all $z \in\{x+i y: y$ is not an odd multiple of $2 \pi\}$. Given $z=x+i y$ in this set, there is a unique integer n such that

$$
z+2 \pi n i=x+i y_{0} \in\{x+i y:-\pi<y<\pi\}
$$

and

$$
\log \left(e^{z}\right)=x+i y_{0}=z+2 \pi n i
$$

3. The equation $\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right)$ holds provided we can write $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ where $\theta_{1}, \theta_{2}, \theta_{1}+\theta_{2} \in(-\pi, \pi)$, but fails otherwise.
4. For any $\theta \in \mathbb{R}$ we can define a logarithm function

$$
\log _{\theta}: \mathbb{C}-\left\{r e^{i \theta}: r>0\right\} \rightarrow \mathbb{C}
$$

via

$$
\log _{\theta}(z)=\log \left(e^{(\pi-\theta) i} z\right)
$$

The Chain Rule yields $\log _{\theta}^{\prime}(z)=\frac{1}{z}$.

Exponentiation

Definition: Let z and w be complex numbers, and assume $z \notin\{x+0 i: x<0\}$. Then

$$
z^{w}=e^{w \log z} .
$$

For example, for $n \in \mathbb{N}$ and $s=\sigma+\tau i$ we have

$$
n^{s}=e^{s \log n}=e^{\sigma \ln n+\tau \ln n i}=n^{\sigma}\left(\cos \left(n^{\tau}\right)+\sin \left(n^{\tau}\right) i\right) .
$$

Series of Complex Numbers

Definition: Let $\left(a_{n}\right)$ be a sequence of complex numbers. The sequence of partial sums associated with $\left(a_{n}\right)$ is $\left(s_{n}\right)$, where

$$
s_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n} .
$$

If $\left(s_{n}\right)$ converges to a finite limit s then we say that the series $\sum_{n=0}^{\infty} a_{n}$ converges and define

$$
\sum_{n=0}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=s
$$

If the limit does not exist then we say that $\sum_{n=0}^{\infty} a_{n}$ diverges.
Example: Let $z \in \mathbb{R}$ be given. Then

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}
$$

if $\|z\|<1$ and diverges if $\|z\| \geq 1$. Reason: we have

$$
s_{n}=1+z+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z} .
$$

when $z \neq 1$. Divergence if clear if $z= \pm 1$. If $\|z\|>1$ then $\left(s_{n}\right)$ is unbounded, and if $\|z\|<1$ then $s_{n} \rightarrow \frac{1}{1-z}$.
Definition: Let $\left(a_{n}\right)$ be a sequence of complex numbers. We say that $\sum_{n=0}^{\infty} a_{n}$ converges absolutely if and only if $\sum_{n=0}^{\infty}\left\|a_{n}\right\|$ converges.

Example: The series $\sum_{n=0}^{\infty} z^{n}$ converges absolutely for all z satisfying $\|z\|<$ 1.

Theorem: Absolute convergence implies convergence.
Proof: Suppose $\sum_{n=0}^{\infty} a_{n}$ converges absolutely. Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$, and let S_{n} be the sequence of partial sums of $\left(\left\|a_{n}\right\|\right)$. Then we have

$$
\left\|s_{n}-s_{m}\right\|=\left\|a_{m+1}+\cdots+a_{n}\right\| \leq\left\|a_{m+1}\right\|+\cdots+\left\|a_{n}\right\|=\left|S_{n}-S_{m}\right| .
$$

Since $\left(S_{n}\right)$ converges, it is Cauchy, hence $\left(s_{n}\right)$ is Cauchy, hence $\left(s_{n}\right)$ converges.

Example: Let $s=\sigma+\tau i \in \mathbb{C}$ where $\sigma>1$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}$ converges, $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ converges absolutely, hence converges.
Example: The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges by the Alternating Series Test but does not converge absolutely by the Integral Comparison Test. Hence convergence does not necessarily imply absolute convergence.
Theorem: Let $\left(a_{n}\right)$ be a sequence of complex numbers and let $\left(s_{n}\right)$ be the associated sequence of partial sums. If $\left(s_{n}\right)$ converges then $a_{n} \rightarrow 0+0 i$.
Proof: Suppose $s_{n} \rightarrow s$. Then $s_{n-1} \rightarrow s$, hence $s_{n}-s_{n-1} \rightarrow 0+0 i$, hence $a_{n} \rightarrow 0+0 i$.
Comparison Test: Let $\left(a_{n}\right)$ be a sequence of complex numbers and let $\left(\alpha_{n}\right)$ be a sequence of positive real numbers. If $\sum_{n=0}^{\infty} \alpha_{n}$ converges and there exists $\gamma>0$ and n_{0} such that $\left\|a_{n}\right\| \leq \gamma \alpha_{n}$ for all $n \geq n_{0}$ then $\sum_{n=0}^{\infty} a_{n}$ converges absolutely.
Proof: Assume that $\left(\left\|a_{n}\right\|\right)$ and $\left(\alpha_{n}\right)$ have partial sums S_{n} and σ_{n}, respectively. For $n>m$ we have

$$
\left|S_{n}-S_{m}\right|=\left|\left|a_{m+1}\right|\right|+\cdots+\left|\left|a_{n} \| \leq \gamma \alpha_{m+1}+\cdots+\gamma \alpha_{n}=\gamma\right| \sigma_{n}-\sigma_{m}\right| .
$$

Since $\left(\sigma_{n}\right)$ converges, $\left(\sigma_{n}\right)$ is Cauchy, therefore $\left(S_{n}\right)$ is Cauchy, therefore $\left(S_{n}\right)$ converges.
Theorem: Let $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ be absolutely convergent. Then

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{k} b_{n-k}
$$

as absolutely converent and has limit equal to

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right) .
$$

Proof: We have

$$
\begin{gathered}
\left\|\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)-\sum_{n=0}^{N} \sum_{k=0}^{n} a_{k} b_{n-k}\right\| \leq \\
\left\|\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)-\left(\sum_{n=0}^{N} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)\right\|+ \\
\left\|\left(\sum_{n=0}^{N} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)-\left(\sum_{n=0}^{N} a_{n}\right)\left(\sum_{n=0}^{N} b_{n}\right)\right\|+ \\
\left\|\left(\sum_{n=0}^{N} a_{n}\right)\left(\sum_{n=0}^{N} b_{n}\right)-\sum_{n=0}^{N} \sum_{k=0}^{n} a_{k} b_{n-k}\right\| \leq \\
\left\|\sum_{n=0}^{\infty} a_{n}-\sum_{n=0}^{N} a_{n}\right\| \cdot \sum_{n=0}^{\infty}\left\|b_{n}\right\|+ \\
\sum_{n=0}^{\infty}\left\|a_{n}\right\| \cdot\left\|\sum_{n=0}^{\infty} b_{n}-\sum_{n=0}^{N} b_{n}\right\|+ \\
\left(\sum_{r>\frac{N}{2}}\left\|a_{r}\right\|\right)\left(\sum_{s=0}^{\infty}\left\|b_{s}\right\|\right)+\left(\sum_{r=0}^{\infty}\left\|a_{r}\right\|\right)\left(\sum_{s>\frac{N}{2}}\left\|b_{s}\right\|\right),
\end{gathered}
$$

which approaches 0 as $N \rightarrow \infty$. This establishes the limit. We also have

$$
\sum_{n=0}^{\infty}\left\|\sum_{k=0}^{n} a_{k} b_{n-k}\right\| \leq \sum_{n=0}^{\infty} \sum_{k=0}^{n}\left\|a_{k} b_{n-k}\right\|=\left(\sum_{n=0}^{\infty}\left\|a_{n}\right\|\right)\left(\sum_{n=0}^{\infty}\left\|b_{b}\right\|\right)
$$

which proves absolute convergence.

Rearrangements Theorem : Let $\sum_{k=1}^{\infty} a_{k}$ be absolutely convergent. Then for any permutation $\left(a_{\pi(n)}\right)$ of $\left(a_{n}\right)$,

$$
\sum_{k=1}^{\infty} a_{\pi(n)}=\sum_{k=1}^{\infty} a_{k}
$$

Proof: For any n such that $\{1, \ldots, N\} \subseteq\{\pi(1), \ldots, \pi(n)\}$ we have

$$
\left\|\sum_{k=1}^{n} a_{\pi(k)}-\sum_{k=1}^{n} a_{k}\right\| \leq \sum_{k=N+1}^{\infty}\left\|a_{k}\right\|
$$

Choosing N sufficiently large, we can make the difference arbitrarily small, hence

$$
\lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{n} a_{\pi(k)}-\sum_{k=1}^{n} a_{k}\right\|=0
$$

hence

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{\pi(k)}-\sum_{k=1}^{n} a_{k}=0
$$

and the result follows.

Limsup and Liminf

The Root Test and Ratio Test for convergence or divergence of infinite series are defined in terms of the limsup of a sequence. Let $\left(a_{n}\right)$ be a sequence of real numbers. If $\left(a_{n}\right)$ has no upper bound then we say $\lim \sup _{n \rightarrow \infty} a_{n}=+\infty$. Now assume that $\left(a_{n}\right)$ has a finite upper bound. Then for each n the set

$$
A_{n}=\left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}
$$

has a finite least upper bound. Since

$$
A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots,
$$

we have

$$
\sup A_{1} \geq \sup A_{2} \geq \sup A_{3} \geq \cdots
$$

If $\left(\sup A_{n}\right)$ has no finite lower bound then we way $\lim \sup _{n \rightarrow \infty} a_{n}=-\infty$. If $\left(\sup A_{n}\right)$ does have a finite lower bound then the sequence converges to a limit. By definition,

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sup A_{n}
$$

The liminf of a sequence is defined similarly.
Example: Let $\left(a_{n}\right)=\left(1,2+\frac{1}{2}, 1,2+\frac{1}{4}, 1,2+\frac{1}{6}, \ldots\right)$. Then

$$
\left(A_{n}\right)=\left(2+\frac{1}{2}, 2+\frac{1}{2}, 2+\frac{1}{4}, 2+\frac{1}{4}, \ldots\right)
$$

and

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} A_{n}=2
$$

Theorem: When $\lim _{n \rightarrow} a_{n}$ exists, $\lim _{\sup }^{n \rightarrow \infty}$ $a_{n}=\lim _{n \rightarrow \infty} a_{n}$.
Proof: Let A_{n} be as above. Assume $\lim _{n \rightarrow \infty} a_{n}=a$. Let $\epsilon>0$ be given. Then there exists N such that

$$
a-\frac{\epsilon}{2}<a_{N}, a_{N+1}, a_{N+2}, \cdots<a+\frac{\epsilon}{2},
$$

hence for any $n \geq N$ we have

$$
a-\frac{\epsilon}{2}<a_{n}, a_{n+1}, a_{n+2}, \cdots<a+\frac{\epsilon}{2},
$$

which implies

$$
a-\frac{\epsilon}{2}<\sup \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\} \leq a+\frac{\epsilon}{2},
$$

which implies

$$
a-\epsilon<\sup A_{n}<a+\epsilon
$$

This implies $\lim _{n \rightarrow \infty} \sup A_{n}=a$.
Root Test: Let $\left(a_{n}\right)$ be a sequence of complex numbers and let

$$
\limsup _{n \rightarrow \infty}\left\|a_{n}\right\|^{\frac{1}{n}}=L
$$

Then:
(1) If $L<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges absolutely.
(2) If $L>1$ then $\left(a_{n}\right)$ is unbounded and $\sum_{n=0}^{\infty} a_{n}$ diverges.

Proof: Write

$$
A_{n}=\sup \left\{\left\|a_{i}\right\|^{\frac{1}{i}}: i \geq n\right\}
$$

for each n. Then we have $A_{1} \geq A_{2} \geq \cdots \geq L$ and $A_{n} \rightarrow L$.
(1) Choose any r satisfying $L<r<1$. Then there exists n such that $A_{n}<r$. Hence $i \geq n$ implies $\left\|a_{i}\right\|^{\frac{1}{i}}<r$, which implies $\left\|a_{i}\right\|<r^{i}$. Since $\sum_{n=0}^{\infty} r^{n}$ converges, $\sum_{n=0}^{\infty} a_{n}$ converges absolutely by the Comparison Test.
(2) Suppose $L>1$. Choose r so that $L>r>1$. For all n we have $A_{n}>r$, so for each n there exists $n^{\prime} \geq n$ such that $\left\|a_{n^{\prime}}\right\|^{\frac{1}{n^{\prime}}}>r$, which implies $\left\|a_{n^{\prime}}\right\|>r^{n^{\prime}}$. So we can find n_{1} such that $\left\|a_{n_{1}}\right\| \geq r^{n_{1}}$, and we can find $n_{2} \geq n_{1}+1$ such that $\left\|a_{n_{2}}\right\| \geq r^{n_{2}}$, and we can find $n_{3} \geq n_{2}+1$ such that $\left\|a_{n_{3}}\right\| \geq r^{n_{3}}$, etc. Since $\left(r^{n_{k}}\right)$ is unbounded, $\left(a_{n_{k}}\right)$ is unbounded, hence $\left(a_{n}\right)$ is unbounded, hence $a_{n} \nrightarrow 0$, hence $\sum_{n=0}^{\infty} a_{n}$ diverges.
Example: Let $\left(a_{n}\right)$ be any sequence of complex numbers inside the unit circle. Then

$$
\left\|\frac{a_{n}}{2^{n}}\right\|^{\frac{1}{n}} \leq \frac{1}{2}
$$

for each n, hence

$$
\limsup _{n \rightarrow \infty}\left\|\frac{a_{n}}{2^{n}}\right\|^{\frac{1}{n}} \leq \frac{1}{2}<1,
$$

hence $\sum_{n=1}^{\infty} \frac{a^{n}}{2^{n}}$ converges to a complex number.
Ratio Test: Let $\left(a_{n}\right)$ be a non-zero sequence. Then:
(1) If $\lim \sup _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|<1$ then $\sum_{n=0}^{\infty} a_{n}$ converges absolutely.
(2) If $\left\|\frac{a_{n+1}}{a_{n}}\right\| \geq 1$ for all $n \geq N$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.
(3) If $\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|>1$ then $\sum_{n=0}^{\infty} a_{n}$ diverges.

Proof: (1) Write

$$
A_{n}=\sup \left\{\left\|\frac{a_{i+1}}{a_{i}}\right\|: i \geq n\right\}
$$

for each n. Then we have $A_{1} \geq A_{2} \geq \cdots \geq L$ and $A_{n} \rightarrow L$. Choose any r satisfying $L<r<1$. Then there exists N such that $A_{N}<r$, which implies $\left\|\frac{a_{n+1}}{a_{n}}\right\|<r$ for all $n \geq N$. For any $k \geq 0$ we have

$$
\left\|a_{N+k}\right\| \leq r\left\|a_{N+k-1}\right\| \leq r^{2}\left\|a_{N+k-2}\right\| \leq \cdots \leq r^{k}\left\|a_{N}\right\|
$$

In otherwords, for $n \geq N$,

$$
\left\|a_{n}\right\| \leq r^{n-N}\left\|a_{N}\right\| .
$$

Hence $\left\|a_{n}\right\|<c r^{n}$ for $n \geq N$ where $c=\frac{\left\|a_{N}\right\|}{r^{N}}$. Since $\sum_{n=0}^{\infty} r^{n}$ converges, $\sum_{n=0}^{\infty} a_{n}$ converges absolutely by the Comparison Test.
(2) The condition implies $\left\|a_{n}\right\| \geq\left\|a_{N}\right\|>0$ for all $n \geq N$, hence $a_{n} \nrightarrow 0$, hence $\sum_{n=0}^{\infty} a_{n}$ diverges.
(3) The condition implies that $\left\|\frac{a_{n+1}}{a_{n}}\right\|>1$ beyond a certain point, hence case (2) applies.

Functions Defined by Power Series

Power series: An expression of the form $\sum_{n=0}^{\infty} a_{n} z^{n}$ where $a_{n} \in \mathbb{C}$ for each n and $z \in \mathbb{C}$. We can define the function $f: S \rightarrow \mathbb{C}$ by $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ provided the power series converges at each $z \in S$.

A power series always converges at $z=0$. So power series fall into three categories:
(a) Converges only at $z=0$.
(b) Converges at some $z_{0} \neq 0$ and diverges at some $z_{1} \neq 0$.
(c) Converges at every z.

For any particular power series $\sum_{n=0}^{\infty} a_{n} z^{n}$, we can determine which case we are in as follows: Let

$$
l=\limsup _{n \rightarrow \infty}\left\|a_{n}\right\|^{\frac{1}{n}}
$$

and let

$$
l(z)=\limsup _{n \rightarrow \infty}\left\|a_{n} z^{n}\right\|^{\frac{1}{n}}
$$

When l is finite,

$$
l(z)=l\|z\| .
$$

When $z \neq 0$ and $l=\infty, l(z)=\infty$.
(a) Suppose $l=0$. Then $l(z)=0$ when we apply the root, hence $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges absolutely for all z.
(b) Suppose $0<l<\infty$. Then $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges absolutely for all z satisfying $\|z\|<\frac{1}{l}$ and $\left\|a_{n} z^{n}\right\|$ is unbounded when $z>\frac{1}{l}$. This is case (b).
(c) Suppose $l=\infty$. When $z \neq 0, l(z)=\infty$, hence $\left\|a_{n} z^{n}\right\|$ is unbounded. This is case (a).

In summary, the power series converges absolutely for all z satisfying $\|z\|<$ $\frac{1}{l}$ and diverges for all z satisfying $\|z\|>\frac{1}{l}$, interpreting the expression $\frac{1}{l}$ appropriately. We say that $R=\frac{1}{l}$ is the radius of convergence of the power series.

Example: Using the Root Test, the power series $\sum_{n=1}^{\infty} \frac{i^{n}}{n} z^{n}$ converges absolutely when $\|z\|<1$ and diverges when $\|z\|>1$. Convergence is conditional on the unit circle: the series converges at $z=i$ by the Alternating Series Test and diverges at $z=-i$ by the Integral Comparison Test.

Functions Defined by Power Series are Infinitely Differentiable

Lemma: $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$.
Proof: Let $\epsilon>0$ be given. We wish to solve $n^{\frac{1}{n}}<1+\epsilon$, or equivalently $n<(1+\epsilon)^{n}$. It will suffice to solve $n<1+n \epsilon+\frac{1}{2} n(n-1) \epsilon^{2}$. This will be true when $1<\frac{1}{2}(n-1) \epsilon^{2}$, i.e. $n>\frac{2}{\epsilon^{2}}$.
Theorem: Let $\left(a_{n}\right)$ be a sequence of complex numbers and let $f(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}$. Then $f(z)$ and $g(z)$ have the same radius of convergence R and for all z such that $\|z\|<R, f^{\prime}(z)=g(z)$.

Proof: Given that $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$, the Root Test shows that $f(z)$ and $g(z)$ have the same radius of convergence R. Now fix z_{0} where $\left\|z_{0}\right\|<R$. We will show $f^{\prime}\left(z_{0}\right)=g\left(z_{0}\right)$.
For each $n \geq 0$ let $s_{n}(z)=\sum_{k=0}^{n} a_{n} z^{n}$. Fix r satisfying $\left\|z_{0}\right\|<r<R$. When $\|z\|<r$ and $z \neq z_{0}$ we have

$$
\begin{gathered}
\left\|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-g\left(z_{0}\right)\right\| \leq \\
\left\|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-\frac{s_{n}(z)-s_{n}\left(z_{0}\right)}{z-z_{0}}\right\|+\left\|\frac{s_{n}(z)-s_{n}\left(z_{0}\right)}{z-z_{0}}-s_{n}^{\prime}\left(z_{0}\right)\right\|+\left\|s_{n}^{\prime}\left(z_{0}\right)-g\left(z_{0}\right)\right\| .
\end{gathered}
$$

Given that
$\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-\frac{s_{n}(z)-s_{n}\left(z_{0}\right)}{z-z_{0}}=\sum_{k=n+1}^{\infty} a_{k}\left(z^{k-1}+z^{k-2} z_{0}+\cdots+z_{0}^{k-2} z+z_{0}^{k-1}\right)$,
we have

$$
\left\|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-\frac{s_{n}(z)-s_{n}\left(z_{0}\right)}{z-z_{0}}\right\| \leq \sum_{k=n+1}^{\infty} k\left\|a_{k}\right\| r^{k-1}
$$

Now let $\epsilon>0$ be given. Since $g(z)$ converges absolutely at r and $s_{n}^{\prime}\left(z_{0}\right)$ converges to $g\left(z_{0}\right)$, there exists n such that

$$
\sum_{k=n+1}^{\infty} k\left\|a_{k}\right\| r^{k-1}<\frac{\epsilon}{3}
$$

and

$$
\left\|s_{n}^{\prime}\left(z_{0}\right)-g\left(z_{0}\right)\right\|<\frac{\epsilon}{3} .
$$

Fixing this value of n, there exists $\delta>0$ such that $0<\left\|z-z_{0}\right\|<\delta$ forces both $\|z\|<r$ and

$$
\left\|\frac{s_{n}(z)-s_{n}\left(z_{0}\right)}{z-z_{0}}-s_{n}^{\prime}\left(z_{0}\right)\right\|<\frac{\epsilon}{3} .
$$

Hence $0<\left\|z-z_{0}\right\|<\delta$ forces

$$
\left\|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-g\left(z_{0}\right)\right\|<\epsilon
$$

Hence $f^{\prime}\left(z_{0}\right)=g\left(z_{0}\right)$.

Complex Line Integrals

Path: A function of the form $\gamma:[a, b] \rightarrow \mathbb{C}$ of the form $\gamma(t)=x(t)+y(t) i$.
Definite Integral: Given a path $\gamma:[a, b] \rightarrow \mathbb{C}$,

$$
\int_{a}^{b} \gamma(t) d t=\int_{a}^{b} x(t) d t+\left(\int_{a}^{b} y(t) d t\right) i
$$

Derivative of a Path: $\gamma^{\prime}(t)=x^{\prime}(t)+y^{\prime}(t) i$, using the one-sided limit to compute $\gamma^{\prime}(a)$ and $\gamma^{\prime}(b)$.
Theorem: When γ and Γ are paths on $[a, b]$ and $\Gamma^{\prime}(t)=\gamma(t)$ on $[a, b]$, then

$$
\int_{a}^{b} \gamma(t) d t=\Gamma(b)-\Gamma(a) .
$$

Proof: Fundamental theorem of calculus applied to the real and imaginary parts of the integral.

Line Integral: Given a continuously differentiable path $\gamma:[a, b] \rightarrow \mathbb{C}$ and a continuous function $f: S \rightarrow \mathbb{C}$ where $\gamma([a, b]) \subseteq S$, the line integral of f over γ is

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Theorem: Given a continuously differentiable function $\gamma:[a, b] \rightarrow \mathbb{C}$ and a holomorphic function $f: S \rightarrow \mathbb{C}$ where $\gamma([a, b]) \subseteq S$,

$$
\frac{d}{d t}\left(f(\gamma(t))=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)\right.
$$

for each $t \in[a, b]$.
Proof: For any $t_{0} \in[a, b]$,

$$
\Delta_{f \circ \gamma, t_{0}}(t)=\Delta_{f, \gamma\left(t_{0}\right)}(t) \cdot \Delta_{\gamma, t_{0}}(t)
$$

The formula results from letting $t \rightarrow t_{0}$.
Corollary: When $F(z)$ is an antiderivative of $f(z)$ along $\gamma([a, b])$,

$$
\int_{\gamma} f(z) d z=F(\gamma(b))-F(\gamma(a))
$$

Proof: The path $F(\gamma(t))$ is an antiderivative of the path $f(\gamma(t)) \gamma^{\prime}(t)$ along $[a, b]$.

Corollary: When $f(z)$ has an antiderivative along $\gamma([a, b])$ and $\gamma(a)=\gamma(b)$,

$$
\int_{\gamma} f(z) d z=0
$$

Example: Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ be defined by $\gamma(t)=e^{i t}$. Then

$$
\int_{\gamma} \frac{1}{z} d z=\int_{0}^{2 \pi} \frac{i e^{i t}}{e^{i t}} d t=2 \pi i
$$

hence $\frac{1}{z}$ does not have an antiderivative on $\mathbb{C}-\{0\}$. If we define $\gamma_{1}:[0, \pi] \rightarrow \mathbb{C}$ by $\gamma_{1}(t)=e^{i t}$ and $\gamma_{2}:[\pi, 2 \pi]$ by $\gamma_{2}(t)=e^{i t}$, then

$$
\int_{\gamma} \frac{1}{z} d z=\int_{\gamma_{1}} \frac{1}{z} d z+\int_{\gamma_{2}} \frac{1}{z} d z=
$$

$$
\begin{gathered}
\left.\log _{\frac{3 \pi}{2}}(z)\right|_{1} ^{-1}+\left.\log _{\frac{\pi}{2}}(z)\right|_{-1} ^{1}= \\
\left.\log (-i z)\right|_{1} ^{-1}+\left.\log (i z)\right|_{-1} ^{1}= \\
\log (i)-\log (-i)+\log (i)-\log (-i)= \\
\frac{\pi}{2} i+\frac{\pi}{2} i+\frac{\pi}{2} i+\frac{\pi}{2} i=2 \pi i
\end{gathered}
$$

Equivalent Paths

Definition: Two paths $\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and $\gamma_{2}:[c, d] \rightarrow \mathbb{C}$ are equivalent if and only if $\gamma_{2}=\gamma_{1} \circ s$ where $s:[c, d] \rightarrow[a, b]$ is a differentiable bijection satisfying $s^{\prime}(t)>0$ for all t.
Theorem: When $\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and $\gamma_{2}:[c, d] \rightarrow \mathbb{C}$ are equivalent,

$$
\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

Proof: Write $f(z)=u(z)+v(z) i, \gamma_{1}(t)=x(t)+i y(t)$. Then

$$
\begin{gathered}
\int_{\gamma_{2}} f(z) d z=\int_{c}^{d} u\left(\gamma_{1}(s(t))\right) x^{\prime}(s(t)) s^{\prime}(t)-v\left(\gamma_{1}(s(t))\right) y^{\prime}(s(t)) s^{\prime}(t) d t+ \\
\left(\int_{c}^{d} u\left(\gamma_{1}(s(t))\right) y^{\prime}(s(t)) s^{\prime}(t)+v\left(\gamma_{1}(s(t))\right) x^{\prime}(s(t)) s^{\prime}(t) d t\right) i
\end{gathered}
$$

Making the substitution $\theta=s(t), d \theta=s^{\prime}(t) d t$ in the two summands, we obtain

$$
\begin{gathered}
\int_{a}^{b} u\left(\gamma_{1}(\theta)\right) x^{\prime}(\theta)-v\left(\gamma_{1}(\theta)\right) y^{\prime}(\theta) d \theta+\left(\int_{a}^{b} u\left(\gamma_{1}(\theta)\right) y^{\prime}(\theta)+v\left(\gamma_{1}(\theta)\right) x^{\prime}(\theta) d \theta\right) i= \\
\int_{\gamma_{1}} f(z) d z
\end{gathered}
$$

Complex Line Integrals over Piecewise Smooth Paths

For $1 \leq i \leq n$ let $\gamma_{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{C}$ be a continuously differentiable path satisfying $\gamma_{i}\left(b_{i}\right)=\gamma_{i+1}\left(a_{i}\right)$ for $1 \leq i \leq n-1$. Then we will say that $\gamma=$ $\gamma_{1}+\cdots+\gamma_{n}$ is a piecewise smooth path and define

$$
\int_{\gamma} f(z) d z=\sum_{i=1}^{n} \int_{\gamma_{i}} f(z) d z
$$

Theorem: When $f: S \rightarrow \mathbb{C}$ has an antiderivative F defined on the image of a continuous piecewise smooth path γ from z_{1} to z_{2}, then

$$
\int_{\gamma} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right) .
$$

Proof: This follows from

$$
\int_{\gamma_{i}} f(z) d z=F\left(\gamma_{i}\left(b_{i}\right)\right)-F\left(\gamma_{i}\left(a_{i}\right)\right)
$$

for each i, where γ_{i} has domain $\left[a_{i}, b_{i}\right]$ for each i.
Corollary: When $f: S \rightarrow \mathbb{C}$ has an antiderivative F defined on the image of a closed piecewise-smooth path γ, then

$$
\int_{\gamma} f(z) d z=0
$$

Change of Variables in a Line Integral

Theorem (Change of Variables): Let $f: S \rightarrow \mathbb{C}$ be continuous, and $g: T \rightarrow \mathbb{C}$ be holomorphic function, and let $\gamma:[a, b] \rightarrow T$ be piecewise smooth. Then

$$
\int_{g \circ \gamma} f(z) d z=\int_{\gamma} f(g(z)) g^{\prime}(z) d z
$$

Proof: We have

$$
\int_{g \circ \gamma} f(z) d z=\int_{a}^{b} f(g(\gamma(t))) g^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t=\int_{\gamma} f(g(z)) g^{\prime}(z) d z
$$

Example: For any $a \in \mathbb{C}$,

$$
\int_{\gamma} f(a+z) d z=\int_{\gamma} f(g(z)) g^{\prime}(z) d z=\int_{a+\gamma} f(z) d z
$$

using $g(z)=a+z$, where $a+\gamma$ is the translation of γ by a.

Example: For any $a \in \mathbb{C}-\{0\}, \int_{\gamma} f(a z) d z=\frac{1}{a} \int_{\gamma} f(g(z)) g^{\prime}(z) d z=$ $\frac{1}{a} \int_{a \gamma} f(z) d z$ where $a \gamma$ is the dilation of γ by a.
Example: Let $r>0$ be given, and define $\gamma_{r}:[0,2 \pi]$ by $\gamma_{r}(t)=r e^{i t}$. Then

$$
\int_{\gamma_{r}} \frac{d z}{z-a}= \begin{cases}0 & r<\|a\| \\ 2 \pi i & a>\|a\|\end{cases}
$$

Proof: We will start by making the change of variables

$$
\int_{\gamma_{r}} \frac{d z}{z-a}=\int_{a+\gamma_{r}} \frac{d z}{z}
$$

When $r<\|a\|, a+\gamma_{r}$ is a curve entirely contained one of the two vertical half-planes not touching the line $x=0$, and $\frac{1}{z}$ has an antiderivative on each half-plane. Hence the integral evaluates to zero.
Suppose $r>\|a\|$. Then for sufficiently small s the curve γ_{s} is inside the curve $a+\gamma_{r}$, and there are two closed piece-wise smooth curves α and β, intersecting along the real axis only and restricted to regions where $\frac{1}{z}$ has an antiderivative, satisfying

$$
0=\int_{\alpha} \frac{d z}{z}+\int_{\beta} \frac{d z}{z}=\int_{a+\gamma_{r}} \frac{d z}{z}-\int_{\gamma_{s}} \frac{d z}{z} .
$$

This implies

$$
\int_{a+\gamma_{R}} \frac{d z}{z}=\int_{\gamma_{s}} \frac{d z}{z}=2 \pi i
$$

The $M-L$ Inequality
Lemma: Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be integrable. Then

$$
\left\|\int_{a}^{b} \gamma(t) d t\right\| \leq \int_{a}^{b}\|\gamma(t)\| d t
$$

Proof: Write $\int_{a}^{b} \gamma(t) d t=z$. If $z=0$ there is nothing to prove. If $z \neq 0$, then

$$
\|z\|^{2}=\bar{z} z=\int_{a}^{b} \bar{z} \gamma(t) d t=\int_{a}^{b} \operatorname{re}(\bar{z} \gamma(t)) d t \leq
$$

$$
\int_{a}^{b}\|\bar{z} \gamma(t)\| d t=\|z\| \int_{a}^{b}\|\gamma(t)\| d t
$$

Now divide by $\|z\|$.
Theorem ($M-L$ Inequality): Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be continuously differentiable and let f be continuous. Then

$$
\left\|\int_{\gamma} f(z) d z\right\| \leq M L
$$

where $M=\sup _{z \in \gamma([a, b])}\|f(\gamma(z))\|$ and $L=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t$.
Proof:
$\left\|\int_{\gamma} f(z) d z\right\|=\left\|\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t\right\| \leq \int_{a}^{b}\left\|f(\gamma(t)) \gamma^{\prime}(t)\right\| d t \leq M \int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t$.

Remarks:

(1) By continuity of f and compactness of $\gamma([a, b]), M=\|f(\gamma(w))\|$ for some $w \in \gamma([a, b])$.
(2) The expression $L=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t$ can be interpreted as the length of γ. For example, when $\gamma(t)=z_{1}+t\left(z_{2}-z_{1}\right)$ on $[0,1]$ we have

$$
L=\int_{0}^{1}\left\|z_{2}-z_{1}\right\| d t=\left\|z_{2}-z_{1}\right\|
$$

and when $\gamma(t)=z_{0}+r e^{t i}$ on $[0,2 \pi]$ we have

$$
L=\int_{0}^{2 \pi}\left\|r e^{t i} i\right\| d t=2 \pi r
$$

(3) Then M - L-inequality generalizes in a natural way to piecewise smooth paths.

Complex Line Integrals over Straight Line Paths

Notation: Given $z, w \in \mathbb{C}, \gamma_{z, w}:[0,1] \rightarrow \mathbb{C}$ is the straight path from z to w defined by

$$
\gamma_{z, w}(t)=z+t(w-z)
$$

Lemma:

(1) When z_{3} is a point on the line strictly between z_{1} and z_{2} then

$$
\begin{gather*}
\int_{\gamma_{z_{1}, z_{2}}} f(z) d z=\int_{\gamma_{z_{1}, z_{3}}} f(z) d z+\int_{\gamma_{z_{3}, z_{2}}} f(z) d z \\
\int_{\gamma_{z_{1}, z_{2}}} f(z) d z=-\int_{\gamma_{z_{2}, z_{1}}} f(z) d z \tag{2}
\end{gather*}
$$

Proof: (1) For any path $\gamma:[0,1] \rightarrow \mathbb{C}$ and $0 \leq a<b \leq 1$ we have

$$
\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{0}^{1} f(\gamma(a+(b-a) u)) \gamma^{\prime}(a+(b-a) u)(b-a) d u
$$

where we have made the change of variables $t=a+(b-a) u$. Defining $\widehat{\gamma}:[0,1] \rightarrow \mathbb{C}$ by

$$
\widehat{\gamma}(u)=\gamma(a+(b-a) u),
$$

we have

$$
\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{0}^{1} f(\widehat{\gamma}(u)) \widehat{\gamma}^{\prime}(u) d u
$$

This implies

$$
\int_{a}^{b} f\left(\gamma_{z_{1}, z_{2}}(t)\right) \gamma_{z_{1}, z_{2}}^{\prime}(t) d t=\int_{\gamma_{w_{1}, w_{2}}} f(z) d z
$$

where $w_{1}=\gamma(a)$ and $w_{2}=\gamma(b)$. Now write $z_{3}=(1-\lambda) z_{1}+\lambda z_{2}$ where $\lambda \in[0,1]$. Then

$$
\begin{gathered}
\int_{\gamma_{z_{1}, z_{3}}} f(z) d z=\int_{0}^{1} f\left(\gamma_{z_{1}, z_{2}}(t)\right) \gamma_{z_{1}, z_{2}}^{\prime}(t) d t= \\
\int_{0}^{\lambda} f\left(\gamma_{z_{1}, z_{2}}(t)\right) \gamma_{z_{1}, z_{2}}^{\prime}(t) d t+\int_{\lambda}^{1} f\left(\gamma_{z_{1}, z_{2}}(t)\right) \gamma_{z_{1}, z_{2}}^{\prime}(t) d t= \\
\int_{\gamma_{z_{1}, z_{3}}} f(z) d z+\int_{\gamma_{z_{3}, z_{2}}} f(z) d z
\end{gathered}
$$

(2)

$$
\begin{gathered}
\int_{\gamma_{z_{2} z_{1}}} f(z) d z=\int_{0}^{1} f\left(z_{1}+t\left(z_{2}-z_{1}\right)\right)\left(z_{2}-z_{1}\right) d t= \\
\quad-\int_{1}^{0} f\left(z_{1}+(1-u)\left(z_{2}-z_{1}\right)\right)\left(z_{2}-z_{1}\right) d u= \\
\int_{0}^{1} f\left(z_{2}+u\left(z_{1}-z_{2}\right)\right)\left(z_{2}-z_{1}\right) d u=-\int_{\gamma_{z_{2}, z_{1}}} f(z) d z
\end{gathered}
$$

Goursat's Theorem

Definition: A convex subset of \mathbb{C} is any set S with the property that if $z_{1} \in \mathbb{C}$ and $z_{2} \in \mathbb{C}$ then $z+t\left(z_{2}-z_{1}\right) \in S$ for $0 \leq t \leq 1$, i.e. that the straight line segment joining z_{1} an z_{2} is a subset of S.
Goursat's Theorem: Let $S \subseteq \mathbb{C}$ be a convex open set and let z_{1}, z_{2}, z_{3} the vertices of a triangle contained in S. Let $f: S \rightarrow \mathbb{C}$ be holomorphic on S. Then

$$
\int_{\gamma_{z_{1}, z_{3}}} f(z) d z=\int_{\gamma_{z_{1}, z_{2}}} f(z) d z+\int_{\gamma_{z_{2}, z_{3}}} f(z) d z
$$

This result lifts the restriction that z_{2} be a point on the line between z_{1} and z_{3}, assuming the hypotheses of the theorem are met.
Proof of Goursat's Theorem: Let T denote the triangle. It will suffice to prove

$$
\int_{T} f(z) d z=0
$$

Joining the midpoints of the sides of T we obtain the four triangles $T_{1,1}, T_{1,2}, T_{1,3}, T_{1,4}$. Using the properties of piecewise smooth paths described above, we obtain

$$
\int_{T} f(z) d z=\sum_{i=1}^{4} \int_{T_{1, i}} f(z) d z
$$

Choose $i_{1} \in\{1,2,3,4\}$ such that $\left\|\int_{T_{1, i_{1}}} f(z) d z\right\|$ is maximal. Then

$$
\left\|\int_{T} f(z) d z\right\| \leq 4\left\|\int_{T_{1, i_{1}}} f(z) d z\right\|
$$

Joining the midpoints of the sides of $T_{1, i_{1}}$ we obtain the four triangles $T_{2,1}, T_{2,2}, T_{2,3}, T_{2,4}$, and

$$
\int_{T_{1, i_{1}}} f(z) d z=\sum_{i=1}^{4} \int_{T_{2, i}} f(z) d z
$$

Choose $i_{2} \in\{1,2,3,4\}$ such that $\left\|\int_{T_{2, i_{2}}} f(z) d z\right\|$ is maximal. Then

$$
\left\|\int_{T_{1, i_{1}}} f(z) d z\right\| \leq 4\left\|\int_{T_{2, i_{2}}} f(z) d z\right\|,
$$

hence

$$
\left\|\int_{T} f(z) d z\right\| \leq 4^{2}\left\|\int_{T_{2, i_{2}}} f(z) d z\right\|
$$

Keep on going, obtaining a nested sequence of triangles $T_{1, i_{1}}, T_{2, i_{2}}, T_{3, i_{3}}, \ldots$ satisfying

$$
\left\|\int_{T} f(z) d z\right\| \leq 4^{n}\left\|\int_{T_{n, i_{n}}} f(z) d z\right\|
$$

for all n. If we define X_{n} as the set of all points enclosed by $T_{n, i_{n}}$, then each X_{n} is compact and $\operatorname{diam}\left(X_{n}\right) \leq \frac{1}{2^{n}} p \rightarrow 0$ where p is the perimeter of T, hence $\bigcap_{n=1}^{\infty} X_{n}=\left\{z_{0}\right\}$ for some $z_{0} \in T$. Given that

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\left(z-z_{0}\right) \psi(z)
$$

where $\psi(z) \rightarrow 0$ as $z \rightarrow z_{0}$, and given that the first two terms have an antiderivative, we have

$$
\left\|\int_{T_{n}, i_{n}} f(z) d z\right\|=\left\|\int_{T_{n, i_{n}}}\left(z-z_{0}\right) \psi(z) d z\right\| \leq M_{n} L_{n}
$$

where

$$
M_{n}=\left\|w_{n}-z_{0}\right\|\left\|\psi\left(w_{n}\right)\right\| \leq \frac{1}{2^{n}} p\left\|\psi\left(w_{n}\right)\right\|
$$

for some $w_{n} \in T_{n, i_{n}}$ and

$$
L_{n}=\frac{1}{2^{n}} p
$$

Hence

$$
\left\|\int_{T} f(z) d z\right\| \leq\left\|\psi\left(w_{n}\right)\right\| p^{2}
$$

We have $w_{n} \rightarrow z_{0}$ as $n \rightarrow \infty$, hence

$$
\left\|\psi\left(w_{n}\right)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. This implies $\int_{T} f(z) d z=0$.

Antiderivative Construction in an Open Convex Set

Morera's Theorem: Let $S \subseteq \mathbb{C}$ be an open and convex set. Let $f: S \rightarrow \mathbb{C}$ be continuous on S. If

$$
\int_{\gamma_{z_{1}, z_{3}}} f(z) d z=\int_{\gamma_{z_{1}, z_{2}}} f(z) d z+\int_{\gamma_{z_{2}, z_{3}}} f(z) d z
$$

for all $z_{1}, z_{2}, z_{2} \in S$ then then f has the antiderivative F on S, where for a fixed point $z_{0} \in S$ we define

$$
F(z)=\int_{\gamma_{z_{0}, z}} f(w) d w
$$

Proof: Since S is open, there exists $\epsilon>0$ such that $h \in B_{\epsilon}(0)$ implies $B_{\epsilon}(z) \subseteq S$. By hypothesis, for all $h \in B_{\epsilon}(0)$ we have

$$
\begin{aligned}
& F(z+h)-F(z)= \int_{\gamma_{z_{0}, z+h}} f(w) d w-\int_{\gamma_{z_{0}, z}} f(w) d w= \\
& \int_{\gamma_{z_{0}, z}} f(w) d w+\int_{\gamma_{z, z+h}} f(w) d w-\int_{\gamma_{z_{0}, z}} f(w) d w= \\
& \int_{\gamma_{z, z+h}} f(w) d w .
\end{aligned}
$$

We also have

$$
h f(z)=\int_{\gamma_{z, z+h}} f(z) d w
$$

Therefore we have, for non-zero values of $h \in B_{\epsilon}(0)$,

$$
\frac{F(z+h)-F(z)-h f(z)}{h}=\int_{\gamma_{z, z+h}} \frac{f(w)-f(z)}{h} d w
$$

hence

$$
\left\|\frac{F(z+h)-F(z)}{h}-f(z)\right\| \leq\left\|f\left(z_{h}\right)-f(z)\right\|
$$

for some z_{h} on the line between z and $z+h$ by continuity of f. As $h \rightarrow 0$, $z_{h} \rightarrow z$, hence $\left\|f\left(w_{h}\right)-f(z)\right\| \rightarrow 0$. This implies $F^{\prime}(z)=f(z)$.
Theorem: Let $S \subseteq \mathbb{C}$ be an open and convex set. Let $f: S \rightarrow \mathbb{C}$ be holomorphic on S. Then f has the antiderivative F on S, where for a fixed point $z_{0} \in S$ we define

$$
F(z)=\int_{\gamma_{z_{0}, z}} f(w) d w
$$

Proof: By Goursat's Theorem, f meets the hypotheses of Morera's Theorem.

Cauchy's Theorem in an Open Convex Set

Theorem: Let $S \subseteq \mathbb{C}$ be an open and convex set. Let $f: S \rightarrow \mathbb{C}$ be holomorphic on S. Then for all closed curves piecewise smooth $\gamma:[a, b] \rightarrow S$,

$$
\int_{\gamma} f(z) d z=0
$$

Proof: The function f has an antiderivative on S.
Remark: The convex hypothesis can be relaxed in specific examples. For example, if S and T are open and convex, $f: S \cup T \rightarrow \mathbb{C}$ is holomorphic, and $\gamma=\alpha+\beta$ is a piecewise smooth curve where α is a closed piecewise smooth curve mapping into S and β is a closed piecewise smooth curve mapping into T, then

$$
\int_{\gamma} f(z) d z=\int_{\alpha+\beta} f(z) d z=0
$$

Example, page 44: $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} \mathrm{dx}=\frac{\pi}{2}$. Split path down the y-axis, and argue that each closed subpath belongs to open convex set where $\frac{1-e^{i z}}{z^{2}}$ is holomorphic. To prove that

$$
\lim _{\epsilon \rightarrow 0} \int_{\gamma_{\epsilon}^{+}} \frac{1-e^{i z}}{z^{2}} d z=\pi
$$

use the following technique: The expression

$$
\frac{e^{i z}-1}{z}
$$

is a difference quotient of $F(z)=e^{i z}$ and approaches $F^{\prime}(0)=i$ as $z \rightarrow 0$. So we can write

$$
\frac{e^{i z}-1}{z}=i+R(z)
$$

where $R(z) \rightarrow 0$ as $z \rightarrow 0$. This yields

$$
\frac{1-e^{i z}}{z^{2}}=\frac{-i-R(z)}{z}
$$

Therefore

$$
\int_{\gamma_{\epsilon}^{+}} \frac{1-e^{i z}}{z^{2}} d z=-i \int_{\gamma_{\epsilon}^{+}} \frac{1}{z} d z-\int_{\gamma_{\epsilon}^{+}} \frac{R(z)}{z} d z=\pi-\int_{\gamma_{\epsilon}^{+}} \frac{R(z)}{z} d z .
$$

Let M_{ϵ} be the maximum value of $\|R(z)\|$ on γ_{ϵ}^{+}. By the $M-L$ inequality,

$$
\left\|\int_{\gamma_{\epsilon}^{+}} \frac{R(z)}{z} d z\right\| \leq M_{\epsilon} \cdot \frac{1}{\epsilon} \cdot \pi \epsilon=\pi M_{\epsilon} \rightarrow 0
$$

as $\epsilon \rightarrow 0$. This yields the desired result.

Cauchy's Integral Formula

Notation: Fix $r>0$ and $a \in \mathbb{C}$. Then

$$
\begin{aligned}
& C_{r}(a)=\{z \in \mathbb{C}:\|z-a\|=r\}, \\
& D_{r}(a)=\{z \in \mathbb{C}:\|z-a\| \leq r\},
\end{aligned}
$$

and

$$
\int_{C_{r}(a)} f(z) d z
$$

denotes the line integral over the path $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ defined by

$$
\gamma(t)=a+r e^{t i}
$$

Theorem (Cauchy's Integral Formula): Let $S \subseteq \mathbb{C}$ be an open and convex set containing $D_{r}(a)$. Let $f: S \rightarrow \mathbb{C}$ be holomorphic on $D_{r}(a)$. Then for all $z \in B_{r}(a)$,

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{r}(a)} \frac{f(w)}{w-z} d w
$$

Proof: Fix $z \in B_{r}(a)$ and $s \in \mathbb{R}, 0<s<r$. The expression $\frac{f(w)}{w-z}$ is a holomorphic function of w on $B_{r}(a)-\{a\}$ by the quotient rule, and it is possible to define four piecewise smooth close curves $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{r}$ restricted to convex open subsets of S that satisfy

$$
0=\int_{\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}} \frac{f(w)}{w-z} d w=\int_{C_{r}(a)} \frac{f(w)}{w-z} d w-\int_{C_{s}(z)} \frac{f(w)}{w-z} d w
$$

Therefore

$$
\int_{C_{r}(a)} \frac{f(w)}{w-z} d w=\lim _{s \rightarrow 0} \int_{C_{s}(z)} \frac{f(w)}{w-z} d w
$$

On $C_{s}(z)$ we have

$$
\frac{f(w)}{w-z}=\frac{f(w)}{w-z}+\Delta_{f, z}(w)
$$

hence
$\int_{C_{s}(z)} \frac{f(w)}{w-z} d w=\int_{C_{s}(z)} \frac{f(w)}{w-z} d w+\int_{C_{s}(z)} \Delta_{f, z}(w) d w=2 \pi f(z) i+\int_{C_{s}(z)} \Delta_{f, z}(w) d w$,
hence

$$
\int_{C_{r}(a)} \frac{f(w)}{w-z} d w=2 \pi f(z) i+\lim _{s \rightarrow 0} \int_{C_{s}(z)} \Delta_{f, z}(w) d w
$$

By the M - L-inequality,

$$
\left\|\int_{C_{s}(z)} \Delta_{f, z}(w) d w\right\| \leq 2 \pi s\left\|\Delta_{f, z}\left(w_{s}\right)\right\|
$$

for some $w_{s} \in C_{s}(z)$. As $s \rightarrow 0, w_{s} \rightarrow z$, hence $\Delta_{f, z}\left(w_{s}\right) \rightarrow f^{\prime}(z)$, hence $2 \pi s\left\|\Delta_{f, z}\left(w_{s}\right)\right\| \rightarrow 0$, hence

$$
\left\|\int_{C_{s}(z)} \Delta_{f, z}(w) d w\right\| \rightarrow 0
$$

This implies

$$
\int_{C_{r}(a)} \frac{f(w)}{w-z} d=2 \pi f(z) i
$$

Remark: Let $S \subseteq \mathbb{C}$ be an open and convex set containing $D_{r}(a)$. Let $f: S \rightarrow \mathbb{C}$ be holomorphic on $D_{r}(a)$. Then for all $z \in B_{r}(a)$ and for all w satisfying $\|w-a\|=r$,

$$
\frac{w-a}{w-z}=\frac{1}{1-\frac{z-a}{w-a}}=\sum_{n=0}^{\infty}\left(\frac{z-a}{w-a}\right)^{n}
$$

hence by Cauchy's Formula

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{r}(a)}\left(\sum_{n=0}^{\infty} \frac{f(w)}{(w-a)^{n+1}}(z-a)^{n}\right) d w
$$

We would like to exchange the order of integration and summation, but we must do this carefully. Hence we make a digression into sequences of functions.

Sequences of Functions

Definition: The norm of a function $f: S \rightarrow \mathbb{C}$ is

$$
\|f\|=\sup \{\|f(z)\|: z \in S\}
$$

Definition: Let S be a subset of \mathbb{C} and for each $n \geq 0$ let $f_{n}: S \rightarrow \mathbb{C}$ be a function. We say that $\left(f_{n}\right)$ converges uniformly if and only there exists a function $f: S \rightarrow \mathbb{C}$ such that

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0
$$

in which case we say that $\left(f_{n}\right)$ converges uniformly to f.
Theorem: If $\left(f_{n}\right)$ converges uniformly to f on S and each f_{n} is continuous on S, then f is continuous on S.
Proof: Fix $z_{0} \in S$ and let $\epsilon>0$ be given. For any $z \in S$ we have

$$
\begin{gathered}
\left\|f(z)-f\left(z_{0}\right)\right\| \leq \\
\left\|f(z)-f_{n}(z)\right\|+\left\|f_{n}(z)-f_{n}\left(z_{0}\right)\right\|+\left\|f_{n}\left(z_{0}\right)-f\left(z_{0}\right)\right\| \leq \\
2\left\|f_{n}-f\right\|+\left\|f_{n}(z)-f_{n}\left(z_{0}\right)\right\|
\end{gathered}
$$

for all n. We can choose N so that $\left\|f_{N}-f\right\|<\frac{\epsilon}{4}$. Having fixed N, we have

$$
\left\|f(z)-f\left(z_{0}\right)\right\|<\frac{\epsilon}{2}+\left\|f_{N}(z)-f\left(z_{0}\right)\right\|
$$

By continuity of f_{N}, there exists $\delta>0$ such that for all $z \in S$ satisfying $\left\|z-z_{0}\right\|<\delta,\left\|f_{N}(z)-f_{N}\left(z_{0}\right)\right\|<\frac{\epsilon}{2}$. Hence

$$
\left\|z-z_{0}\right\|<\delta \Longrightarrow\left\|f(z)-f\left(z_{0}\right)\right\|<\epsilon
$$

for all $z \in S$.
Weierstrass M-Test: Let S be a subset of \mathbb{C}, and for each $n \geq 0$ let $f_{n}: S \rightarrow \mathbb{C}$ be a function. If

$$
\sum_{n=0}^{\infty}\left\|f_{n}\right\|=M<\infty
$$

then $\sum_{n=0}^{\infty} f_{n}(z)$ converges to a complex number for each $z \in S$ and the sequence of functions ($\sum_{k=0}^{n} f_{k}$) converges uniformly to the function $f: S \rightarrow$ \mathbb{C} defined by

$$
f(z)=\sum_{n=0}^{\infty} f_{n}(z)
$$

Proof: For any given $z \in S,\left\|f_{n}(z)\right\| \leq\left\|f_{n}\right\|$, and since $\sum_{n=0}^{\infty}\left\|f_{n}\right\|$ converges, $\sum_{n=0}^{\infty} f_{n}(z)$ converges by the Comparison Test. For any $n>m$ and $z \in S$ we have

$$
\begin{gathered}
\left\|\sum_{k=0}^{n} f_{k}(z)-\sum_{k=0}^{m} f_{k}(z)\right\|=\left\|f_{m+1}(z)+\cdots+f_{n}(z)\right\| \leq \\
\left\|f_{m+1}(z)\right\|+\cdots+\left\|f_{n}(z)\right\| \leq\left\|f_{m+1}\right\|+\cdots+\left\|f_{n}\right\| \leq M-\sum_{k=0}^{m-1}\left\|f_{k}\right\| .
\end{gathered}
$$

Hence the sequence of partial sums is Cauchy and converges. Fixing m and letting $n \rightarrow \infty$,

$$
\sum_{k=0}^{n} f_{k}(z)-\sum_{k=0}^{m} f_{k}(z) \rightarrow f(z)-\sum_{k=0}^{m} f_{k}(z)
$$

hence

$$
\left\|\sum_{k=0}^{n} f_{k}(z)-\sum_{k=0}^{m} f_{k}(z)\right\| \rightarrow\left\|f(z)-\sum_{k=0}^{m} f_{k}(z)\right\|,
$$

hence

$$
\left\|f(z)-\sum_{k=0}^{m} f_{k}(z)\right\| \leq M-\sum_{k=0}^{m-1}\left\|f_{k}\right\|
$$

Since this holds for all $z \in S$,

$$
\left\|f-\sum_{k=0}^{m} f_{k}\right\| \leq M-\sum_{k=0}^{m-1}\left\|f_{k}\right\| .
$$

Since

$$
M-\sum_{k=0}^{m-1}\left\|f_{k}\right\| \rightarrow 0
$$

as $m \rightarrow \infty$,

$$
\left\|f-\sum_{k=0}^{m} f_{k}\right\| \rightarrow 0
$$

as $m \rightarrow \infty$. This implies $\left(\sum_{k=0}^{n} f_{k}\right)$ converges to f uniormly on S.
Theorem: Let S be a subset of \mathbb{C}, let $\gamma:[a, b] \rightarrow S$ be piecewise smooth, and for each n let $f_{n}: S \rightarrow \mathbb{C}$ be continuous. If $\left(f_{n}\right)$ converges uniformly to f on S then

$$
\lim _{n \rightarrow \infty} \int_{\gamma} f_{n}(z) d z=\int_{\gamma} f(z) d z
$$

Proof: It suffices to prove that

$$
\left\|\int_{\gamma} f(z) d z-\int_{\gamma} f_{n}(z) d z\right\| \rightarrow 0
$$

We have

$$
\begin{gathered}
\left\|\int_{\gamma} f(z) d z-\int_{\gamma} f_{n}(z) d z\right\|=\left\|\int_{\gamma} f(z)-f_{n}(z) d z\right\| \leq \\
\int_{\gamma}\left\|f_{n}(z)-f(z)\right\| d z \leq \int_{\gamma}\left\|f_{n}-f\right\| d z=\left\|f_{n}-f\right\| L \rightarrow 0
\end{gathered}
$$

where L is the length of γ.
Corollary: Let S be a subset of \mathbb{C}, let $\gamma:[a, b] \rightarrow S$ be piecewise smooth, and for each $n \geq 0$ let $f_{n}: S \rightarrow \mathbb{C}$ be continuous. If

$$
\sum_{n=0}^{\infty}\left\|f_{n}\right\|=M<\infty
$$

then

$$
\sum_{n \rightarrow \infty}\left(\int_{\gamma} f_{n}(z) d z\right)=\int_{\gamma}\left(\sum_{n=0}^{\infty} f_{n}(z)\right) d z
$$

Proof: Since ($\sum_{k=0}^{n} f_{k}$) converges uniformly to the function f defined by

$$
f(z)=\sum_{n=0}^{\infty} f_{n}(z)
$$

we have by the previous theorem

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(\int_{\gamma} f_{n}(z) d z\right)= & \lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} \int_{\gamma} f_{n}(z) d z\right)=\lim _{n \rightarrow \infty} \int_{\gamma}\left(\sum_{k=0}^{n} f_{n}(z)\right) d z= \\
& \int_{\gamma} f(z) d z=\int_{\gamma}\left(\sum_{n=0}^{\infty} f_{n}(z) d z\right)
\end{aligned}
$$

Power Series Expansion of Holomorphic Functions

Theorem: Let $S \subseteq \mathbb{C}$ be an open and convex set containing $D_{r}(a)$. Let $f: S \rightarrow \mathbb{C}$ be holomorphic on $D_{r}(a)$. Then for all $z \in B_{r}(a)$,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{C_{r}(a)} \frac{f(w)}{(w-a)^{n+1}} d w
$$

Proof: Fix $z \in B_{r}(a)$. As we argued above, by Cauchy's Formula we have

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{r}(a)}\left(\sum_{n=0}^{\infty} \frac{f(w)}{(w-a)^{n+1}}(z-a)^{n}\right) d w
$$

For each $n \geq 0$ let $f_{n}: C_{r}(a) \rightarrow \mathbb{C}$ be defined by

$$
f_{n}(w)=\frac{f(w)}{(w-a)^{n+1}}(z-a)^{n} .
$$

Then

$$
\left\|f_{n}\right\|=\sup \left\{\left\|\frac{f(w)}{(w-a)^{n+1}}(z-a)^{n}\right\|: w \in C_{r}(a)\right\}=\|f\|\left(\frac{\|z-a\|}{r}\right)^{n+1},
$$

hence $\sum_{n=0}^{\infty}\left\|f_{n}\right\|$ converges by comparison with the geometric series

$$
\sum_{n=0}^{\infty}\left(\frac{\|z-a\|}{r}\right)^{n}
$$

By the last result proved in the section on sequences of functions, this implies

$$
\begin{gathered}
f(z)=\sum_{n=0}^{\infty}\left(\int_{C_{r}(a)} \frac{f(w)}{(w-a)^{n+1}}(z-a)^{n} d w\right)= \\
\sum_{n=0}^{\infty}\left(\int_{C_{r}(a)} \frac{f(w)}{(w-a)^{n+1}} d w\right)(z-a)^{n} .
\end{gathered}
$$

Corollary: Let $S \subseteq \mathbb{C}$ be an open and convex set containing $D_{r}(a)$. Let $f: S \rightarrow \mathbb{C}$ be holomorphic on $D_{r}(a)$. Then f is infinitely differentiable on $B_{r}(a)$,

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{C_{r}(a)} \frac{f(w)}{(w-a)^{n+1}} d w
$$

for all $n \geq 0$, and

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n}
$$

for all $z \in B_{r}(a)$.

Proof: These statements follow from the fact that $f(z)$ has a power series expansion in $B_{r}(a)$. We showed earlier that functions define by power series are infinitely differentiable.
Remark: Assume f is holomorphic on $B_{r}(a)$. For any s satisfying $0<s<r$, f is holomorphic on $D_{s}(a)$, hence

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n}
$$

for all $z \in B_{s}(a)$. Since $B_{r}(a)=\bigcup_{0<s<r} B_{s}(a)$,

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n}
$$

for all $z \in B_{r}(a)$. Hence f is infinitely differentiable on $B_{r}(a)$. Choosing any s satisfying $0<s<r$, we have

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{C_{s}(a)} \frac{f(w)}{(w-a)^{n+1}} d w
$$

for all $n \geq 0$.
Remark: It is now possible to derive the power series expansions

$$
\begin{gathered}
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
\cos z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}, \\
\sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}
\end{gathered}
$$

for all $z \in \mathbb{C}$. We also have

$$
\log z=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(z-1)^{n}
$$

for all $z \in B_{1}(1+0 i)$ and

$$
\frac{1}{(z-c)^{k}}=\frac{1}{(a-c)^{k}} \sum_{n=0}^{\infty} \frac{1}{(c-a)^{n}}\binom{n+k-1}{k-1}(z-a)^{n}
$$

for all $z \in B_{\|c-a\| \mid}(a)$.

Power Series Expansions of Products and Quotients

Theorem: Let f and g be holomorphic on $B_{r}(a)$ and have power series expansions

$$
f(z)=\sum_{n=0}^{\infty} f_{n}(z-a)^{n}
$$

and

$$
g(z)=\sum_{n=0}^{\infty} g_{n}(z-a)^{n}
$$

respectively. Then $f g$ is holomorphic on $B_{r}(a)$ and has power series expansion

$$
f(z) g(z)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} f_{k} g_{n-k}\right)(z-a)^{n} .
$$

Proof: We have

$$
f(z) g(z)=\sum_{n=0}^{\infty} \frac{(f g)^{(n)}(a)}{n!}(z-a)^{n} .
$$

The product rule and induction yield

$$
(f g)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(z) g^{(n-k)}(z)
$$

hence

$$
\frac{(f g)^{(n)}(a)}{n!}=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} \frac{g^{(n-k)}(a)}{(n-k)!}=\sum_{k=0}^{n} f_{k} g_{n-k}
$$

Matrix Computation of Power Series Products and Quotients

Definition: Let $a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be convergent in $B_{r}(0)$. Then we define

$$
M_{n}(a)=\left[\begin{array}{ccccc}
a_{0} & 0 & 0 & \cdots & 0 \\
a_{1} & a_{0} & 0 & \cdots & 0 \\
a_{2} & a_{1} & a_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right] .
$$

Theorem: Let $a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $b(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ be convergent in $B_{r}(0)$. Then $c(z)=a(z) b(z)$ is convergent in $B_{r}(0)$ and

$$
M_{n}(c)=M_{n}(a) M_{n}(b) .
$$

Proof: The functions $a(z)$ and $b(z)$ are holomorphic on $B_{r}(0)$. The function $c(z)=a(z) b(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ is holomorphic on $B_{r}(0)$ and $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$. Now let $n \geq \mathbb{N}$ be given. For $0 \leq i, j \leq n$ define

$$
\begin{aligned}
& \alpha_{i, j}= \begin{cases}a_{i-j} & i \geq j \\
0 & i<j,\end{cases} \\
& \beta_{i, j}= \begin{cases}b_{i-j} & i \geq j \\
0 & i<j,\end{cases} \\
& \gamma_{i, j}= \begin{cases}c_{i-j} & i \geq j \\
0 & i<j .\end{cases}
\end{aligned}
$$

Fixing i and j,

$$
\sum_{k=0}^{n} \alpha_{i, k} \beta_{k, j}=\sum_{j \leq k \leq i} a_{i-k} b_{k-j}=\sum_{0 \leq p \leq i-j} a_{i-j-p} b_{p}=\left\{\begin{array}{ll}
c_{i-j} & i \geq j \\
0 & i<j
\end{array}\right\}=\gamma_{i, j}
$$

This implies

$$
\left(\alpha_{i, j}\right)\left(\beta_{i, j}\right)=\left(\gamma_{i, j}\right),
$$

which implies

$$
M_{n}(a) M_{n}(b)=M_{n}(c) .
$$

Corollary: Let $a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be holomorphic and non-zero in $B_{r}(a)$. Then

$$
M_{n}\left(\frac{1}{a}\right)=M_{n}(a)^{-1}
$$

Proof: This follows from $a(z) \frac{1}{a(z)}=1$ and

$$
M_{n}(1)=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Example: Let $c(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{(2 n)!}$ and $s(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{n}}{(2 n+1)!}$. Both functions are holomorphic at all $z \in \mathbb{C}$, and $\cos (z)=c\left(z^{2}\right)$ and $\sin (z)=z s\left(z^{2}\right)$. Since $\sin (z)=0$ if and only if z is an odd multiple of $\pi, s(z)$ is non-zero on $B_{\sqrt{\pi}}(0)$. We have

$$
\left.\begin{array}{rl}
M_{3}(c)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 & 0 \\
\frac{1}{24} & -\frac{1}{2} & 1 & 0 \\
-\frac{1}{720} & \frac{1}{24} & -\frac{1}{2} & 1
\end{array}\right], \quad M_{3}(s)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
-\frac{1}{6} & 1 & 0 \\
0 \\
\frac{1}{120} & -\frac{1}{6} & 1 \\
-\frac{1}{5040} & \frac{1}{120} & -\frac{1}{6}
\end{array}\right],
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
M_{3}(s)^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
\frac{1}{6} & 1 & 0 & 0 \\
\frac{7}{360} & \frac{1}{6} & 1 & 0 \\
\frac{31}{15120} & \frac{7}{360} & \frac{1}{6} & 1
\end{array}\right], & M_{3}(c) M_{3}(s)^{-1}=\left[\begin{array}{cccc}
-\frac{1}{3} & 1 & 0 & 0 \\
-\frac{1}{45} & -\frac{1}{3} & 1 & 0 \\
-\frac{2}{945} & -\frac{1}{45} & -\frac{1}{3} & 1
\end{array}\right] .
\end{array}\right.
$$

This implies that

$$
\frac{1}{\sin z}=\frac{1}{z}+\frac{1}{6} z+\frac{7}{360} z^{3}+\frac{31}{15120} z^{5}+\cdots
$$

and

$$
\frac{\cos z}{\sin z}=\frac{1}{z}-\frac{1}{3} z-\frac{1}{45} z^{3}-\frac{2}{945} z^{5}-\cdots
$$

on $B_{\pi}(0)-\{0\}$.

Liouville's Theorem and The Fundamental Theorem of Algebra

Definition: A function $f: \mathbb{C} \rightarrow \mathbb{C}$ that is holomorphic at every $z \in \mathbb{C}$ is called entire.

Theorem: A bounded and entire holomorphic function is constant.

Proof: Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic on \mathbb{C} and satisfies $\|f\|=M<\infty$. Let $a \in \mathbb{C}$ be given. By Cauchy's Formula and the M - L-inequality, for all $r>0$ we have

$$
\left\|f^{\prime}(a)\right\|=\left\|\frac{1}{2 \pi i} \int_{C_{r}(a)} \frac{f(w)}{(w-a)^{2}} d w\right\| \leq \frac{1}{2 \pi} \frac{M}{r^{2}} 2 \pi r=\frac{M}{r} .
$$

Hence $f^{\prime}(a)=0$. Since $f^{\prime}(z)$ is identically zero on \mathbb{C}, it is a constant function by Exercise 26, page 31.

Corollary: Every polynomial $p(z)$ of degree ≥ 1 with complex coefficients has a root in \mathbb{C}.

Proof: Suppose $p(z) \neq 0$ for all $z \in \mathbb{C}$. Then the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
f(z)=\frac{z^{n}}{p(z)}
$$

is entire. It is bounded: write $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ where $a_{0}, \ldots, a_{n} \in \mathbb{C}$ and $a_{n} \neq 0$. Then

$$
z^{n} p(1 / z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n},
$$

hence

$$
\lim _{z \rightarrow 0} z^{n} p(1 / z)=a_{n}
$$

hence there exists $\delta>0$ such that

$$
0<\|z\|<\delta \Longrightarrow\left\|z^{n} p(1 / z)-a_{n}\right\|<\frac{1}{2}\left\|a_{n}\right\|
$$

hence

$$
\begin{aligned}
0<\|z\|<\delta \Longrightarrow & \frac{1}{\|f(1 / z)\|}=\left\|z^{n} p(1 / z)\right\|=\left\|a_{n}-\left(z^{n} p(1 / z)-a_{n}\right)\right\| \\
\geq & \left\|a_{n}\right\|-\left\|z^{n} p(1 / z)-a_{n}\right\|>\frac{1}{2}\left\|a_{n}\right\|, \\
& \|z\|>\frac{1}{\delta} \Longrightarrow\|f(z)\|<\frac{2}{\left\|a_{n}\right\|} .
\end{aligned}
$$

Since f is continuous and $D_{\frac{1}{\delta}}(0)$ is compact, $f(z)$ attains a maximum value of $f\left(z_{0}\right)$ on $D_{\frac{1}{\delta}}(0)$. Hence

$$
\|f(z)\| \leq \max \left(\frac{2}{\left\|a_{n}\right\|}, f\left(z_{0}\right)\right)
$$

for all $z \in \mathbb{C}$. By Liouville's theorem, this implies that $f(z)$ is constant. Hence $p(z)=c z^{n}$ for some $c \in \mathbb{C}$, contradicting the fact that $p(z) \neq 0$ for all $z \in \mathbb{C}$. Therefore $p(z) \neq 0$ for some $z \in \mathbb{C}$.
Corollary: Every non-constant polynomial $p(z)$ of degree ≥ 1 with complex coefficients factors into linear factors.
Proof: We can prove this by induction on the degree of $p(z)$, using the fact that if $p(c)=0$ then $p(z)=q(z)(z-c)$ for some polynomial $q(z)$ of lower degree.

Laurent Series

Definition: A Laurent Series is an expression of the form $\sum_{n \in \mathbb{Z}} c_{n}(z-a)^{n}$ where $a \in \mathbb{C}$ and $c_{n} \in \mathbb{C}$ for each $n \in \mathbb{Z}$. We say that the Laurent series converges at z if and only if the two infinite series $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ and $\sum_{n=1}^{\infty} c_{-n}(z-a)^{-n}$ converge, in which case we define

$$
\sum_{n \in \mathbb{Z}} c_{n}(z-a)^{n}=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}+\sum_{n=1}^{\infty} c_{-n}(z-a)^{-n}
$$

Example: A Laurent series expansion for $(z-a) e^{\frac{1}{z-a}}$ in powers of $z-a$ on $\mathbb{C}-\{a\}$ is given by

$$
(z-a) e^{\frac{1}{z-a}}=1(z-a)+1(z-a)^{0}+\sum_{n=1}^{\infty} \frac{1}{(n+1)!}(z-a)^{-n} .
$$

Example: Consider the function $f: \mathbb{C}-\{0, i,-i\}$ defined by

$$
f(z)=\frac{z+1}{z^{4}+z^{2}}
$$

A partial fraction decomposition yields

$$
f(z)=\frac{p}{z^{2}}+\frac{q}{z}+\frac{r}{z-i}+\frac{s}{z+i}
$$

where $p=1, q=1, r=\frac{1}{2}(-1+i)$, and $s=\frac{1}{2}(-1-i)$. A Laurent series expansion for $f(z)$ in powers of z is

$$
f(z)=p z^{-2}+q z^{-1}+\sum_{n=0}^{\infty}\left(r a_{n}+s b_{n}\right) z^{n}
$$

for all $z \in B_{1}(0)-\{0\}$, where $\frac{1}{z-i}=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\frac{1}{z+i}=\sum_{n=0}^{\infty} b_{n} z^{n}$. On the other hand, a Laurent series expansion of $f(z)$ in powers of $z-i$ is

$$
f(z)=r(z-i)^{-1}+\sum_{n=0}^{\infty}\left(p a_{n}+q b_{n}+s c_{n}\right)(z-i)^{n}
$$

for all $z \in B_{1}(i)-\{i\}$, where $\frac{1}{z^{2}}=\sum_{n=0}^{\infty} a_{n}(z-i)^{n}, \frac{1}{z}=\sum_{n=0}^{\infty} b_{n}(z-i)^{n}$, and $\frac{1}{z+i}=\sum_{n=0}^{\infty} c_{n}(z-i)^{n}$.

The Residue Theorem

Definition: Let $f: B_{r}(a)-\{a\} \rightarrow \mathbb{C}$ have a Laurent series expansion

$$
f(z)=\sum_{n \in \mathbb{Z}} c_{n}(z-a)^{n} .
$$

The residue of f at a with respect to this expansion is

$$
\operatorname{res}_{a} f=c_{-1} .
$$

Theorem: Assume that $f: B_{r}(a)-\{a\} \rightarrow \mathbb{C}$ is holomorphic and has Laurent series expansion

$$
f(z)=\sum_{n \in \mathbb{Z}} c_{n}(z-a)^{n}
$$

Then for any $0<s<r$,

$$
\int_{C_{s}(a)} f(z) d z=2 \pi i \operatorname{res}_{a} f
$$

Proof: We have $f(z)=g(z)+h(z)$ where

$$
g(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}
$$

and

$$
h(z)=\sum_{n=1}^{\infty} c_{-n}(z-a)^{-n} .
$$

Since $g(z)$ converges on $B_{r}(a)$, it is holomorphic on $B_{r}(a)$, hence $h(z)=$ $f(z)-g(z)$ is holomorphic on $B_{r}(a)-\{a\}$. Hence both g and h are continuous on $B_{r}(a)-\{a\}$, and we have

$$
\int_{C_{s}(a)} f(z) d z=\int_{C_{s}(a)} g(z) d z+\int_{C_{s}(a)} h(z) d z
$$

By Cauchy's Theorem in an open convex set,

$$
\int_{C_{s}(a)} g(z) d z=0
$$

Therefore

$$
\begin{aligned}
\int_{C_{s}(a)} f(z) d z & =\int_{C_{s}(a)} h(z) d z=\int_{C_{s}(0)} h(z+a) d z= \\
& \int_{C_{s}(0)}\left(\sum_{n=1}^{\infty} c_{-n} z^{-n}\right) d z .
\end{aligned}
$$

We wish to exchange the order of integration and summation.
Choose any t satisfying $0<t<s$. Since $\sum_{k=1}^{\infty} c_{-k} t^{-k}$ converges, $\sum_{k=0}^{\infty} c_{-k} z^{k}$ converges absolutely on $C_{\frac{1}{t}}(0)$, hence $\sum_{k=1}^{\infty} c_{-k} z^{-k}$ converges absolutely on $\{z \in \mathbb{C}:\|z\|>t\}$. By the Weierstrass M-test, $\sum_{k=1}^{\infty} c_{-k} z^{-k}$ is the uniform limit of the sequence of functions $\left(\sum_{k=1}^{p} c_{-k} z^{-k}\right)$ on $\{z \in \mathbb{C}:\|z\|>t\}$, and since $C_{s}(0) \subseteq\{z \in \mathbb{C}:\|z\|>t\}$, we have

$$
\begin{gathered}
\int_{C_{s}(0)}\left[\sum_{n=1}^{\infty} c_{-n} z^{-n}\right] d z=\sum_{n=1}^{\infty}\left[\int_{C_{s}(0)} c_{-n} z^{-n} d z\right]=\int_{C_{s}(0)} c_{-1} z^{-1} d z= \\
2 \pi i c_{-1}=2 \pi i \operatorname{res}_{a} f .
\end{gathered}
$$

Computing Residues

I. If $f(z)$ is holomorphic in $B_{r}\left(z_{0}\right)-\left\{z_{0}\right\}$ and $f(z)=\frac{1}{(z-a)^{n}} g(z)$ where $g(z)$ is holomorphic in $B_{r}\left(z_{0}\right)$, then $g(z)$ has a power series expansion

$$
g(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

which yields the Laurent Series expansion

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k-n} .
$$

This yields

$$
\operatorname{res}_{z_{0}} f=a_{n-1}=\frac{1}{(n-1)!} g^{(n-1)}\left(z_{0}\right)
$$

Example: Let $f: \mathbb{C}-\{0, i,-i\}$ be defined by

$$
f(z)=\frac{z+1}{z^{4}+z^{2}}
$$

We will compute the residue of f at $z_{0}=0, i,-i$. Observe that we have

$$
f(z)=\frac{z+1}{z^{2}(z+i)(z-i)}
$$

Residue at $z_{0}=0$: We have

$$
\begin{gathered}
f(z)=\frac{1}{z^{2}}\left(\frac{z+1}{z^{2}+1}\right) \\
\operatorname{res}_{0} f=\frac{1}{1!}\left(\frac{z+1}{z^{2}+1}\right)^{\prime}(0)=\left(\frac{-z^{2}-2 z+1}{\left(z^{2}+1\right)^{2}}\right)(0)=1 .
\end{gathered}
$$

Residue at $z_{0}=i$: We have

$$
\begin{gathered}
f(z)=\frac{1}{z-i}\left(\frac{z+1}{z^{2}(z+i)}\right), \\
\operatorname{res}_{i} f=\frac{1}{0!}\left(\frac{i+1}{i^{2}(i+i)}\right)=-\frac{1}{2}+\frac{i}{2} .
\end{gathered}
$$

Residue at $z_{0}=-i$: We have

$$
f(z)=\frac{1}{z+i}\left(\frac{z+1}{z^{2}(z-i)}\right),
$$

$$
\operatorname{res}_{-i} f=\frac{1}{0!}\left(\frac{-i+1}{(-i)^{2}(-i-i)}\right)=-\frac{1}{2}-\frac{i}{2} .
$$

II. We can compute residues by working with Laurent series directly. For example, consider $f(z)=\frac{e^{a z}}{1+e^{z}}$ where $a \in \mathbb{R}$. We will compute the residue at $z=\pi i$. Expanding the denominator in powers of $z-\pi$ we obtain

$$
1+e^{z}=1+e^{\pi i} e^{z-\pi i}=1-\sum_{n=0}^{\infty} \frac{(z-\pi i)^{n}}{n!}=-(z-\pi i) \sum_{n=1}^{\infty} \frac{(z-\pi i)^{n-1}}{n!}
$$

This yields, for $z \neq \pi i$,

$$
f(z)=\frac{1}{z-\pi i} \frac{-e^{a z}}{g(z)}
$$

where

$$
g(z)=\sum_{n=1}^{\infty} \frac{(z-\pi i)^{n-1}}{n!}
$$

Since $g(\pi i)=1, g(z) \neq 0$ on some sufficiently small neighborhood $B_{\epsilon}(\pi i)$, hence $\frac{-e^{a z}}{g(z)}$ is holomorphic on $B_{\epsilon}(\pi i)$. This implies

$$
\operatorname{res}_{\pi i} f=\frac{1}{0!} \frac{-e^{a \pi i}}{g(\pi i)}=-e^{a \pi i}
$$

Generalized Residue Theorem

Theorem: Let $f: S \rightarrow \mathbb{C}$ be holomorphic on $S-\left\{a_{1}, \ldots, a_{n}\right\}$. Assume that f has a Laurent series expansions in powers of $z-a_{k}$ in $B_{r_{k}}\left(a_{k}\right)-\left\{a_{k}\right\}$ for each i, that $0<s_{k}<r_{k}$ for each k, and that there exist closed piecewise smooth paths $\gamma_{0}, \ldots, \gamma_{N}$ restricted to open and convex subsets of $S-\left\{a_{1}, \ldots, a_{n}\right\}$ such that

$$
\int_{\gamma_{0}+\cdots+\gamma_{N}} f(z) d z=\int_{\gamma_{0}} f(z) d z-\int_{C_{s_{1}}\left(a_{1}\right)+\cdots+C_{s_{n}}\left(a_{n}\right)} f(z) d z
$$

Then

$$
\int_{\gamma_{0}} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{a_{k}} f
$$

Proof: Since f has an antiderivative on γ_{k} for each k,

$$
\int_{\gamma_{0}+\cdots+\gamma_{N}} f(z) d z=0 .
$$

Hence

$$
\int_{\gamma_{0}} f(z) d z=\int_{C_{s_{1}}\left(a_{1}\right)+\cdots+C_{s_{n}}\left(a_{n}\right)} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{a_{k}} f
$$

Example: Let $f: \mathbb{C}-\{0, i,-i\} \rightarrow \mathbb{C}$ be defined by $f(z)=\frac{z+1}{z^{4}+z^{2}}$. Then

$$
\int_{C_{\frac{3}{2}}(i)} \frac{z+1}{z^{4}+z^{2}} d z=2 \pi\left(\operatorname{res}_{0} f+\operatorname{res}_{i} f\right)=-\pi+\pi i .
$$

Trigonometric Integrals

Let $c(z)=\frac{z+1 / z}{2}=\frac{z^{2}+1}{2 z}$, let $s(z)=\frac{z-1 / z}{2 i}=\frac{z^{2}-1}{2 i z}$, and let $f(z, y)$ be a real-valued function. Then

$$
\int_{C_{1}(0)} f(c(z), s(z)) z^{n-1} d z=i \int_{0}^{2 \pi} f(\cos \theta, \sin \theta)(\cos n \theta+i \sin n \theta) d \theta
$$

Comparing real and imaginary parts,

$$
\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) \cos n \theta d \theta=\operatorname{im} \int_{e^{i \theta}} f(c(z), s(z)) z^{n-1} d z
$$

and

$$
\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) \sin n \theta d \theta=-\mathrm{re} \int_{e^{i \theta}} f(c(z), s(z)) z^{n-1} d z
$$

So for example

$$
\int_{0}^{2 \pi} \cos ^{4} \theta d \theta=\operatorname{im} \int_{C_{1}(0)}\left(\frac{z^{2}+1}{2 z}\right)^{4} \frac{1}{z} d z=
$$

$\operatorname{im} 2 \pi i \cdot \operatorname{res}_{0}\left(\frac{z^{2}+1}{2 z}\right)^{4} \frac{1}{z}=\operatorname{im} 2 \pi i \cdot \operatorname{res}_{0} \frac{z^{8}+4 z^{6}+6 z^{4}+4 z^{2}+1}{16 z^{5}}=\frac{3 \pi}{4}$.

Improper Integrals

Let $f(x)$ be a complex-valued function on $(-\infty, \infty)$. Then by definition

$$
\int_{0}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{a}^{R} f(x) d x
$$

$$
\begin{gathered}
\int_{-\infty}^{0} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{a} f(x) d x \\
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} f(x) d x+\int_{-\infty}^{0} f(x) d x
\end{gathered}
$$

and

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x
$$

assuming the limits exist. When $\int_{-\infty}^{\infty} f(x) d x$ exists,

$$
\int_{-\infty}^{\infty} f(x) d x=\text { P.V. } \int_{-\infty}^{\infty} f(x) d x
$$

Example: The improper integral $\int_{0}^{\infty} \frac{1}{1+x^{3}} d x$ exists: write $\int_{0}^{1} \frac{1}{1+x^{3}} d x=a$. Then for each $R \geq 1$,

$$
\begin{gathered}
\int_{0}^{R} \frac{1}{1+x^{3}} d x=a+\int_{1}^{R} \frac{1}{1+x^{3}} d x<a+\int_{1}^{R} \frac{1}{x^{3}} d x= \\
a+\frac{1}{2}-\frac{1}{2 R^{2}} \leq a+\frac{1}{2}
\end{gathered}
$$

Hence the sequence $\left(\int_{0}^{n} \frac{1}{1+x^{3}} d x\right)$ is increasing and bounded above by $a+\frac{1}{2}$, hence converges to a finite limit L. Therefore

$$
\int_{0}^{\infty} \frac{1}{1+x^{3}} d x=L
$$

Improper Integrals and Semicircular Paths

I. Suppose that $f(z)$ is holomorphic on the real axis and at all but a finite number of points $\left\{a_{1}, \ldots, a_{n}\right\}$ above the real axis. Then integrating $f(z)$ around the piecewise smooth path $\alpha_{R}+\beta_{R}$ where $\alpha_{R}(x)=x$ on $[-R, R]$ and $\beta_{R}(t)=R e^{i t}$ on $[0, \pi]$ we obtain

$$
\int_{-R}^{R} f(x) d x+\int_{\beta_{R}} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{a_{k}} f
$$

See the figure on page 79 . Let $\|f\|_{R}$ denote the maximum value of $\|f(z)\|$ on $C_{R}(0)$. Then

$$
\begin{gathered}
\lim _{R \rightarrow \infty} R\|f\|_{R}=0 \Longrightarrow \\
\text { P.V. } \int_{-\infty}^{\infty} f(x) d x=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{a_{k}} f .
\end{gathered}
$$

Example: The function $f(z)=\frac{1}{1+z^{2}}=\frac{1}{(z-i)(z+i)}$ is holomorphic on the real axis and at all points except $z=i$ above the real axis. Moreover when $\|z\|=R>1$ we have

$$
\left\|\frac{1}{1+z^{2}}\right\| \leq \frac{1}{R^{2}-1},
$$

hence $R\|f\|_{R} \leq \frac{R}{R^{2}-1} \rightarrow 0$ as $R \rightarrow \infty$. Given that

$$
\operatorname{res}_{i} f=\left.\frac{1}{z+i}\right|_{z=i}=\frac{1}{2 i},
$$

we have

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=\frac{2 \pi i}{2 i}=\pi
$$

Since $\frac{1}{1+x^{2}}$ is an even function, this implies

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{2 \pi i}{2 i}=\frac{\pi}{2}
$$

II. Suppose that $f(z)$ is holomorphic on the real axis and at all but a finite number of points $\left\{a_{1}, \ldots, a_{n}\right\}$ above the real axis. Let $F(z)=f(z) e^{i z}$. Then integrating $F(z)$ around the piecewise smooth path $\alpha_{R}+\beta_{R}$ where $\alpha_{R}(x)=x$ on $[-R, R]$ and $\beta_{R}(t)=R e^{i t}$ on $[0, \pi]$, we obtain

$$
\int_{-R}^{R} f(x) e^{i x} d x+\int_{\beta_{R}} f(z) e^{i z} d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{a_{k}} F
$$

See the figure on page 79. Let $\|f\|_{R}$ denote the maximum value of $\|f(z)\|$ on $C_{R}(0)$. Given that $\left\|e^{i z}\right\| \leq 1$ when z is above the x-axis,

$$
\lim _{R \rightarrow \infty} R\|f\|_{R}=0 \Longrightarrow
$$

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x)(\cos x+i \sin x) d x=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{a_{k}} F
$$

Example: The function $f(z)=\frac{1}{1+z^{2}}$ yields

$$
\int_{0}^{\infty} f(x) \cos x d x=\pi i \operatorname{res}_{i} F
$$

where $F(z)=\frac{e^{i z}}{1+z^{2}}=\frac{e^{i z}}{(z-i)(z+i)}$. We have

$$
\operatorname{res}_{i} F=\left.\frac{e^{i z}}{z+i}\right|_{z=i}=\frac{e^{-1}}{2 i}
$$

therefore

$$
\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x=\frac{\pi}{2 e}
$$

III. We get similar results if $f(z)$ is not holomorphic at $z=0, \lim _{r \rightarrow 0} \int_{\beta_{r}} f(z) d z$ exists, and $f(z)$ otherwise meets the conditions above. Just use the indented semicircle on page 105.
Example: Let $a>0$. To compute $\int_{0}^{\infty} \frac{\ln x}{x^{2}+a^{2}} d x$, use

$$
f(z)=\frac{\log _{-\pi / 2}(z)}{z^{2}+a^{2}}=\frac{\log (-i z)}{z^{2}+a^{2}}=\frac{\ln r+\left(\theta-\frac{\pi}{2}\right) i}{z^{2}+a^{2}} .
$$

When $z=r e^{i \theta}, a>r>0,0 \leq \theta \leq \pi$, we have

$$
r\|f\|_{r} \leq \frac{r|\ln r|+r \frac{\pi}{2}}{a^{2}-r^{2}} \rightarrow 0 \text { as } r \rightarrow 0
$$

When $z=R e^{i \theta}, R>a, 0 \leq \theta \leq \pi$, we have

$$
R\|f\|_{R} \leq \frac{R \ln R+R \frac{\pi}{2}}{R^{2}-a^{2}} \rightarrow 0 \text { as } R \rightarrow \infty
$$

IV. If $f(z)$ is not holomorphic at a given point along the x-axis, we can try using a semicircular contour that avoids this point. We can apply this method to evaluating $\int_{0}^{\infty} \frac{1}{1+x^{3}} d x$ - see the exercise set.

Improper Integrals and Rectangular Paths

I. Suppose that $f(z)$ is holomorphic on the real axis and at all but a finite number of points $\left\{a_{1}, \ldots, a_{n}\right\}$ above the real axis. Assume

$$
\forall \epsilon>0: \exists R>0:\|z \mid>R \Longrightarrow\| f(z) \|<\epsilon
$$

Then

$$
\int_{-\infty}^{\infty} f(x) e^{i x} d x=2 \pi i \cdot \sum_{a_{i}} \operatorname{res}_{a_{i}} f(z) e^{i z}
$$

To see that $\int_{0}^{\infty} f(x) e^{i x} d x$ converges, let M be an upper bound of $\|f(z)\|$ and choose $T>0$ so each of the points in $\left\{a_{1}, \ldots, a_{n}\right\}$ are within T units of the origin. On the path $\alpha(t)=-T+i t, t \geq 0$, we have $\left\|f(z) e^{i z}\right\| \leq M e^{-t}$, therefore the integral $\int_{0}^{\infty} f(\alpha(t)) e^{i \alpha(t)} \alpha^{\prime}(t) d t$ converges. On the path $\beta_{q}(t)=$ $t+q i, t \geq-T$, we have $\left\|f(z) e^{i z}\right\| \leq M e^{-q}$, which implies that the integral $\int_{-T}^{q} f\left(\beta_{q}(t)\right) e^{-\beta_{q}(t)} \beta_{q}^{\prime}(t) d t$ approaches zero as $q \rightarrow \infty$. On the path $\gamma_{q}(t)=$ $q+i t, t \geq 0$ we have $\left\|f(z) e^{-z}\right\| \leq M_{q}$, where M_{q} is the maximum norm of $f(z)$ on this path, which implies that the integral $\int_{0}^{q} f\left(\gamma_{q}(t)\right) e^{i \gamma_{q}(t)} \gamma_{q}^{\prime}(t) d t$ approaches zero as $q \rightarrow \infty$. Integrating around the rectangle with vertices $-T, q, q+i q,-T+i q$, and letting $q \rightarrow \infty$, we obtain

$$
\int_{-T}^{\infty} f(x) e^{i x} d x=\int_{0}^{\infty} f(\alpha(t)) e^{i \alpha(t)} \alpha^{\prime}(t) d t+2 \pi \sum_{a_{i}} \operatorname{res}_{a_{i}} f(z) e^{i z}
$$

This implies that $\int_{0}^{\infty} f(x) e^{i x} d x$ converges. Similarly, $\int_{-\infty}^{0} f(x) e^{i x} d x$ converges.

Integrating around the rectangle with vertices $-R, R, R+R i,-R+R i$, and letting $R \rightarrow \infty$, we obtain the desired formula.
Example: $f(z)=\frac{z}{z^{2}+b^{2}}$ satisfies these conditions and has singularity $z=b i$ above the x-axis. We have

$$
\operatorname{res}_{b i} \frac{z e^{i z}}{z^{2}+b^{2}}=\left.\frac{z e^{i z}}{z+i b}\right|_{z=i b}=\frac{e^{-b}}{2}
$$

Hence

$$
\begin{aligned}
& \int_{-R}^{0} \frac{x e^{i x}}{x^{2}+b^{2}} d x+\int_{0}^{R} \frac{x e^{i x}}{x^{2}+b^{2}} d x \rightarrow 2 \pi i \frac{e^{-b}}{2}, \\
- & \int_{R}^{0} \frac{-u e^{-i u}}{(-u)^{2}+b^{2}} d u+\int_{0}^{R} \frac{x e^{i x}}{x^{2}+b^{2}} d x \rightarrow 2 \pi i \frac{e^{-b}}{2},
\end{aligned}
$$

$$
\begin{gathered}
\int_{0}^{R} \frac{2 i x \sin x}{x^{2}+b^{2}} d x \rightarrow 2 \pi i \frac{e^{-b}}{2} \\
\int_{0}^{\infty} \frac{x \sin x}{x^{2}+b^{2}} d x=e^{-b} \frac{\pi}{2}
\end{gathered}
$$

II. We get similar results if $f(z)$ is not holomorphic at $z=0, \lim _{\epsilon \rightarrow 0^{+}} \int_{\beta_{r}} f(z) e^{i z} d z$ exists, and $f(z)$ otherwise meets the conditions above. Use a semicircular indentation about the origin. We obtain

$$
\int_{-\infty}^{\infty} f(x)(\cos x+i \sin x) d x+\lim _{\epsilon \rightarrow 0^{+}} \int_{\beta_{\epsilon}} f(z) e^{i z} d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{a_{k}} F .
$$

Example: We can use $f(z)=\frac{1}{z}$ to prove $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$. This requires the differential approximation

$$
\frac{e^{i z}}{z}=\frac{e^{i z}-1}{z}+\frac{1}{z}=i+\psi(z)+\frac{1}{z}
$$

where $\psi(z) \rightarrow 0$ as $z \rightarrow 0$.

Rectangular Paths of Fixed Width

(i) Let $a<b$ and $p<q$ be real numbers. Let $R(a, b, p, q)$ denote the rectangle with sides through $x=a, x=b, y=p, y=q$, and for a function $f(z)$ let $\|f\|_{a},\|f\|_{b},\|f\|_{p}$, and $\|f\|_{q}$ denote the maximum value of $\|f(z)\|$ on each of these sides. Fixing a and b, and assuming that $\lim _{p \rightarrow-\infty}\|f\|_{p}=0$ and $\lim _{q \rightarrow \infty}\|f\|_{q}=0$ and that for sufficiently large p and q, f is holomorphic on $R(a, b, p, q)$ and has a finite number of singularities in the set S in the interior of $R(a, b, p, q)$, we have

$$
i \int_{-\infty}^{\infty} f(b+i t)-f(a+i t) d t=2 \pi i \sum_{z \in S} \operatorname{res}_{z} f
$$

(ii) Similarly, fixing p and q, assuming that $\lim _{a \rightarrow-\infty}\|f\|_{a}=0$ and $\lim _{b \rightarrow \infty}\|f\|_{b}=$ 0 and that for sufficiently large a and b, f is holomorphic on $R(a, b, p, q)$ and has a finite number of singularities in the set S in the interior of $R(a, b, p, q)$, we have

$$
\int_{-\infty}^{\infty} f(t+i p)-f(t+i q) d t=2 \pi i \sum_{z \in S} \operatorname{res}_{z} f
$$

Example: Let $0<k<1$ be given. The function $f(z)=\frac{e^{k z}}{1+e^{z}}$ meets the conditions in (ii) when $p=0$ and $q=2 \pi$. This yields

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{e^{k t}}{1+e^{t}} d t-\int_{-\infty}^{\infty} \frac{e^{k t+2 k \pi i}}{1+e^{t+2 \pi i}} d t=2 \pi i \mathrm{res}_{\pi i} \frac{e^{k z}}{1+e^{z}} \\
\left(1-e^{2 k \pi i}\right) \int_{-\infty}^{\infty} \frac{e^{k t}}{1+e^{t}} d t=-2 \pi i e^{k \pi i} \\
\int_{-\infty}^{\infty} \frac{e^{k t}}{1+e^{t}} d t=\frac{-2 \pi i e^{k \pi i}}{1-e^{2 k \pi i}}=\frac{\pi}{\sin k \pi}
\end{gathered}
$$

A Rectilinear Path.

The function $f(z)=\frac{e^{\frac{\pi}{4} i z^{2}}}{\sin \left(\frac{\pi}{2} z\right)}$ is holomorphic on $\mathbb{C}-\{2 k: k \in \mathbb{Z}\}$. Let $\alpha=a+b i$ be a non-zero complex number with $a \geq 0$ and $b>0$. The rectilinear path γ_{R} around the figure with vertices $1-R \alpha, 1+R \alpha,-1+R \alpha,-1-R \alpha$ encloses the single singularity 0 , hence

$$
\int_{\gamma_{R}} f(z) d z=2 \pi i \cdot \operatorname{res}_{0} \frac{e^{\frac{\pi}{4} i z^{2}}}{\sin \left(\frac{\pi}{2} z\right)}=2 \pi i \cdot \frac{1}{\frac{\pi}{2}}=4 i
$$

The contribution to this integral along the long sides of this path is

$$
\begin{gathered}
\alpha \int_{-R}^{R} \frac{e^{\frac{\pi}{4} i(1+\alpha t)^{2}}}{\sin \left(\frac{\pi}{2}(1+\alpha t)\right)}+\frac{e^{\frac{\pi}{4} i(1-\alpha t)^{2}}}{\sin \left(\frac{\pi}{2}(1-\alpha t)\right)} d t= \\
\alpha \int_{-R}^{R} \frac{e^{\frac{\pi}{4} i\left(1+2 \alpha t+\alpha^{2} t^{2}\right)}+e^{\frac{\pi}{4} i\left(1-2 \alpha t+\alpha^{2} t^{2}\right)}}{\cos \left(\frac{\pi}{2} \alpha t\right)} d t= \\
e^{\frac{\pi}{4} i} \alpha \int_{-R}^{R} \frac{e^{\frac{\pi}{4} i \alpha^{2} t^{2}}\left(e^{\frac{\pi}{2} \alpha t i}+e^{-\frac{\pi}{2} \alpha t i}\right)}{\cos \left(\frac{\pi}{2} \alpha t\right)} d t= \\
4 e^{\frac{\pi}{4} i} \alpha \int_{0}^{R} e^{\frac{\pi}{4} i \alpha^{2} t^{2}} d t .
\end{gathered}
$$

The contribution along the narrow sides is

$$
\alpha \int_{-1}^{1} \frac{e^{\frac{\pi}{4} i(t-\alpha R)^{2}}}{\sin \left(\frac{\pi}{2}(t-\alpha R)\right)}-\frac{e^{\frac{\pi}{4} i(t+\alpha R)^{2}}}{\sin \left(\frac{\pi}{2}(t+\alpha R)\right)} d t=2 \alpha \int_{-1}^{1} \frac{e^{\frac{\pi}{4} i(t-\alpha R)^{2}}}{\sin \left(\frac{\pi}{2}(t-\alpha R)\right)} d t .
$$

Given $\left\|e^{x+i y}\right\|=e^{x}$ and $\|\sin (x+i y)\| \geq \frac{e^{|y|}}{4}$ for $|y| \geq 1$, we have

$$
\left\|\frac{e^{\frac{\pi}{4} i(t-\alpha R)^{2}}}{\sin \left(\frac{\pi}{2}(t-\alpha R)\right)}\right\| \leq e^{\frac{\pi}{2} b R(t-1-a R)},
$$

hence

$$
\left\|\int_{-1}^{1} \frac{e^{\frac{\pi}{4} i(t-\alpha R)^{2}}}{\sin \left(\frac{\pi}{2}(t-\alpha R)\right)} d t\right\| \leq \int_{-1}^{1} e^{\frac{\pi}{2} b R(t-1-a R)} d t=\frac{e^{-\frac{\pi}{2} a b R}}{\frac{\pi}{2} b R}\left(1-e^{-\pi b R}\right) \rightarrow 0
$$

as $R \rightarrow \infty$. This implies

$$
4 e^{\frac{\pi}{4} i} \alpha \int_{0}^{\infty} e^{\frac{\pi}{4} i \alpha^{2} t^{2}} d t=4 i .
$$

Rescaling and simplifying,

$$
\int_{0}^{\infty} e^{s e^{i \psi} t^{2}} d t=\sqrt{\frac{\pi}{4 s}} e^{\left(\frac{\pi-\psi}{2}\right) i}
$$

$s>0$ and $\frac{\pi}{2}<\psi \leq \frac{3 \pi}{2}$.
Setting $\psi=\pi$ and $s=1$ we obtain

$$
\int_{0}^{\infty} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}
$$

Setting $\psi=\frac{3 \pi}{2}$ and $s=1$ yields

$$
\int_{0}^{\infty} \cos \left(t^{2}\right) d t=\int_{0}^{\infty} \sin \left(t^{2}\right) d t=\frac{\sqrt{2 \pi}}{4}
$$

Setting $s e^{\psi i}=-1+m i, m>0$, we obtain

$$
\int_{0}^{\infty} e^{-t^{2}} \cos \left(m t^{2}\right) d t=\frac{\sqrt{\pi}}{4}\left(\sqrt{\frac{\sqrt{m^{2}+1}+m}{m^{2}+1}}+\sqrt{\frac{\sqrt{m^{2}+1}-m}{m^{2}+1}}\right)
$$

Some Infinite Series Evaluations

Theorem: Let $f: \mathbb{C}-S \rightarrow \mathbb{C}$ be holomorphic at each $z \in \mathbb{C}-S$, where S is a countable set. For each $n \in \mathbb{N}$ let γ_{n} denote the piecewise-smooth path
parameterizing the square centered at the origin with sides of length $2 n+1$. Let I_{n} an P_{n} denote the interior and boundary of the square bounded by γ_{n}. Let $f(z)$ be a function having the following the properties:

1. $S \cap I_{n}$ is finite for each n.
2. $S \cap B_{n}=\emptyset$ for each n.
3. There exist real numbers $A>0$ and $B>0$ such that $\|f(z)\| \leq \frac{A}{\|z\|^{2}}$ for all z in the domain of f satisfying $\|z\| \geq B$.
Then

$$
\lim _{n \rightarrow \infty} \sum_{a \in S_{n}} \operatorname{res}_{a} f=0
$$

Proof:

$$
\left\|\sum_{a \in S_{n}} \operatorname{res}_{a} f\right\|=\left\|\frac{1}{2 \pi i} \int_{\gamma_{n}} f(z) d z\right\| \leq \frac{A}{2 \pi} \frac{8 n+4}{\left(n+\frac{1}{2}\right)^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$.
Example: The function $f: \mathbb{C}-\mathbb{Z} \rightarrow \mathbb{C}$ defined by

$$
f(z)=\frac{1}{z^{6} \sin (\pi z)}
$$

is holomorphic at all z in its domain, $S=\mathbb{Z}$, and for each $n \in \mathbb{N}$,

$$
S_{n}=\{-n,-n+1, \ldots, n-1, n\} .
$$

Moreover

$$
\|f(z)\|^{2}=\frac{1}{\|z\|^{12}} \frac{1}{\|\sin (\pi z)\|^{2}} \leq \frac{16}{\|z\|^{12}} \leq \frac{16}{\|z\|^{4}}
$$

for all z in the domain of f satisfying $\|z\| \geq 1$. Hence f meets the hypotheses of the theorem. Hence

$$
\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} \operatorname{res}_{k} f=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} \operatorname{res}_{k} \frac{1}{z^{6} \sin (\pi z)}=0
$$

When $k=0$ we have

$$
\operatorname{res}_{0} \frac{1}{z^{6} \sin (\pi z)}=
$$

$$
\operatorname{res}_{0} \frac{1}{z^{6}}\left(\frac{1}{\pi z}+\frac{1}{6} \pi z+\frac{7}{360} \pi^{3} z^{3}+\frac{31}{15120} \pi^{5} z^{5}+\cdots\right)=\frac{31 \pi^{5}}{15120} .
$$

When $k \neq 0$,

$$
\begin{gathered}
\operatorname{res}_{k} \frac{1}{z^{6}} \frac{1}{\sin (\pi(z-k)+\pi k)}= \\
\operatorname{res}_{k} \frac{1}{z^{6}} \frac{(-1)^{k}}{\sin (\pi(z-k))}= \\
\operatorname{res}_{k} \frac{1}{z-k} \frac{1}{\pi z^{6}} \frac{(-1)^{k}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!}(z-k)^{2 n}}=\frac{(-1)^{k}}{\pi k^{6}} .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
\frac{31 \pi^{5}}{15120}+\lim _{n \rightarrow \infty} \frac{2}{\pi} \sum_{k=1}^{n} \frac{(-1)^{k}}{k^{6}}=0 \\
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{6}}=\frac{31 \pi^{6}}{30240}
\end{gathered}
$$

Example: The function $f: \mathbb{C}-\mathbb{Z} \rightarrow \mathbb{C}$ defined by

$$
f(z)=\frac{\cos (\pi z)}{z^{6} \sin (\pi z)}
$$

is holomorphic at all z in its domain, $S=\mathbb{Z}$, and for each $n \in \mathbb{N}$,

$$
S_{n}=\{-n,-n+1, \ldots, n-1, n\} .
$$

Moreover

$$
\|f(z)\|^{2}=\frac{\left\|\cot ^{2}(\pi z)\right\|}{\|z\|^{12}}=\frac{\left\|\csc ^{2}(\pi z)+1\right\|}{\|z\|^{12}} \leq \frac{17}{\|z\|^{12}} \leq \frac{17}{\|z\|^{4}}
$$

for all z in the domain of f satisfying $\|z\| \geq 1$. Hence f meets the hypotheses of the theorem. Hence

$$
\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} \operatorname{res}_{k} f=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} \operatorname{res}_{k} \frac{\cos (\pi z)}{z^{6} \sin (\pi z)}=0
$$

When $k=0$ we have

$$
\operatorname{res}_{0} \frac{\cos (\pi z)}{z^{6} \sin (\pi z)}=
$$

$$
\operatorname{res}_{0} \frac{1}{z^{6}}\left(\frac{1}{\pi z}-\frac{1}{3} \pi z-\frac{1}{45} \pi^{3} z^{3}-\frac{2}{945} \pi^{5} z^{5}-\cdots\right)=-\frac{2 \pi^{5}}{945}
$$

When $k \neq 0$,

$$
\begin{gathered}
\operatorname{res}_{k} \frac{\cos (\pi z)}{z^{6} \sin (\pi z)}=\operatorname{res}_{k} \frac{1}{z^{6}} \frac{\cos (\pi(z-k)+\pi k)}{\sin (\pi(z-k)+\pi k)}= \\
\operatorname{res}_{k} \frac{1}{z^{6}} \frac{\cos (\pi(z-k))}{\sin (\pi(z-k))}= \\
\operatorname{res}_{k} \frac{1}{z-k} \frac{1}{\pi z^{6}} \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{(2 n)!}(z-k)^{2 n}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!}(z-k)^{2 n}}=\frac{1}{\pi k^{6}} .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
-\frac{2 \pi^{5}}{945}+\lim _{n \rightarrow \infty} \frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k^{6}}=0, \\
\sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945}
\end{gathered}
$$

Analytic Continuation of Holomorphic Functions

Definition: Let $f: S \rightarrow \mathbb{C}$ be holomorphic on S. If $S \subseteq T$ and $F: T \rightarrow \mathbb{C}$ is holomorphic on T and satisfies $F(z)=f(z)$ for all $z \in S$, then we say that F is an analytic continuation of f to the set T.
Example: Let $f: B_{r}(a)-\{a\}$ have Laurent series expansion

$$
f(z)=\sum_{n=-1}^{\infty} c_{n}(z-a)^{n}
$$

Then $f(z)-\frac{c_{-1}}{z-a}$ has analytic continuation $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ to $B_{r}(a)$.

The Riemann Zeta Function

I. Definition of the Riemann Zeta Function

Recall that for a complex number $z \in \mathbb{C}-\{x+0 i: x<0\}$ and for any other complex number $w, z^{w}=e^{w \log z}$. In particular, for a positive integer $n, n^{x+i y}=e^{(x+i y) \log n}=n^{x} \cos \left(n^{y}\right)+n^{x} \sin \left(n^{y}\right) i$.

Definition: The Riemann Zeta function is the function

$$
\zeta:\{z \in \mathbb{C}: \text { re } z>1\} \rightarrow \mathbb{C}
$$

defined by

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

Since $\left\|n^{x+i y}\right\|=n^{x}, \zeta(z)$ is absolutely convergent for each z in its domain.
Lemma: Let S be an open and convex subset of \mathbb{C} and for each $n \geq 0$ let $f_{n}: S \rightarrow \mathbb{C}$ be holomorphic on S. If $f_{n} \rightarrow f$ uniformly on S then f is holomorphic on S and $f^{\prime}(z)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(z)$ for each $z \in S$.
Proof: Since each f_{n} is continuous, f is continuous on S. Moreover, for any piecewise smooth γ_{T} parameterizing a triangle T in S,

$$
\int_{\gamma_{T}} f(z) d z=\lim _{n \rightarrow \infty} \int_{\gamma_{T}} f_{n}(z) d z=0
$$

since each $f_{n}(z)$ is holomorphic on S. Therefore f has an antiderivative F on S by Morera's Theorem. Since F is infinitely differentiable on S, so is f.
Now let $z \in S$ be given. Choose $r>0$ so that $C_{r}(z) \subseteq S$. By Cauchy's Integral Formula,

$$
f_{n}^{\prime}(z)-f^{\prime}(z)=\frac{2!}{2 \pi i} \int_{C_{r}(z)} \frac{f_{n}(w)-f(w)}{(w-z)^{2}} d z
$$

therefore by the $M-L$ inequality we have

$$
\left\|f_{n}^{\prime}(z)-f^{\prime}(z)\right\| \leq\left\|\frac{2!}{2 \pi i} \int_{C_{r}(z)} \frac{f_{n}(w)-f(w)}{(w-z)^{2}} d z\right\| \leq \frac{1}{\pi} 2 \pi r \frac{\left\|f_{n}-f\right\|}{r^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$.
Corollary: Let S be an open and convex subset of \mathbb{C} and for each $n \geq 0$ let $f_{n}: S \rightarrow \mathbb{C}$ be holomorphic on S. If $\sum_{n=0}^{\infty}\left\|f_{n}\right\|$ converges then $\sum_{n=0}^{\infty} f_{n}$ is holomorphic and has derivative equal to $\sum_{n=0}^{\infty} f_{n}^{\prime}$.
Theorem: The Riemann Zeta function is holomorphic at each z in its domain.

Proof: Let $z_{0}=x_{0}+i y_{0}$ be given, where $x_{0}>1$. Fix x_{1} satisfying $1<x_{1}<$ x_{0}, and set

$$
X_{1}=\left\{x+i y \in \mathbb{C}: x>x_{1}\right\}
$$

For each $n \in \mathbb{N}$ define $f_{n}: X_{1} \rightarrow \mathbb{C}$ by

$$
f_{n}(z)=\frac{1}{n^{z}}
$$

Then each f_{n} is holomorphic on X_{1} and we have

$$
\sum_{n=1}^{\infty}\left\|f_{n}\right\|=\sum_{n=1}^{\infty} \frac{1}{n^{x_{1}}}<\infty
$$

Hence ζ is on X_{1}, and in particular at z_{0}. Moreover

$$
\zeta^{\prime}(z)=-\sum_{n=1}^{\infty} \frac{\ln n}{n^{z}}
$$

II. The Euler Product Formula

Lemma: Let $\left(p_{n}\right)$ be the sequence of prime numbers, let $\mathbb{N}_{0}=\mathbb{N}$, and for $k \geq 0$ let

$$
\mathbb{N}_{k}=\left\{n \in \mathbb{N}: n \text { is not divisible by } p_{i} \text { for } 1 \leq i \leq k\right\}
$$

Then for all k,

$$
\mathbb{N}_{k+1}=\mathbb{N}_{k}-\left\{p_{k+1} n: n \in \mathbb{N}_{k}\right\}
$$

Proof: It is clear that

$$
\mathbb{N}_{k+1} \subseteq \mathbb{N}_{k}-\left\{p_{k+1} n: n \in \mathbb{N}_{k}\right\}
$$

Now let $x \in \mathbb{N}_{k}-\left\{p_{k+1} n: n \in \mathbb{N}_{k}\right\}$ be given. Then x is not divisible by any of the primes p_{1}, \ldots, p_{k}, and so $x=p_{k+1}^{r} m$ for some $r \geq 0$ and $m \in \mathbb{N}_{k+1}$. If $r>0$ then $x=p_{k+1} n$ where $n=p_{k+1}^{r-1} m \in \mathbb{N}_{k}$, a contradiction. Therefore $r=0$ and $x=m \in \mathbb{N}_{k+1}$.

Lemma: Fix a real number $x_{0}>1$. Then

$$
\zeta(z) \prod_{k=1}^{n}\left(1-\frac{1}{p_{n}^{z}}\right) \rightarrow 1
$$

uniformly on $\left\{x+i y \in \mathbb{C}: x \geq x_{0}\right\}$.
Proof: For any $k \geq 0$ we have

$$
\sum_{n \in \mathbb{N}_{k}} \frac{1}{n^{z}}\left(1-\frac{1}{p_{k+1}^{z}}\right)=\sum_{n \in \mathbb{N}_{k}} \frac{1}{n^{z}}-\sum_{n \in \mathbb{N}_{k}} \frac{1}{\left(p_{k+1} n\right)^{z}}=\sum_{n \in \mathbb{N}_{k+1}} \frac{1}{n^{z}}
$$

by the Lemma. This yields the sequence of identities

$$
\begin{gathered}
\zeta(z)\left(1-\frac{1}{p_{1}^{z}}\right)=\sum_{n \in \mathbb{N}_{1}} \frac{1}{n^{z}}, \\
\zeta(z)\left(1-\frac{1}{p_{1}^{z}}\right)\left(1-\frac{1}{p_{2}^{z}}\right)=\sum_{n \in \mathbb{N}_{2}} \frac{1}{n^{z}}, \\
\zeta(z)\left(1-\frac{1}{p_{1}^{z}}\right)\left(1-\frac{1}{p_{2}^{z}}\right)\left(1-\frac{1}{p_{3}^{z}}\right)=\sum_{n \in \mathbb{N}_{3}} \frac{1}{n^{z}},
\end{gathered}
$$

etc. Since $\mathbb{N}_{k}=\{1\} \cup S_{k}$ where $S_{k} \subseteq\left\{p_{k}+1, p_{k}+2, \ldots\right\}$,

$$
\left\|\zeta(z) \prod_{k=1}^{n}\left(1-\frac{1}{p_{n}^{z}}\right)-1\right\| \leq \sum_{n=p_{k}+1}^{\infty} \frac{1}{n^{x_{0}}} \rightarrow 0
$$

as $k \rightarrow \infty$.
Corollary: For all $z \in \mathbb{C}$ with re $z>1$,

$$
\zeta(z)=\prod_{n=1}^{\infty} \frac{1}{1-\frac{1}{p_{n}^{z}}} .
$$

III. The Logarithmic Derivative of $\zeta(z)$

Theorem: For all $z \in \mathbb{C}$ satisfying re $z>1$,

$$
\frac{\zeta^{\prime}(z)}{\zeta(z)}=\sum_{n=1}^{\infty} \frac{\log p_{n}}{1-p_{n}^{z}} .
$$

Proof: Write

$$
\Pi_{n}(z)=\prod_{k=1}^{n}\left(1-\frac{1}{p_{n}^{z}}\right)
$$

Fix $z_{0}=x_{0}+i y_{0}$ with $x_{0}>1$. Choose x_{1} satisfying $1<x_{1}<x_{0}$. By uniform convergence on $\left\{x+i y: x>x_{1}\right\}$ and the lemma in \mathbf{I}, for all z in this set we have

$$
\left(\zeta(z) \Pi_{n}(z)\right)^{\prime} \rightarrow 0
$$

Hence

$$
\begin{gathered}
\zeta^{\prime}(z) \Pi_{n}(z)+\zeta(z) \Pi_{n}^{\prime}(z) \rightarrow 0 \\
\frac{\zeta^{\prime}(z)}{\zeta(z)} \rightarrow \frac{\Pi_{n}^{\prime}(z)}{\Pi_{n}(z)}, \\
\frac{\zeta^{\prime}(z)}{\zeta(z)}=-\lim _{n \rightarrow \infty} \frac{\Pi_{n}^{\prime}(z)}{\Pi_{n}(z)}=-\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\left(1-p_{k}^{-z}\right)^{\prime}}{1-p_{k}^{-z}}=\sum_{n=1}^{\infty} \frac{\log p_{n}}{1-p_{n}^{z}} .
\end{gathered}
$$

IV. Analytic Continuation of $\zeta(z)$ to $\{z \in \mathbb{C}:$ re $z>0\}-\{1\}$

Lemma: For all $z \in \mathbb{C}$ with re $z>1$,

$$
\frac{1}{z-1}=\int_{1}^{\infty} \frac{1}{x^{z}} d x
$$

Proof: Fix $z=a+b i$ where $a>1$. Making the change of variables $u=\ln x$, we have

$$
\int_{1}^{R} \frac{1}{x^{z}} d x=\int_{0}^{\ln R} e^{u(1-z)} d u=\left.\frac{e^{u(1-z)}}{1-z}\right|_{0} ^{\ln R}=\frac{e^{\ln R(1-z)}-1}{z-1}
$$

Since $a>1$,

$$
\left\|e^{\ln R(1-z)}\right\|=\left\|e^{\ln R-a \ln R-b \ln R i}\right\|=e^{(1-a) \ln R} \rightarrow 0
$$

as $R \rightarrow \infty$ since $1-a<0$. This implies

$$
\int_{1}^{\infty} \frac{1}{x^{z}} d x=\frac{1}{z-1}
$$

Theorem: The function $F:\{z \in \mathbb{C}:$ re $z>0\} \rightarrow \mathbb{C}$ defined by

$$
F(z)=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(\frac{1}{n^{z}}-\frac{1}{x^{z}}\right) d x
$$

is holomorphic on its domain and satisfies $F(z)=\zeta(z)-\frac{1}{z-1}$ for all $z \in \mathbb{C}$ such that re $z>1$.

Proof: Fix $z=a+b i$ with $a>1$. Then

$$
\zeta(z)-\frac{1}{z-1}=\sum_{n=1}^{\infty} \frac{1}{n^{z}}-\int_{1}^{\infty} \frac{1}{x^{z}} d x=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(\frac{1}{n^{z}}-\frac{1}{x^{z}}\right) d x
$$

By a previous exercise, for each $n \geq 1$ the function $f_{n}: B \frac{a}{2}(a+b i) \rightarrow \mathbb{C}$ defined by

$$
f_{n}(z)=\int_{n}^{n+1}\left(\frac{1}{n^{z}}-\frac{1}{x^{z}}\right) d x
$$

is the uniform limit of

$$
\sum_{k=0}^{\infty} \int_{n}^{n+1} \frac{(\ln n)^{k}-(\ln x)^{k}}{k!}(-z)^{k} d x
$$

Since each summand in the latter expression is a holomorphic function of z on $B \frac{a}{2}(a+b i), f_{n}(z)$ is holomorphic on $B_{\frac{a}{2}}(a+b i)$. By a previous exercise, $\sum_{n=0}^{\infty} f_{n}$ converges uniformly on $B_{\frac{a}{2}}(a+b i)$, hence is holomorphic on that set. Since

$$
\{z \in \mathbb{C}: \text { re } z>0\}=\bigcup_{(a, b) \in(0, \infty) \times \mathbb{R}} B_{\frac{a}{2}}(a+b i),
$$

$\sum_{n=0}^{\infty} f_{n}$ is holomorphic on $\{z \in \mathbb{C}:$ re $z>0\}$.
We will define $\zeta_{1}(z)=F(z)+\frac{1}{z-1}$ for all $z \in\{z \in \mathbb{C}:$ re $z>0\}-\{1\}$. Since both $F(z)$ and $\frac{1}{z-1}$ are holomorphic in this domain, so is $\zeta_{1}(z)$. We have $\zeta_{1}(z)=\zeta(z)$ for all z in the domain of ζ.
V. $\zeta_{1}(z)$ has no zeros on the line re $z=1$

Theorem: For all $z \in \mathbb{C}$ with re $z=1$ and $z \neq 1, \zeta_{1}(z) \neq 0$.
Proof: Note that for any $a+b i$ with $a>1$ and prime number p we have

$$
\left\|p^{a+b i}\right\|=p^{a}>1
$$

therefore

$$
1-\frac{1}{p^{a+b i}} \in B_{1}(1+0 i)
$$

therefore $\log \left(1-\frac{1}{p^{a+b i}}\right)$ is defined. Hence

$$
\begin{gathered}
\left\|\zeta_{1}(a+b i)\right\| \cdot\left\|\Pi_{n}(a+b i)\right\| \rightarrow 1, \\
\ln \left\|\zeta_{1}(a+b i)\right\|+\ln \left\|\Pi_{n}(a+b i)\right\| \rightarrow 0, \\
\ln \left\|\zeta_{1}(a+b i)\right\|+\sum_{k=1}^{n} \ln \left\|\left(1-\frac{1}{p_{k}^{a+b i}}\right)\right\| \rightarrow 0, \\
\ln \left\|\zeta_{1}(a+b i)\right\|=-\sum_{k=1}^{\infty} \ln \left\|\left(1-\frac{1}{p_{k}^{a+b i}}\right)\right\|= \\
\quad-\text { re } \sum_{k=1}^{\infty} \log \left(1-\frac{1}{p_{k}^{a+b i}}\right)= \\
\text { re } \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{p_{k}^{-(a+b i) n}}{n}=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{\cos \left(\ln p^{b n}\right)}{n p_{k}^{a n}},
\end{gathered}
$$

hence

$$
\begin{gathered}
\ln \left\|\zeta_{1}(a)^{3} \zeta_{1}(a+b i)^{4} \zeta_{1}(a+2 b i)\right\|= \\
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{3+4 \cos \left(\ln p^{b n}\right)+\cos \left(\ln p^{2 b n}\right)}{n p_{k}^{a n}} .
\end{gathered}
$$

Each summand in this expression is non-negative: setting $\theta_{n}=\ln \left(p^{b n}\right)$ we have
$3+4 \cos \left(\ln p^{b n}\right)+\cos \left(\ln p^{2 b n}\right)=3+4 \cos \left(\theta_{n}\right)+\cos \left(2 \theta_{n}\right)=2\left(\cos \theta_{n}+1\right)^{2} \geq 0$.
This implies

$$
\left\|\zeta_{1}(a)^{3} \zeta_{1}(a+b i)^{4} \zeta_{1}(a+2 b i)\right\| \geq 1
$$

Now suppose that $\zeta_{1}(1+b i)=0$ for some $b \neq 0$. Since F is continuous at $z=1$ and $\zeta_{1}(a)=F(a)+\frac{1}{a-1}$ for all $a>1$,

$$
\lim _{a \rightarrow 1^{+}}(a-1) \zeta_{1}(a)=1
$$

Since ζ_{1} is holomorphic at $1+b i$,

$$
\lim _{a \rightarrow 1^{+}} \frac{\zeta_{1}(a+b i)}{a-1}=\lim _{a \rightarrow 1^{+}} \frac{\zeta_{1}(a+b i)-\zeta_{1}(1+b i)}{a-1}=\zeta_{1}^{\prime}(1+b i) .
$$

Therefore

$$
\begin{gathered}
\lim _{a \rightarrow 1^{+}} \frac{\zeta_{1}(a)^{3} \zeta_{1}(a+b i)^{4} \zeta_{1}(a+2 b i)}{a-1}=\lim _{a \rightarrow 1^{+}}(a-1)^{3} \zeta_{1}(a)^{3} \cdot \frac{\zeta_{1}(a+b i)^{4}}{(a-1)^{4}} \cdot \zeta_{1}(a+2 b i)= \\
\zeta_{1}^{\prime}(1+b i)^{4} \zeta_{1}(1+2 b i) .
\end{gathered}
$$

But this contradicts

$$
\left\|\frac{\zeta_{1}(a)^{3} \zeta_{1}(a+b i)^{4} \zeta_{1}(a+2 b i)}{a-1}\right\| \geq \frac{1}{a-1}
$$

for all $a>1$. Therefore $\zeta_{1}(1+b i) \neq 0$ for all $b \neq 0$.

The Prime Number Theorem

Definition: Let $n \geq 2$ be a real number. Then $\pi(n)$ is the number of prime numbers $\leq n$.

Remark: If we name the primes $p_{1}, p_{2}, p_{3}, \ldots$ in increasing order, then the larger n is, the more ways there are to form products of p_{1} through $p_{\pi(n)}$ yielding all the numbers in $\{1,2, \ldots, n\}$. One would expect that $\frac{\pi(n)}{n} \rightarrow 0$ as $n \rightarrow \infty$, or equivalently $\frac{n}{\pi(n)} \rightarrow \infty$. A graph of $\frac{n}{\pi(n)}$ versus n resembles the graph of $\log n$ versus n :

Prime Number Theorem:

$$
\lim _{n \rightarrow \infty} \frac{\pi(n) \log (n)}{n}=1
$$

We will prove this theorem in stages below.

Tchebychev's Theta Function

Definition: The Tchebychev Theta Function is defined by

$$
\theta(x)=\sum_{p \leq x} \log p
$$

the sum ranging over prime numbers bounded above by x.
Theorem: For all $x \geq 1, \theta(x)<x \log 16$.
Proof: For any $k \in \mathbb{N}$, all the prime numbers between $2^{k-1}+1$ and 2^{k} divide the binomial coefficient $\left(\begin{array}{c}2^{k-1}\end{array}\right)$, hence

$$
\left(\prod_{2^{k-1}<p \leq 2^{k}} p\right) \left\lvert\,\binom{ 2^{k}}{2^{k-1}}\right.,
$$

hence

$$
\prod_{2^{k-1}<p \leq 2^{k}} p \leq\binom{ 2^{k}}{2^{k-1}} \leq 2^{2^{k}}
$$

This implies

$$
\begin{gathered}
\prod_{1<p \leq 2^{k}} p \leq 2^{2^{1}+2^{2}+\cdots+2^{k}}=2^{2^{k+1}-2} \\
\theta\left(2^{k}\right) \leq\left(2^{k+1}-2\right) \log 2
\end{gathered}
$$

Given $x \geq 1$, choose $k \in \mathbb{N}$ such that $2^{k-1} \leq x<2^{k}$. Then

$$
\theta(x) \leq \theta\left(2^{k}\right)<2^{k+1} \log 2=4 \cdot 2^{k-1} \log 2 \leq x \log 16
$$

Theorem:

$$
\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1 \Longrightarrow \lim _{x \rightarrow \infty} \frac{\pi(x) \log (x)}{x}=1
$$

Proof: Assume $\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1$. Let $\epsilon>0$ be given. Write $\delta=\frac{1}{1+\frac{\epsilon}{4}}$. We have

$$
\theta(x)=\sum_{p \leq x} \log p \leq \pi(x) \log x
$$

and

$$
\theta(x) \geq \sum_{x^{\delta}<p \leq x} \log p \geq\left(\pi(x)-\pi\left(x^{\delta}\right)\right) \log \left(x^{\delta}\right) \geq\left(\pi(x)-x^{\delta}\right) \delta \log x
$$

therefore

$$
\frac{\theta(x)}{x} \leq \frac{\pi(x) \log (x)}{x} \leq\left(1+\frac{\epsilon}{4}\right) \frac{\theta(x)}{x}+\frac{\log x}{x^{1-\delta}}
$$

For x sufficiently large we have

$$
1-\epsilon<\frac{\theta(x)}{x}<\frac{1+\frac{\epsilon}{2}}{1+\frac{\epsilon}{4}}
$$

and

$$
\frac{\log x}{x^{1-\delta}}<\frac{\epsilon}{2}
$$

hence

$$
1-\epsilon<\frac{\pi(x) \log (x)}{x}<1+\epsilon
$$

A Condition that Implies $\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1$
Theorem: If the improper integral

$$
\int_{0}^{\infty} \theta\left(e^{t}\right) e^{-t}-1 d t
$$

converges then $\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1$.
Proof: Assume that

$$
\int_{0}^{\infty} \theta\left(e^{t}\right) e^{-t}-1 d t
$$

converges. Making the change of variables $x=e^{t}$, the improper integral

$$
\int_{1}^{\infty} \frac{1}{x}\left(\frac{\theta(x)}{x}-1\right) d x
$$

converges. Suppose $\lim _{x \rightarrow \infty} \frac{\theta(x)}{x} \neq 1$. Then there exists $\epsilon>0$ and a sequence $\left(x_{n}\right)$ such that $x_{n} \geq n$ and

$$
\left|\frac{\theta\left(x_{n}\right)}{x_{n}}-1\right| \geq \epsilon
$$

for each n. Hence either $\frac{\theta\left(x_{n}\right)}{x_{n}}-1 \geq \epsilon$ for infinitely many n or $\frac{\theta\left(x_{n}\right)}{x_{n}}-1 \leq-\epsilon$ for infinitely many n. The two cases are similar, so we will just treat the first case.
Choose a subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ satisfying $\frac{\theta\left(y_{n}\right)}{y_{n}}-1 \geq \epsilon$ and $y_{n+1} \geq(1+\epsilon) y_{n}$ for each n. For each n we have

$$
\begin{gathered}
\int_{y_{n}}^{(1+\epsilon) y_{n}} \frac{1}{x}\left(\frac{\theta(x)}{x}-1\right) d x \geq \int_{y_{n}}^{(1+\epsilon) y_{n}} \frac{1}{x}\left(\frac{\theta\left(y_{n}\right)}{x}-1\right) d x \geq \\
\int_{y_{n}}^{(1+\epsilon) y_{n}} \frac{1}{x}\left(\frac{(1+\epsilon) y_{n}}{x}-1\right) d x=\epsilon-\log (1+\epsilon)>0 .
\end{gathered}
$$

This implies

$$
\int_{1}^{y_{n}} \frac{1}{x}\left(\frac{\theta(x)}{x}-1\right) d x \geq n(\epsilon-\log (1+\epsilon)) \rightarrow \infty
$$

as $n \rightarrow \infty$, a contradiction. Therefore $\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1$.

The Laplace Transform of $\theta\left(e^{t}\right) e^{-t}-1$

Theorem: For all $z \in \mathbb{C}$ with re $z>0$,

$$
\int_{0}^{\infty}\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-t z} d t=\frac{1}{z+1} \sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{z+1}}-\frac{1}{z}
$$

Proof: Let $z=\sigma+\tau i \in \mathbb{C}$ with $\sigma>1$ be given. For each $k \in \mathbb{N}$ let

$$
\gamma_{k}:\left[\log p_{k}, \log _{p_{k+1}}\right] \rightarrow \mathbb{C}
$$

be defined by

$$
\gamma_{k}(t)=\theta\left(e^{t}\right) e^{-t z}
$$

Then for $\log p_{k} \leq t<\log p_{k+1}$,

$$
\gamma_{k}(t)=\theta\left(p_{k}\right) e^{-t z}
$$

Given that an antiderivative for $e^{-t z}$ with respect to t is $\frac{-1}{z} e^{-t z}$, we have

$$
\int_{\log p_{k}}^{\log p_{k+1}} \gamma_{n}(t) d t=\left.\frac{-1}{z} \gamma(t)\right|_{\log p_{k}} ^{\log p_{k+1}}=\frac{\theta\left(p_{k}\right)}{z}\left(\frac{1}{p_{k}^{z}}-\frac{1}{p_{k+1}^{z}}\right) .
$$

This implies

$$
\begin{gathered}
\int_{0}^{\log p_{n+1}} \theta\left(e^{t}\right) e^{-t z} d t=\frac{1}{z} \sum_{k=1}^{n} \theta\left(p_{k}\right)\left(\frac{1}{p_{k}^{z}}-\frac{1}{p_{k+1}^{z}}\right)= \\
\frac{1}{z} \sum_{k=1}^{n} \sum_{i=1}^{k} \log p_{i}\left(\frac{1}{p_{k}^{z}}-\frac{1}{p_{k+1}^{z}}\right)=\frac{1}{z} \sum_{i=1}^{n} \log p_{i} \sum_{k=i}^{n}\left(\frac{1}{p_{k}^{z}}-\frac{1}{p_{k+1}^{z}}\right)= \\
\frac{1}{z} \sum_{i=1}^{n} \log p_{i}\left(\frac{1}{p_{i}^{z}}-\frac{1}{p_{n+1}^{z}}\right)=\left(\frac{1}{z} \sum_{i=1}^{n} \frac{\log p_{i}}{p_{i}^{z}}\right)-\frac{\theta\left(p_{n}\right)}{p_{n+1}^{z}} .
\end{gathered}
$$

Given that

$$
\left\|\frac{\theta\left(p_{n}\right)}{p_{n+1}^{z}}\right\|<\frac{\log 16}{p_{n}^{\sigma-1}} \rightarrow 0
$$

as $n \rightarrow \infty$,

$$
\int_{0}^{\infty} \theta\left(e^{t}\right) e^{-t z} d t=\frac{1}{z} \sum_{i=1}^{\infty} \frac{\log p_{i}}{p_{i}^{z}}
$$

Hence for $z \in \mathbb{C}$ with re $z>0$,

$$
\int_{0}^{\infty} \theta\left(e^{t}\right) e^{-t} e^{-t z} d t=\int_{0}^{\infty} \theta\left(e^{t}\right) e^{-t(z+1)} d t=\frac{1}{z+1} \sum_{i=1}^{\infty} \frac{\log p_{i}}{p_{i}^{z+1}}
$$

Combining this with

$$
\int_{0}^{\infty} e^{-t z} d t=\frac{1}{z}
$$

completes the proof.
Analytic Continuation of $\int_{0}^{\infty}\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-t z} d t$
The expression $\sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{z+1}}$ converges for each $z \in \mathbb{C}$ with re $z>0$, and we have

$$
\sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{z+1}}=\sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{z+1}-1}-\sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{2 z+2}-p_{n}^{z+1}}
$$

The expression

$$
\sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{2 z+2}-p_{n}^{z+1}}
$$

is holomorphic at all $z \in \mathbb{C}$ satisfying re $z>-\frac{1}{2}$. For all $z \in \mathbb{C}$ satisfying re $z>0$ we have

$$
\zeta_{1}^{\prime}(z+1)=\zeta_{1}(z+1) \sum_{n=1}^{\infty} \frac{\log p_{n}}{1-p_{n}^{z+1}} .
$$

Since $\zeta_{1}(z+1)$ is holomorphic for all $z \in \mathbb{C}$ satisfying re $z>-1$ and $z \neq 0$, and is non-zero when re $(z) \geq 0$, the expression

$$
-\frac{\zeta_{1}^{\prime}(z+1)}{\zeta_{1}(z+1)}=-\frac{F^{\prime}(z+1)-\frac{1}{z^{2}}}{F(z+1)+\frac{1}{z}}=\frac{-z^{2} F^{\prime}(z+1)+1}{z^{2} F(z+1)+z}
$$

is holomorphic at each $z \neq 0$ satisfying re $z \geq 0$ and agrees with

$$
\sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{z+1}-1}
$$

when re $z>0$. Hence an analytic continuation of $\sum_{p} \frac{\log p}{p^{z+1}}$ to all $z \neq 0$ satisfying re $z \geq 0$ is

$$
G(z)=\frac{-z^{2} F^{\prime}(z+1)+1}{z^{2} F(z+1)+z}-\sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{2 z+2}-p_{n}^{z+1}}
$$

Hence

$$
\begin{gathered}
H(z)=\frac{1}{z+1} G(z)-\frac{1}{z}= \\
\frac{-z^{2} F^{\prime}(z+1)+1}{(z+1)\left(z^{2} F(z+1)+z\right)}-\frac{1}{z+1} \sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{2 z+2}-p_{n}^{z+1}}-\frac{1}{z}= \\
\frac{-z F^{\prime}(z+1)-(z+1) F(z+1)-1}{(z+1)(z F(z+1)+1)}-\frac{1}{z+1} \sum_{n=1}^{\infty} \frac{\log p_{n}}{p_{n}^{2 z+2}-p_{n}^{z+1}}
\end{gathered}
$$

is an analytic continuation of

$$
\frac{1}{z+1} \sum_{p} \frac{\log p}{p^{z+1}}-\frac{1}{z}
$$

on this set. Since the Laurent series expansion of $H(z)$ does not include any negative powers of z, the resulting power series expansion represents an analytic continuation of $\int_{0}^{\infty}\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-t z} d t=\sum_{p} \frac{\log p}{p^{z+1}}$ to the set $\{z \in \mathbb{C}: \operatorname{re}(z) \geq 0\}$. This has a constant term of

$$
I(0)=-F(1)-1-\sum_{n=1} \frac{\log p_{n}}{p_{n}^{2}-p_{n}}
$$

$\underline{\text { Proof that } \int_{0}^{\infty}\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-t z} d t \text { converges }}$

Let $I(z)$ be the analytic continuation of $\int_{0}^{\infty}\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-t z} d t$ to a neighborhood of $\{z \in \mathbb{C}$: re $(z) \geq 0\}$. While we have proved that the integral expression converges for all z satisfying re $z>0$, we do not yet know that it converges using $z=0$.
Theorem: $\int_{0}^{\infty} \theta\left(e^{t}\right) e^{-t}-1 d t=I(0)$.
Proof: For each $T>0$ define $g_{T}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
g_{T}(z)=\int_{0}^{T}\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-z t} d t
$$

We can verify, in the usual way, that each g_{T} is holomorphic.
Fix R. For each $y \in[-R, R]$ there is $\epsilon(y)>0$ such that $I(z)$ is holomorphic on $B_{\epsilon(y)}(0+b i)$. By a compactness argument there exists $\delta_{R}>0$ such that $I(z)$ is holomorphic on

$$
\left\{x+y i:(x, y) \in\left[-\delta_{R}, \infty\right) \times[-R, R]\right\} .
$$

Let C_{R} be the counterclockwise path in this set that winds around the origin and incorporates the circle of radius R about the origin and the line re $(z)=$ $-\delta_{R}$. We will write $C_{R}=\alpha_{R}+\beta_{R}+\gamma_{R}^{+}$, where α_{R} is the vertical part of C_{R}, β_{R} is the circular part of C_{R} where re $(z) \leq 0$, and γ_{R}^{+}is the circular part of C_{R} where re $(z) \geq 0$. We will also denote by $\Omega(R)$ the region bounded by C_{R} and γ_{R}^{-}the counterclockwise path around the semicircle $\|z\|=R$ where re $(z) \leq 0$.

By Cauchy's Integral Formula we have

$$
I(0)-g_{T}(0)=\frac{1}{2 \pi i} \int_{C_{R}}\left(I(z)-g_{T}(z)\right) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}
$$

the extra factor of $e^{T z}\left(1+\frac{R^{2}}{z^{2}}\right)$ included to simplify some of the calculations. Observe that for $\|z\|=R$ and $z=x+i y$ we have

$$
\left\|1+\frac{z^{2}}{R^{2}}\right\|=\left\|\frac{z \bar{z}+z^{2}}{R^{2}}\right\|=\frac{\|z\|}{R^{2}}|\bar{z}+z|=\frac{2|x|}{R} .
$$

For $z \in \gamma_{R}^{+}$and $z=x+i y$ and $x>0$ we have

$$
\begin{gathered}
\left\|I(z)-g_{T}(z)\right\|=\left\|\int_{T}^{\infty}\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-z t} d t\right\| \leq \\
\int_{T}^{\infty}\left\|\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-z t}\right\| d t \leq 17 \int_{T}^{\infty} e^{-x t} d t=\frac{17 e^{-x T}}{x}
\end{gathered}
$$

therefore

$$
\left\|\left(I(z)-g_{T}(z)\right) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{1}{z}\right\| \leq \frac{17 e^{-x T}}{x} e^{x T} \frac{2 x}{R} \frac{1}{R}=\frac{34}{R^{2}},
$$

therefore

$$
\left\|\frac{1}{2 \pi i} \int_{\gamma_{R}^{+}}\left(I(z)-g_{T}(z)\right) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}\right\| \leq \frac{17}{R} .
$$

Since $g_{T}(z)$ is entire,

$$
\int_{\alpha_{R}+\beta_{R}}\left(g_{T}(z)\right) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}=\int_{\gamma_{R}^{-}}\left(g_{T}(z)\right) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}
$$

For $z \in \gamma_{R}^{-}$and $z=-x+i y$ and $x>0$ we have

$$
\begin{gathered}
\left\|g_{T}(z)\right\|=\left\|\int_{0}^{T}\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-z t} d t\right\| \leq \\
\int_{0}^{T}\left\|\left(\theta\left(e^{t}\right) e^{-t}-1\right) e^{-z t}\right\| d t \leq 17 \int_{0}^{T} e^{-x t} d t \leq \frac{17}{x}
\end{gathered}
$$

therefore

$$
\left\|g_{T}(z) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{1}{z}\right\| \leq \frac{17}{x} e^{-x T} \frac{2 x}{R} \frac{1}{R} \leq \frac{34}{R^{2}},
$$

therefore

$$
\left\|\frac{1}{2 \pi i} \int_{\alpha_{R}+\beta_{R}} g_{T}(z) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}\right\|=\left\|\frac{1}{2 \pi i} \int_{\gamma_{R}^{-}} g_{T}(z) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}\right\| \leq \frac{17}{R} .
$$

Since $I(z)$ is continuous on $\Omega(R)$ and $\Omega(R)$ is compact,

$$
\sup \{\|I(z)\|: z \in \Omega(R)\}=\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\|
$$

for some $z\left(R, \delta_{R}\right) \in C_{R}$. This yields

$$
\begin{gathered}
\left\|\frac{1}{2 \pi i} \int_{\alpha_{R}} I(z) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}\right\| \leq \frac{1}{2 \pi} \cdot\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\| \cdot e^{-\delta_{R} T} \cdot 2 \cdot \frac{1}{\delta_{R}} \cdot 2 R= \\
\frac{2\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\| e^{-\delta_{R} T} R}{\pi \delta_{R}}
\end{gathered}
$$

Given that the length of β_{R} is $2 R \sin ^{-1} \frac{\delta_{R}}{R}$, we have

$$
\begin{gathered}
\left\|\frac{1}{2 \pi i} \int_{\beta_{R}} I(z) e^{T z}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{d z}{z}\right\| \leq \frac{1}{2 \pi} \cdot\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\| \cdot 1 \cdot 2 \cdot \frac{1}{R} \cdot 2 R \sin ^{-1} \frac{\delta_{R}}{R}= \\
\frac{2}{\pi}\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\| \sin ^{-1} \frac{\delta_{R}}{R}
\end{gathered}
$$

Therefore

$$
\left\|I(0)-g_{T}(0)\right\| \leq \frac{34}{R}+\frac{2}{\pi}\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\|\left(\frac{e^{-\delta_{R} T} R}{\delta_{R}}+\sin ^{-1} \frac{\delta_{R}}{R}\right)
$$

for all $R>0$. For any fixed R we are free to choose $\delta_{R}>0$ arbitrarily small, and when $\delta_{R}^{\prime}<\delta_{R}$,

$$
\left\|I\left(z\left(R, \delta_{R}^{\prime}\right)\right)\right\| \leq\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\|
$$

Moreover

$$
\sin ^{-1} \frac{\delta_{R}}{R} \rightarrow 0
$$

as $\delta_{R} \rightarrow 0$. Given any $\epsilon>0$, choose R sufficiently large that

$$
\frac{34}{R}<\frac{\epsilon}{3}
$$

then choose δ_{R} sufficiently small to ensure

$$
\frac{2}{\pi}\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\| \sin ^{-1} \frac{\delta_{R}}{R}<\frac{\epsilon}{3}
$$

This yields

$$
\left\|I(0)-g_{T}(0)\right\| \leq \frac{2 \epsilon}{3}+\frac{2}{\pi}\left\|I\left(z\left(R, \delta_{R}\right)\right)\right\| \frac{e^{-\delta_{R} T} R}{\delta_{R}}
$$

Fixing R, for all sufficiently large T we have

$$
\left\|I(0)-g_{T}(0)\right\|<\epsilon .
$$

We have proved

$$
\forall \epsilon>0: \exists T_{0}: T \geq T_{0} \Longrightarrow\left\|I(0)-g_{T}(0)\right\|<\epsilon
$$

Therefore

$$
\lim _{T \rightarrow \infty} g_{T}(0)=I(0)
$$

In other words,

$$
\int_{0}^{\infty} \theta\left(e^{t}\right) e^{-t}-1 d t=I(0)
$$

