Complex Analysis Notes
Princeton Lectures In Analysis I1

Dan Singer

The Field C
Definition: C = {a +bi:a,b € R}

Addition:
(a+bi)+ (a' + Vi) = (a+d)+ (b+b)i.

This is associative and commutative.

C is a group under addition, with identity element 0+0¢ and inverse operation

—(a+bi) = (—a) + (=b)i.

Multiplication:
(a+bi)(a + Vi) = (aa’ —bb") + (ab' + a'b)i.

This is associative and commutative:

C* is a group under multiplication, with identity element 1 4 0i and inverse
operation
a n —-b .
1.
a2+ 02 a4 b2

(a+bi)™t =

One check that multiplication is distributive. Hence C is a field.
Complex Conjugation:
a+bi=a—b.

One can check that complex conjugation is a field isomorphism, i.e. that
z+w=Z+w and Zw = zw for all z,w € C.

Norm:

lla + bi|| = Va2 + b2,

2z = ||z||2
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Real and Imaginary Parts:

e (s)= 22, m(s) =2

Lemma: re (z) < ||z]].

Proof: This follows from a < /a2 + b2. O]
Triangle Inequality: For all z,w € C, ||z + wl|| < ||2]| + ||w]|.

Proof:

llz +w|)®* = (z+w)Z+w) = ||2|]* + 20 + wz + ||w|]|* =

1217 + 2re (20) + [|wl* < [|2]|* + 2[|z@]| + [[w]]* =
12117 + 2[lz[[Jwl] + [l = (I]2]] + [Jwl])*.

Corollary: For all z,w € C, |||z]| — ||w]|| < ||z — w]].
Proof: This follows from ||z|| < ||z—w||+]||w]|| and ||w|| < |[w—=z||+]|z]|. O
Euler’s Notation: For 6 € R,

e = cosf + isin#.

Trigonometric identities yield

6i916i92 — 62'(914-92)'

Polar Form: Every z € C lies on a circle of radius » > 0 about the origin
and can be expressed in the form z = re? where r > 0 and § € R. In fact,
r = ||z|| and 0 is any angle satisfying r cos@ = re z and rsin = imz. Using
Euler’s notation we can see that complex multiplication can be interpreted
in terms of rotation and dilation.

Solutions to 2" = ¢ where ¢ # 0: Write ¢ = re? where r > 0. We seek all
z = se™ with s > 0 satisfying

s = ret?,



We must have s = r= and ¢ = ¢, This forces ny) = 0+ 2kr where k € Z,
or Y = % + %W, which yields

There are n distinct values of z, corresponding to 0 < k < n.

Example: The three complex solutions to z* = 1 are

Sequences in C

Definition: lim,, ., 2, = z if and only if
Ve>0:IN:n>N = ||z, — z|]| <e
Example: lim,,_, . (1;—”" + %i) = % + %z

Proof: Let ¢ > 0 be given. We wish to find N so that n > N implies
| <12+—n" + Lz) — (3 +2i) || <e, or equivalently ||5 + 220 i|| < e.

3151000 9153000
Given that
1 2000 . 1 2000 . 1 2000
—F ————i|| < |||+ || et | = || + e |
2n  9n® — 3000 2n 9nd — 3000 2n 9nd> — 3000
2000

. . 1 € € . .
it suffices to require 5- < § and 553555 < 5- The first inequality occurs

when n > % Given that 9n° — 3000 > 8n° when, for examle, n > 10, we
have

< < =
9n> — 3000  8n® — 8n 2
when n > %. So we can choose any N greater than all three of the numbers

2 4000
5> 10, 5 O

2000 2000 < 2000 €

Example: Let z € R satisfying 0 < ||z|| < 1. Then lim,_,, 2" = 0.

Proof: Let ¢ > 0 be given. We wish to find N so that n > N implies
|2"|] < €, or equivalently <H71H) > L1 Write H_iH =14 6 where 6 > 0. By
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the Binomial Theorem, <H—i||)n = (14+6)" > 1+ n#. We wish to require

1 1
i1 i1
o= = . O

et

14+ nd > % We just need any natural N satisfying N > <

Theorem: A convergent sequence cannot have two distinct limits.

Proof: Suppose z, — w and z, — w’ where w # w’. Then for each n
we have |jw — w'|| < ||Jw — z,|| + ||zn — w'||, and for sufficiently large n,

—w'||

|2, — w|| < M and ||z, — w'|| < ”w2 , which implies ||w — w'|| <
[|lw — w'||, a contradiction. O

Theorem: Assume (z,) converges to z. Then every subsequence (z,,) con-
verges to z.

Proof: Let € > 0 be given. Then there exists N such that £ > N implies
||zx — z|| < €, hence k > N implies ny, > k > N implies ||z, — z|| <e. O

Theorem: Assume that (z,) is convergent and that a subsequence (z,,)
converges to z. Then (z,) converges to z.

Proof: If (z,) converges to w then (z,,) converges to w. By uniqueness of
limits, w = z. Hence (z,) converges to z. O

Theorem: If z, — z then ||z,|| — ||2]].
Proof: This follows from |||z,|| — ||2]|| < ||z — 2|| — 0. O
The Sum, Product, and Quotient Rules

Theorem: Assume lim,,_, 2, = z and lim,,_,,, w,, = w. Then:
(1) limy, o0 2 + Wy, = 2+ w

(2) limy, 00 2pwy, = 2w

(3) When w, # 0 for all n and w # 0, lim, o0 2= = Z.
Proof:
(1) We have

(20 + wn) = (z + w)[| < |20 = 2] + [[wn — w]].

In order to make this quantity < e, it suffices to make ||z, — z|| < § and

l[wn, —w|| < 5. Given € > 0, we will choose IV so that n > N forces both
inequalities.



(2) We have
||zntwn — zw[| < ||znwn = zw|| + |[2w0 = 2wn|| = ||z = 2[[[|w]] + [Jwn = w[]]]2]]

In order to make this quantity < ¢, it suffices to make ||z — z,|| < ST

and ||w — wy,|| < 575==. Given € > 0, we will choose N so that n > N
2(1+]]=1])

forces both inequalities.

(3) We have
2z 2| ||zw = zwn || _ [z = 2lHlwl] | [lw = wal[]]=]]
Wn W ww, || Jwl]] [[wal] [|wl] [wall

We will first show that the denominator contribution can be bounded above.
Since w,, — w and ||w|| > 0, there exists N; such that n > N; implies

[wal| = [Jwl]]] < |Jw, —wl]] < B which implies [Jw,|] > L. Hence n > N
implies
1 2
[fwl[ [Jwal| ~ [Jw][*

Now let € > 0 be given. Then there exists Ny such that n > N, implies
2 2
% %. Hence for any n larger than

12— zal[[Jw]] < and [w, —w|[|z]| <

both N; and Ns,
Zn z

w, W

< €.

A Brief Review of the Topology of R

Least Upper Bound Axiom: Every S C R that has an upper bound has
a least upper bound.

Example: The set (—o0o, 1) has many upper bounds, including the number
1. None of the numbers in (—oo, 1) is an upper bound, because if t € (—o0, 1)
then % € (—o0,1) as well, and since t < %, t cannot be an upper bound.
Therefore 1 is the least upper bound of (—oo, 1).

Example: Fix 0 > 1. Let S = {s, : n € N} where



The set S is bounded above: for any p € N we have

P 201 1 P 201 1 P 1 i—1
e DI N DO BN
=1 \ k=2i—1 =1 \k=2¢—1 =1
1— (52)° 1
-1 “1-%

For any n € N, n > 2P — 1 for some p € N, hence s, < s9p_1 < 1712% for all
n € N. So S has a least upper bound.
Theorem: Let a1 < as < az < --- be a bounded sequence of real numbers.

Then (a,) is convergent, and

lim a, = a
n—oo

where a is the least upper bound of {a, : n € N}.

Proof: Let € > 0 be given. Since a—e is not an upper bound of {a,, : n € N},
there exists a natural number N such that ay > a — €. For n > N we have
a—e<any <a,<a<a-te,

hence
la, —al <e.
O

Example: Fix 0 > 1. Let s, = 22:1 1%0 Then s; < s < --- is a bounded
sequence of real numbers. Let s be the least upper bound of this sequence.
Then

0
— = 11im s, = S.
ko n—o00 "

k=1

Bolzano-Weierstrass Theorem: Let M > 0 be given. Then every se-
quence in [—M, M| has a convergent monotonic subsequence in [—M, M].

Proof: Let (a,) C [-M, M] be an arbitrary sequence of real numbers. If
there is a strictly decreasing subsequence a,, > a,, > a,---, then the
sequence (—ay, ) is increasing and bounded, hence converges to a limit a €
[—M, M] by the previous theorem. Therefore lim,,_, a,, = —a € [-M, M].
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Now suppose that (a,) does not have a strictly decreasing sequence. Then
there must be a minimum number a,,,. The sequence a,, +1, @p,42, ... cannot
have a strictly decreasing sequence, so there must be a minimum number a,,.
The sequence ay,+1,an,+2, ... cannot have a strictly decreasing sequence, so
there must be a minimum number a,,,. Keep on going. Then the subsequence
Apy < Gy < Ay, < -+ converges to a number a € [—M, M]. O

Real and Complex Cauchy Sequences

Definition: A sequence of real numbers (a,,) is Cauchy if and only if for all
€ > 0 there exists N € N such that

n>m>N = |a, —an| <€

Theorem: A real sequence converges if and only if it is Cauchy.

Proof: Suppose (a,) converges to a. Given € > 0, there exists N such
that n > N implies |a, —a| < §, hence n > m > N implies |a, — @] <
la, — a| + |a, — a| < e. Hence (a,) is Cauchy.

Conversely, assume that (a,) is Cauchy. Then it is bounded, since there
exists N such that n > N = |a, —ax| < 1. Let (a,,) be a monotonic
subsequence of (a,). Then (a,,) converges to a limit a. This implies that
(a,) converges to a: let € > 0 be given. Then there exists N; such that
n > m > Nj implies |a, — ap| < §, and there exists N such that & > N
implies |an, — a| < §, hence k > Ny, N; implies

lar — a| < ag — any, | + |any, —a| <e.

]

Definition: A sequence of complex numbers (z,) is Cauchy if and only if
for all € > 0 there exists N € N such that

n>m>N = ||z, — zp]|| <€

Theorem: A complex sequence converges if and only if it is Cauchy.

Proof: Suppose (z,) converges to z. Given ¢ > 0, there exists N such
that n > N implies ||z, — 2|| < §, hence n > m > N implies ||z, — a.|| <
l|zn — 2|| + ||2m — 2|| < €. Hence (z,,) is Cauchy.

7



Conversely, suppose (z,) is Cauchy. If 2z, = a, +b,i for each n, then (a,) and
(b,,) are both Cauchy because |a, —a.m,| < ||zm—2zn|| and |b,—bm| < ||2n—2m]|-
Hence (a,) converges to a limit a and (b,,) converges to a limit b, which implies
that (z,) converges to a + bi. O

Topology of C

Definition: A set S C C is bounded by M if ||z]| < M for all z € S.
Geometrically, all the points in S lie within the circle of radius M about the
origin.

Definition: A set S C C is closed if and only if every convergent sequence
in S has its limit in S.

Example: Consider the set S = {z € C: ||z|| > 1}. Suppose (z,) C S and
zn — 2. If 2z & S then ||z|| < 1, and there exists N € N such that n > N
implies ||z, — z|| < 1—]|z||, which implies |||zn]||—||z||| < ||znv—2]] < 1—]|z],
which implies ||zy]|| < 1, a contradiction. Therefore z € S. Hence S is closed.
Definition: A set S C C is open if and only if for each z € S there exists
e > 0 such that B.(z) C S, where

B (z) ={w e C: ||lw—z|| <€}

Example: Consider the set S = {z € C: ||z|| > 1}. Given z € S, we claim
that Bz (2) € S. To prove this, we have

w € By (2) = |Jwl] <flw—z|[+]lz]] <T=[lz][+]lz]| =1 = weS.

Theorem: A set S C C is closed if and only if S¢ is open.

Proof: Assume S is closed. If S¢ is not open, then there exists z € S¢ such
that for each n € N there exists z, € B1 ( ) NS, which yields a sequence
(zn) C S converging to z ¢ S, a contradiction. Therefore S¢ is open.

Conversely, Assume S¢ is open. Let (z,) € S be convergent sequence with
limit z. If 2 € S then there exists € > 0 such that B.(z) C S°. Since z, — z,
there exists N € N such that n > N implies ||z, — z|| < ¢, which implies
zn € Be(z) C S¢ a contradiction. Therefore z € S. Hence S is closed. [



Compact Subsets of C

Definition: A set S C C is compact if and only if every sequence in S has
a subsequence converging to a limit in S.

Example: Let M > 0 and S = {2z € C: ||z|| < M}. If (a, + byi) is
a sequence in S then (a,) is a sequence in [—M, M], hence a subsequence
(a, : n € I) converges to some a € [—M,M] by the Bolzano-Weierstrass
Theorem. The sequence (b, : n € I) is another sequence in [—M, M], and a
subsequence (b, : n € J) converges some b € [—M, M|, where J C I. Hence
(an + bpi : n € J) converges to a + bi. Since ||a, + byi|| < M for each n,
lla 4+ bi|]| < M, hence a + bi € S. Hence S is compact.

Theorem: A set S C C is compact if and only if it is closed and bounded.

Proof: Assume S is compact. Then it must be bounded, otherwise S would
contain a sequence of the form (z,) where ||z,|| > n for each n, and no
subsequence of (z,) converges. To show that S is closed, let (2,) C S be a
convergent sequence. By compactness, a subsequence of (z,) converges to a
point z € S, which implies that (z,) converges to z € S.

Conversely, assume that S is closed and bounded. Then there exists M > 0
such that ||z|| < M for all z € S. Let (z,) be an arbitrary sequence in S. By
the example above, (z,) has a subsequence (z,,) that converges to a point z
in {z € C:||z|]| < M}. Since S is closed, z € S. Hence S is compact. O

Definition: Let X C C be a compact set. The diameter of X is

diam(X) = sup{||z — y|| : v,y € X}.

Theorem: Let (X,,) be a sequence of non-empty compact sets satisfying

X1 2X92D -
and
lim diam (X,,) = 0.
n—oo
Then:

(1) (,,en Xn consists of a single point x.

(2) For any sequence (z,) where z,, € X,, for each n, z,, — x.



Proof: Let (z,) be an arbitrary sequence satisfying z,, € X, for each n.
Then (z,) is a Cauchy sequence: Let € > 0 be given. Then we can choose
N so that diam (Xy) < . When n > m > N, z, and x,, belong to Xy,
hence ||z, — || < diam (Xx) < €. Therefore (x,) converges to a limit
x. Since the subsequence (xn, Tpi1,-..) resides in X,, and converges to x,
x € X,,. Therefore z € If y is any other point in [,y X, then

nEN
|z —y|| < diam (X,,) for each n, hence ||z — y|| = 0, hence x = y. Hence
both (1) and (2) must be true. O

Compact Sets, Open Covers, and Lebesgue Numbers

Open Cover: Let S be a subset of C. We say that {U; : ¢ € I} is an open
cover of S if each U; is open and S C |J,; U

Example: Let S={z+iy € C:0<z<1,0<y<1}. An open cover of
Sis{Bﬁ(z):zeS}.
Definition: Let S C C be a set and let & be an open cover of S. If ¢ > 0

has the property that B.(z) is a subset of some U € U for each z € S, then
€ is called a Lebesgue number of & with respect to S.

Theorem: Let S C C be a compact set and let & be an open cover of S.
Then U has a Lebesgue number with respect to .S.

Proof: Let i € N be given. If % is not a Lebesgue number then we can find
z; € S such that Bi(z;) is not a subset of any U € U. Now suppose that for

each 7 € N, % is not a Lebesgue number. By compactness of S, the sequence

(z;) must have a subsequence (z,,) that converges to a point z € S. We have
z € U, for some Uy € U. For each i € N, B ( ) Z Uy, so we can find

Wn, € B1 (2n,;) such that w,, & Us. We have zn — 2, hence ||z, — z|| — 0.

We also have ||wn, — 2n;|| = 0. Hence ||wy, —z|| < ||wn, —2n, || +||20, —2|| = 0,
hence w,, — z € Uy. This is impossible since (w,,) is a convergent sequence
in the closed set C — U, and so must converge to a point in C — Uy. So for
some ¢ € N, % is a Lebesgue number.

Complex Functions and Continuity

A complex function is a mapping f : S — C where S C C. We will say that
f is continuous at zo € S if and only if for all for all sequences (z,) in S

lim z, =z = lim f(2,) = f(20).

n—o0 n—oo
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We will also say that f is continuous on §' if and only if it is continuous at
each z € S.

Example: Using the sum and product rule it is easy to show that polynomial
functions f : C — C of the form f(z) = co+ 12 + - - + ¢,2™ are continuous
on C.

Example: Let f(z) and g(z) be polynomial functions, and assume that
g(z) # 0 for all z € S. Using the quotient rule combined with continuity
of polynomial functions, the function ¢ : S — C defined by g(z) = g E;) is
continuous on S.

Theorem: A function f : .S — C is continuous at z € S if and only if for
all € > 0 there exists 0 > 0 such that for all w € S, ||w — z|| < € implies

1f(w) = FI <

Proof: Assume that f is continuous at z. If the ¢ — ¢ condition were
false, then there exists ¢ > 0 such that for all n € N there would have to
exist a w, € S such that [|w, — z|| < = and ||f(w,) — f(2)|| > €. Hence
lim,, o w, = z yet lim, , f(w,) # f(z), a contradiction. So the ¢ — &
condition must be true.

Conversely, if the e — d condition is true, let z, — z in S. We will show that
f(zn) = f(2). Let € > 0 be given. Then there exists § > 0 such that w € S
and ||w — z|| < ¢ implies ||f(w) — f(2)|| < e. Since 2z, — z, there exists N
such that n > N implies ||z, — z|| < §, which implies || f(z,) — f(2)|| <e. O

Theorem: Let S C C be a compact set and let f : S — C be continuous on
S. Then f(S) is compact.

Proof: Let (f(zx)) be a sequence in f(S). Then (zx) is a sequence in S,
hence there must be a convergent subsequence (z,, ) which has a limit z € S.
Since z,, — z and f is continous, f(z,,) — f(2). ]

Holomorphic Complex Functions

A complex function f : S — C is said to be holomorphic at zy € S if and
only if zg is an interior point of S and there exists a complex number w such

that
ORI
zZ—20 Z— 20

If w exists then we write f'(z9) = w.
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The precise definition of the limit above is

z) — f(20)

Ve>0:§|5>0:0<Hz—z0||<5andz€S:>Hf(z . —wH<e.
— 20

Equivalent Definitions of f'(z):

(1)
f(zn) = f(20)

Zn — R0 - f/(ZO)

for all sequences (z,) C S satisfying z, # zo and z, — 2.

(2) The function Ay, : S — C defined by

ORI R

Aﬁzo (Z) = { T

f'(20) z = 2
is continuous at z;.

Example: Let n be a positive integer and let f : C — C be defined by
f(2) = z™. Then for any z; € C we have

f'(z0) = Jim M = lim (" 2 a2z ) = e

Example: Let g : C — {0} — C be defined by g(z) = . Then for any
zp € C — {0} we have

Theorem: If f:S — C is holomorphic at 2z, then f is continuous at 2.

Proof: We have
f(Z) - f(ZO) + (Z - ZO)Af,z()(Z)

for all z € S. Let (z,) be a sequence in S satisfying z, — 2zo. By Equivalent
Definition (2) of differentiability we have

f(z) = f(z0) + 0+ f(20).

12



O
The Sum, Product, and Chain Rule for Complex Differentiation

Theorem: Let f:S — C and g : S — C be holomorphic at zy € C. Then
f+g: 95— Cand fg:S — C are holomorphic at zy and we have

(f +9) (20) = f'(20) + ¢'(20)

and

(f9) (20) = f'(20)9(20) + f(20)9 (20).

Proof: The sum rule is a consequence of Equivalent Definition (1) of differ-
entiability. To prove the product rule, observe that

f(2)g(2n) — f(20)9(20) _ f(zn) — f(zo)g(zn) + f(Zo)g(Zn) - 9(20).

zZ— 20 Z— 20 Zn — 20

When z, — zy we have ¢(z,) — ¢(z0), hence

f(2n)9(2n) — f(20)g(20)

Z— 20

— ['(20)9(20) + f(20)9'(20)-

]

Theorem: Let g : S — C be holomorphic at zy, let T" be a subset of
C containing ¢(S), and let f : T — C be holomorphic at g(z5). Then
fog:S — Cis holomorphic at zy and

(fo9)(20) = f'(9(20))g'(0)-

Proof: Let z, — 2y in S. Then ¢(z,) — g(zo) in g(5), hence

At g()(9(zn)) = f'(9(20)),

Ag.zo(2n) = ¢'(20),
Af09720(2n) = Af,g(zo)(g(zn>> ’ Ag,zo (Zn) — f/(g(20)> ' gl(z())'
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Example: Let f : S — C be holomorphic at 2y and let g : S — C be

holomorphic at z5 and non-zero on .S. We can express the mapping h : S — C
defined by h(z) = L& in the form

9(2)
h = f ’ (T © g)?
where 7 : C — {0} — C is defined by r(z) = L. Given that r'(z) = —Z, the
product and chain rules yield

f'(20)g9(20) — f(Zo)gl(Zo)'

h'(z0) = 9(20)?

Some Real Analysis

Theorem: Let f: [a,b] — R be continuous. Then f([a, b]) is compact.

Proof: Let (f(z,)) be a sequence in f([a,b]). Then (z,) is a sequence in
la,b], and by the Bolzano-Weierstrass Theorem there is a convergent subse-
quence (x,,) with a limit  which must belong to [a,b] by closure of [a,b].
By continuity of f, (f(zy,)) converges to f(z) € f([a,b]). O

Extreme Value Theorem: Let f : [a,b] — R be continuous. Then f([a, b))
is bounded and there exists ¢ € [a,b] such that the least upper bound of

f(la, 0]) is f(c).

Proof: Since f([a,b]) is compact, it is bounded. Let y be the least upper
bound of f([a,b]). Then for each n there exists f(z,) € f(|a,b]) such that
y—+ < f(x,) <y, hence (f(x,)) converges to y. Since f([a,b]) is compact,
it is closed, hence y € f([a,b]). Hence y = f(c) for some ¢ € [a, b]. O

Mean Value Theorem: Assume a < b. Let f : [a,b] — R be differentiable
at each = € (a,b). Then

f(b) = fa) = f'(c)(b—a)
for some ¢ € (a,b).

Proof: Let h : [a,b] — R be the function defined by

(@) = f(@) - 10O, )

Then h is differentiable on [a, b], and it suffices to prove that h'(c) = 0 for
some ¢ € (a,b). We have h(a) = h(b), and we will assume without loss of
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generality that h(a) is not the maximum output of h along [a,b]. Since h
is continuous on [a, b], by the Extreme Value Theorem there exists ¢ € [a, b
such that f(c) > f(x) for all ¢ € [a, b], and clearly a < ¢ < b. Therefore

/ —
o=t =0
and . N g
h'(¢) = lim (e= E)l_ © >0,
n—00 -
therefore h'(c) = 0. O

Intermediate Value Theorem: Let f : [a,b] — R be continuous. Then
for each k between f(a) and f(b) there exists ¢ € [a, b] such that f(c) = k.

Proof: We will assume without loss of generality that f(a) < k& < f(b).
Suppose that f(c) # k for all k € [a,b]. Then the set

A={z€la,b]: f(x) <k}

is closed: if (zz) € A converges to a point x then x € [a,b], hence by
continuity f(zx) — f(z), and since f(xy) < k for all k, f(z) < k, hence
x € A. Since A is closed and bounded, it is compact. Let ag € A be the least
upper bound of A. Then for all natural numbers n > ﬁ, a+ % € [a,b] — A,

hence f(ag + 1) > k, hence

Flao) = lim flao+ ) > k.

a contradiction. Therefore f(c) = k for some ¢ € [a, b]. O

Corollary: Let f : [a,b] — R be continuous and injective. If f(a) < f(b)
then f is strictly increasing on [a,b], and if f(a) > f(b) then f is strictly
decreasing on [a, b].

Proof: Assume f(a) < f(b). If there exist x; < x5 in [a,b] such that
f(z1) > f(z2), then we must have f(a) > f(x2), otherwise f(z1) > f(x2) >
f(a) implies f(z3) = f(t) for some t € [a,x;] by the Intermediate Value
Theorem, which is impossible given that xo # t. Given f(z2) < f(a) < f(b),
we must have f(a) = f(t) for some ¢ € [x9,b] by the Intermediate Value
Theorem, which is impossible given that a # t. | Therefore no such z; and
xo exist, hence f strictly increases along [a,b]. The other case is similar. [
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Inverse Function Theorem: Let a < b and let f : [a,b] — [c,d] be a
bijective function.

(i) If f is continuous on [a,b] then f~! is continuous on [c,d].
(ii) If f is differentiable on (a,b) then f~! is differentiable on (c,d).

Proof: (1) We will assume without loss of generality that f is increasing on
la,b]. The Intermediate Value Theorem implies that for each a’ < ¥ in [a, b],
fla',0]) = [f(a), F(V)].

Let ¢ <y < d and € > 0 be given. Write f~'(y) = x. Then [z — €1, + ¢] C
[a,b] for some 0 < ¢; <€, and f([x — €1,z + €1]) = [y — d1,y + d2] for some
81,02 > 0. Hence f~!([y—4d1,y+02]) = [x—€1, 2+ 6. Setting § = min(dy, dz),
we have f~1((y—d,y+0)) C (x —¢€,y+¢€). In other words, |t —y| < ¢ implies
|f7Yt) — f~Y(y)| < e. Hence f~! is continuous at y.

/=% is continuous at ¢: Let ¢ > 0 be given. Choose 0 < ¢; < € such that
la,a + €] C [a,b]. Then f([a,a + €]) = [¢,c+ 0] for some 6 > 0, hence
fYc,c+6]) = [a,a + €;]. This implies t € [c,d] and |t — ¢| < § implies
If7Yt) — f~(c)| < e. f7!is continuous at d by a similar argument.

(2) Let y — yo in (¢,d). Since f is differentiable on (a,b), it is continuous
on (a,b), therefore f~! is continuous on (c,d), therefore f~'(y) — f~(yo).
Moreover, since f is strictly monotonic on [a,b], the Mean Value Theorem
implies that f'(z) # 0 for all z € (a,b). Write f~'(y) = z and f~(yo) = o.
Then we have

') =) w—w 11
Y—Y% f(z) — f(xo) f'(@o)  f'(f1(w0))
Hence f~! is differentiable at yq. O

Complex Extreme Value Theorem

Let S C C be a compact set and let f : S — C be continuous on S. Then

sup{[[f(2)[| : z € S} = ||/ (20)l|

for some z5 € S.

Proof: It will suffice to show that the set X = {||f(2)|| : z € S} is compact,
for then the least upper bound of X will be an element of X.

Let (||f(zn)||]) be an arbitrary sequence in X. Then (z,) is a sequence in S,
and by compactness of S there must be a subsequence (z,,) converging to a

16



point z, in S. By continuity of f, f(z,,) = f(z.), hence || f(z,,) — f(z:)]| =
0, hence

L Il = Lf @I < (1f (z0,) = f(20)]] =0,

hence ||f(zn,)]|| = ||f(24)]|- Since every sequence in X has a subsequence
converging to a limit in X, X is compact. O]

The Cauchy-Riemann Equations

Let f : S — C be holomorphic at zyg = ag + bpi. For any sequence (¢,) C
R — {0} satisfying ¢,, — 0 we have

f(z0+t,) — f(20)

f'(z0) = lim, t
and '
ao) = iy 00 = T)

If we write f(z +iy) = u(z,y) + v(x,y)i for all z + yi € C, then these two
equations imply
t/l"Lj b - 9 b tTL7 b — R b
fl(zo) — lim U<CLO + 0) U(ao 0) + U(a/() + 0) U(G/O O)Z _

ug(ag, bo) + vz (ag, bo)i

and

F(z0) = lim “00:bo+ tn) = w(a0,b0) | (a0, bo +tn) = (g0, bo),

n=360 tni 2%)

—tuy(ag, by) + vy(ag, bp).

Comparing the two expressions for f’(zg), we obtain

g (ag, bo) = Uy(ao, bo)
and
u,(ao, by) = —v.(ao, bo)-
These are called the Cauchy-Riemann Equations.
Example: Let f(z) = 2%. Then f is holomorphic on C. We have f(z+iy) =
(x +iy)? = 2% + 2xyi — y*, hence u(z,y) = * — y* and v(z,y) = 2zy, and

17



we can see that u,(a,b) = 2a = vy(a,b) and uy(a,b) = —2b = —v,(a,b) for
all a,b € R.

Example: Let f(z) = Z. Then f(x + iy) = x — iy, hence u(z,y) = =
and v(z,y) = —y. Since uy(a,b) =1 and vy(a,b) = —1 for all a,b € R, the
Cauchy-Riemann equations do not hold at any a+bi € C, hence f is nowhere
holomorphic.

Example: Satisfaction of the Cauchy-Riemann equations is necessary but

. 12 . .
not sufficient for differentiability: Let f(z + iy) = x3y3 + 0i. Then f is
identically 0 along the real and imaginary axes, hence

u5(0,0) = u,(0,0) = v,(0,0) = v,(0,0) =0,

so the Cauchy-Riemann equations are satisfied at 0 + 0i. If f/(0+ 0i) exists
then for all m € R we have

ft+imt) — f(0)  ms
t +imt  1+im’

) N
f(O—i—Oz)—lg%

which is impossible. Hence f is not holomorphic at 0 + 0Oz.

Theorem: Assume that f :.S — C satisfies the Cauchy-Riemann equations
at a+bi, that B.(a+bi) C S, and that u,, u,, v,, v, exist and are continuous
on B.(a + bi). Then f is holomorphic at a + bi and

f'(a+bi) = ug(a,b) + vy(a,b)i.

Proof: For any (r,s) € R? satisfying ||r + si|| < € we have
ula+1r,b+s)—u(a,s) =

u(a+1,b+s) —ula,b+s)+u(a,b+s) —ula,b) =
ux(ar,b—f—s)?”-i-uy(a’ bS>S

for some a, between a and a+1r and some b, between b and b+ s by the Mean
Value Theorem. By continuity of w, and u, on B.(a + bi), we can write

uac(ara b+ S) = u:v(a> b) + ¢1(T’ 3)

18



where (7, s) — 0 as r + si — 0 + 0i. Similarly, we can write
uy(a, bs) = uy(a,b) + ho(r, s)
where 1)5(r, s) — 0 as 7+ si — 0 + 0i. This yields
u(a+r,b+s) —ula,s) = uz(a,b)r +uy(a,b)s + 1 (r, s)r + Pa(r, s)s.
Similarly, we have
v(a+7,b0+s)—v(a,s) =uv,(a,b)r+vy(a,b)s + Ys(r,s)r + Yu(r,s)s.

Suppressing some of the notation, and applying the Cauchy-Riemann equa-
tions, this yields

f((a+bi)+ (r+si) — fla+bi) =

Ut + UyS + V71 + vy st + (Y1 + Y30)r + (P2 + Pai)s =
Ul — VS + UpT1 + Uz ST+ (U1 + P38)r + (Yo + Yyi)s =

<r+sz‘>(ux+m+w1+w3i> T L + vhed) )

T+ St r+1s
hence
Jf((a+bi) + (r + si)) — fla+bi) : N T N S
T+ st n Ux—l-UwZ—i-(wl—i-i/JgZ) r+ si+<w2+w4z)r +is
Since
" <1
r+ S
and
° |l<1
r+si||
and
and

Yo + Pyt — 0+ Oz
as r+ st — 0+ Oz,

f'(a 4+ bi) = uz(a,b) + v.(a, b)i.
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Complex Antiderivatives

Let S C C and let f: S — C be holomorphic on S. We say that F': § — C
is an antiderivative of f on S if and only if F is holomorphic on S and
F'(z) = f(z) for all z € S.

Example: f(z) =22 F(z) =%, S =C.

Example: Let S C C be arbitrary, and let f : S — C be defined by
f(x +iy) = x. Suppose that F' : S — C is an antiderivative of f on
S. Then by definition, each point of S is interior to S, and we must have

F(x +iy) = u(z,y) + v(x,y)i where the partial derivatives of u and v are
continuous and satisfy the Cauchy-Riemann equations on S. Since

F/(x + 1Y) = ug(z,y) + v, y)

for all  + iy € S, we must have u,(x,y) = = and v,(z,y) = 0 for all
x + iy € S. This implies that u(x,y) = % + C(y) and v(z,y) = D(y). The
Cauchy Riemann equations force x = D'(y) for all x +iy € S, so each y € R
there is at most one x € R such that x 4+ iy € S. This contradicts the fact
that each point in S must be interior to S. Therefore f cannot have an
antiderivative on S.

The Complex Exponential Function
We will define

T = "V = e”(cosy + isiny)

for all x + iy € C. One can check that the partial derivatives of u(x,y) =
e” cosy and v(z,y) = e*siny are continuous and satisfy the Cauchy-Riemann
equations on C, hence e* is holomorphic on C. Since u,(z,y) = u(z,y) and
ve(z,y) = v(z,y) for all x and y, (e*) = e* for all z € C. Moreover, if
z=x+1iy and 2’ = 2’ + i/, then

! / AW . ’ /- ’
6z+z _ ecc—i-a: 6(y-i—y )i TVl . ot eVt — o7 L o7

The complex exponential function is an extension of the real-valued expo-
nential function to the complex plane.

Complex Trigonometric Functions
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We will define

62‘2 + e—iz
cos(z) = —
and 4 .
. eir _ iz
S =
in(z) 5

for all z € C. The following identities hold:
sin’(2) = cos(z),
cos'(z) = —sin(z),
sin?(z) + cos?(z) = 1,
sin(z + w) = sin(z) cos(w) + cos(z) sin(w),
cos(z + w) = cos(z) cos(w) — sin(z) sin(w).
A useful inequality is

e + e % — 2cos(2x) S eWteW—2 MW ypel_2
4 - 4 N 4 N

ol — o—luINZ g2l
- - > >
2 ~ 16 T 16

for all z,y € R satisfying |y| > 1, because

1" =

|| sin(z+1y)

t
d—et=c(l-e?)>e(1l-e?) > %

for all t > 1.
The Complex Logarithm

Let S ={x+iy € C:x > 0}. Then for all a+bi € S, B,(
u : (0,00) x (—=00,00) = (—00,00) and v : (0,00) x (=7,

a+bi) C S. Define
) by

1
u(z,y) = 3 In(z* + y?)

and



Then for any (z,y) € (0,00) X R we have

T

Uy = )
x2_|_y2

o Yy
Uy = x2+y2’
Y
2 + 92’
x

Vg

Uy = ————.
Yo 4y?
Thefore the function

f:S—=>{x+iyeC: (z,y) € (—o0,00) X (—g,g)}

defined by
1
flx +iy) = 3 In(z* + y*) + tan™"' (Q) i
x
is holomorphic at each a + bi € S. Note that for z = x + iy we have

T y
— {2
.’E2+y2 $2+y2

f'(2) = up(,y) + va(x,y)i =

)

1
z

so f can be regarded as a complex analogue of the logarithm function. We
will write logg 2 = f(2). If we express each z € S in the form z = r,e%!
where 7, > 0 and —§ < 6, < 7, then we have

loggz =Inr, 4 6,1.

We can extend log z to the set C — {x 4+ 0i € C: x < 0} as follows: Define
the sets o
R={z+iyeC:2<0,y>0}={ei'2:2¢€ S}

and .
T={zx+iycC:a2>0,y<0}={ei’z:2¢€ S}

Then the functions logy : R — C and log, : T"— C defined by

logp(z) = log(e ™ '2) + %z
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and
.
— —q

4
are holomorphic on R and 7" by the Chain Rule and are equal to logg 2z on
RN S and T NS, respectively. Note also that

log(2) = log(e'z)

logh(z) = ——e™ ' ==

and

We will define log : C — {z +0i € C: 2 <0} — C by

logp(z) z€R
logz = qlogg(z) 2z€8 p=Inr,+0.
logr(z) z€T

=i . >0,and -1 < 60, < .

where z = r,e
Properties of log z:

1. The expression €'°% is defined for all z € C — {x +0i € C: x < 0}. If we
write z = x + iy = re? where —7 < § < 7 and r > 0, then

0

log =z Inr+i@ _ elnr619 = re? = 4.

€ =€

2. The expression log(e?) is defined for all z € {z+iy : y is not an odd multiple of 27}.
Given z = x + iy in this set, there is a unique integer n such that

z42mni=x+iyy € {x+iy: —w <y <7},

and
log(e®) = = + iyo = z + 2mni.

3. The equation log(z122) = log(z1) + log(z2) holds provided we can write
21 = 1€ and 2y = rye'® where 0, 0,0, + 0, € (—7, ), but fails otherwise.

4. For any # € R we can define a logarithm function

logy : C — {re?® :r >0} = C
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via '
logy(z) = log(e™9iz).
The Chain Rule yields logy(z) = 1.

Exponentiation

Definition: Let z and w be complex numbers, and assume z ¢ {z+0i : z < 0}.
Then

LW ewlogz.
For example, for n € N and s = o + 7¢ we have

ns = eslogn — ealnn+rlnni — n"(cos(nT) + sm(nT)z)

Series of Complex Numbers

Definition: Let (a,) be a sequence of complex numbers. The sequence of
partial sums associated with (a,) is (s,), where

Sp =0+ a1 +az+ -+ Q.

If (s,) converges to a finite limit s then we say that the series Y >~ a,
converges and define

Zan = lim s, = s.
n—oo
n=0
If the limit does not exist then we say that ) a, diverges.

Example: Let z € R be given. Then

if ||z]| < 1 and diverges if ||z|| > 1. Reason: we have

1_Zn+1
Sn:1+z+...+zn:—
1—=2

when z # 1. Divergence if clear if z = 1. If ||z|| > 1 then (s,,) is unbounded,

and if ||z|| < 1 then s, = T

Definition: Let (a,) be a sequence of complex numbers. We say that
> o> 5 an converges absolutely if and only if >~ ||a,|| converges.
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Example: The series Y~ 2" converges absolutely for all z satisfying ||z|| <
1.

Theorem: Absolute convergence implies convergence.

Proof: Suppose Y~ a, converges absolutely. Let (s,) be the sequence of
partial sums of (a,), and let \S,, be the sequence of partial sums of (||a,||).
Then we have

s = sll = llamer + -+ aull < llameall 4+ + [anl| = 1S, = Sl

Since (.S,,) converges, it is Cauchy, hence (s,,) is Cauchy, hence (s,,) converges.
[l

Example: Let s = 0 + 70 € C where ¢ > 1. Since > 7, n—{, converges,

S L converges absolutely, hence converges.

n=1 n:
_l)n

Example: The series ) -, ( —— converges by the Alternating Series Test
but does not converge absolutely by the Integral Comparison Test. Hence
convergence does not necessarily imply absolute convergence.

Theorem: Let (a,) be a sequence of complex numbers and let (s,) be the
associated sequence of partial sums. If (s,) converges then a,, — 0+ 0i.

Proof: Suppose s, — s. Then s, 1 — s, hence s, — s,_1 — 0+ 07, hence
a, — 0+ 0i. O

Comparison Test: Let (a,) be a sequence of complex numbers and let (c,)
be a sequence of positive real numbers. If Y > a,, converges and there exists
v > 0 and ng such that ||a,|| < ya,, for all n > ng then >~ 7 a, converges
absolutely.

Proof: Assume that (||a,||) and («,) have partial sums S,, and o, respec-
tively. For n > m we have

[Sn = S| = [lams1|] + -+ [|an|| < vomir + -+ yan =7|on — ol

Since (0,) converges, (0,,) is Cauchy, therefore (.S,) is Cauchy, therefore (.S,,)
converges. O

Theorem: Let > > ja, and >~ b, be absolutely convergent. Then

Z Z apbn—i

n=0 k=0
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as absolutely converent and has limit equal to

(5) ()

Proof: We have

‘ <§% an) (i b") _nﬁ;k:o b || <
(% an) (% b") B (% an) (% bn> +
[(£0) ($0) -S|

n=0 n=0 n=
e8] o] N
S aall- || 30— 00| +
n=0 n=0 n=0

(Z) (inbsn) n (i m) (Zb) |

which approaches 0 as N — oo. This establishes the limit. We also have

nf% =< izn: llanbn—|| = (ill%ll) (illbe) 7

n=0 k=0
which proves absolute convergence.

n

Z by

k=0
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Rearrangements Theorem : Let ), a; be absolutely convergent. Then
for any permutation (ar(,)) of (a,),

Z aw(n) = Z Qg .
k=1 k=1

Proof: For any n such that {1,..., N} C {n(1),...,7m(n)} we have

n n 00
D anty = D axl| < 3 il
k=1 k=1 k=N+1

Choosing N sufficiently large, we can make the difference arbitrarily small,
hence

i [S0m - S0,
k=1 k=1
hence ; ;
lim Z Qr(k) — Z ap = O,
ey k=1
and the result follows. n

Limsup and Liminf

The Root Test and Ratio Test for convergence or divergence of infinite series
are defined in terms of the limsup of a sequence. Let (a,) be a sequence of
real numbers. If (a,) has no upper bound then we say limsup,,_, ., a, = +oc.
Now assume that (a,) has a finite upper bound. Then for each n the set

An = {ana An+1; An42;5 - - - }

has a finite least upper bound. Since

A1 DA DA32 -+,
we have
sup A; > sup Ay > sup A3 > --- .
If (sup A,) has no finite lower bound then we way limsup,, . a, = —oo. If

(sup A,) does have a finite lower bound then the sequence converges to a
limit. By definition,

limsupa, = lim sup A,.
n—oo n—00
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The liminf of a sequence is defined similarly.

Example: Let (a,) = (1,2 + %, 1,2+ i, 1,2+ %, ...). Then

1 1 1 1
A)=24=,24=24+-24+— ...
(An) <+2,+2, 2t )

and
limsupa, = lim A, = 2.

n—o00 n—oo
Theorem: When lim,,_, a,, exists, limsup,,_, . a, = lim,_, a,.
Proof: Let A, be as above. Assume lim, _,,, a, = a. Let € > 0 be given.

Then there exists N such that

€ €
a—§ < aN,aN+1;AN+2, """ <a+§,

hence for any n > N we have

€ €
G_E < Qp, py1, An42, " " <a+§7

which implies
€ €
=3 < SUP{@n; i1, Gny, -} < a+ >
which implies
a—€e<supA, <a+e.
This implies lim,,_,,, sup 4,, = a. ]

Root Test: Let (a,) be a sequence of complex numbers and let

lim sup HanH% = L.
n—oo

Then:

(1) If L <1 then ) 7 a, converges absolutely.

(2) If L > 1 then (a,) is unbounded and > 7  a, diverges.
Proof: Write

Anzsup{Hai %:iZn}
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for each n. Then we have A; > Ay > --- > L and A,, — L.

(1) Choose any r satisfying L < r < 1. Then there exists n such that

A, < r. Hence i > n implies ||a;]|7 < 7, which implies ||a;|| < ri. Since
S 1" converges, Y a, converges absolutely by the Comparison Test.

(2) Suppose L > 1. Choose r so that L > r > 1. For all n we have A, > r,
so for each n there exists n’ > n such that Han/\ﬁ > r, which implies
||| > ™. So we can find n; such that ||a,, || > r™, and we can find
ny > ny + 1 such that ||a,,|| > r"2, and we can find ng > ny + 1 such that
[|ans|| > 7™, etc. Since (r™) is unbounded, (a,, ) is unbounded, hence (a,)
is unbounded, hence a,, 4 0, hence Y7 a, diverges. O

Example: Let (a,) be any sequence of complex numbers inside the unit
circle. Then

anlln 1
o < Z
2n -2
for each n, hence
li Ha" P <1
imsup ||— = ,
e 1271 =2

o] a™
hence ) | 5% converges to a complex number.
Ratio Test: Let (a,) be a non-zero sequence. Then:

an+1

(1) If lim sup,,_, < 1 then > %, a, converges absolutely.

an4+1
Qn

(2) If

> 1 for all n > N then Y >°  a, diverges.

An4+1

n

(3) If lim,, 00
Proof: (1) Write

> 1 then )" a, diverges.

An:sup{‘ ZZTL}

for each n. Then we have Ay > Ay > --- > L and A, — L. Choose any r
satisfying L < r < 1. Then there exists N such that Ay < r, which implies

fntlll < r for all n > N. For any k£ > 0 we have

an

Qjt1
a;

lansill < rllansell < r?llavir-ol| < - < 7¥lan]].
In otherwords, for n > N,

llanl] < 7"~ lan]|-
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Hence ||a,|| < er™ for n > N where ¢ = % Since Y 7 r™ converges,
> > 5 an converges absolutely by the Comparison Test.

(2) The condition implies ||a,|| > [|lan|| > O for all n > N, hence a,, /4 0,
hence > a, diverges.
ng1

(3) The condition implies that ||
case (2) applies. O

> 1 beyond a certain point, hence

Functions Defined by Power Series

Power series: An expression of the form ) °  a,2" where a, € C for each
n and z € C. We can define the function f : S — C by f(z) = > a,2"

provided the power series converges at each z € S.

A power series always converges at z = 0. So power series fall into three
categories:

(a) Converges only at z = 0.
(b) Converges at some zy # 0 and diverges at some z; # 0.
(c) Converges at every z.

For any particular power series Y > a,2", we can determine which case we
are in as follows: Let

[ = limsup ||an||%
n—oo

and let

I(2) = limsup ||a,z"]| =
n—oo

When [ is finite,
1(z) = l[=]].

When z # 0 and [ = o0, I(2) = 0.

(a) Suppose I = 0. Then [(z) = 0 when we apply the root, hence Y >  a,2"
converges absolutely for all z.

(b) Suppose 0 < I < co. Then > 7 a,z" converges absolutely for all z
satisfying ||z|| < } and ||a,2"|| is unbounded when z > ;. This is case (b).

(c) Suppose | = co. When z # 0, I(z) = oo, hence [|a,2"|| is unbounded.
This is case (a).
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In summary, the power series converges absolutely for all z satisfying ||z|| <

7 and diverges for all z satisfying ||z|| > 7, interpreting the expression
appropriately. We say that R = 7 is the radius of convergence of the power

series.

Example: Using the Root Test, the power series >~ %z” converges abso-
lutely when ||z|| < 1 and diverges when ||z|| > 1. Convergence is conditional
on the unit circle: the series converges at z = i by the Alternating Series
Test and diverges at z = —i by the Integral Comparison Test.

Functions Defined by Power Series are Infinitely Differentiable

. 1
Lemma: lim,,_,.,n» = 1.

Proof: Let ¢ > 0 be given. We wish to solve nn <1+ €, or equivalently

< (14 ¢)™. Tt will suffice to solve n < 1+ ne + in(n — 1)e?. This will be
true when 1 < (n —1)é%, ie. n > 3. O
Theorem: Let (a,) be a sequence of complex numbers and let f(z) =
Yoo panz™ and g(z) = Y07 (n+ 1)an+12". Then f(z) and g(z) have the
same radius of convergence R and for all z such that ||z|| < R, f'(z) = g(2).

Proof: Given that lim, . n» = 1, the Root Test shows that f(z) and g(z)
have the same radius of convergence R. Now fix zy where ||z]] < R. We will

show f'(z0) = g(20).
For each n > 0 let s,(z) = > ;_,a,2". Fix r satisfying ||z|| < r < R. When
||z|] < r and z # 2y we have

f(z) — f(=)
' Z_—zo —g(ZO)H <
|t - el =B s gt
Given that

1) = e _sale) =sulan) _ § iy i -

Py P 2z0+---+z§ 22+ 2
zZ— 20 zZ— 20

we have

Hf (20)  sul2) =

zZ— 2 zZ— 2

‘ Z k||ag||r" 1.

k=n-+1
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Now let € > 0 be given. Since g(z) converges absolutely at r and s/,(z)
converges to g(zp), there exists n such that

3 Kl < §

k=n+1
and .
|I57,(20) — g(=0)[| < 3

Fixing this value of n, there exists § > 0 such that 0 < ||z — z|| < § forces
both ||z|| < r and

SCEEC B
Z— 20
Hence 0 < ||z — 2| < 0 forces
Hf(z)_f<zo)_g(zo) < €.
zZ— 20
Hence f'(z0) = g(20). O

Complex Line Integrals

Path: A function of the form ~ : [a,b] — C of the form ~(t) = x(t) + y(t)i.

Definite Integral: Given a path v : [a,b] — C,

/abfy(t) dt—/aba:(t) dt+(/aby(t) dt) i

Derivative of a Path: ~/(t) = 2/(t) + v/(t)i, using the one-sided limit to
compute v/'(a) and /().

Theorem: When v and I are paths on [a,b] and I"(t) = v(t) on [a, b], then

Proof: Fundamental theorem of calculus applied to the real and imaginary
parts of the integral. O
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Line Integral: Given a continuously differentiable path v : [a,b] — C and
a continuous function f : S — C where v([a,b]) C S, the line integral of f

over vy is
b
/ﬂ@wz/fmmﬂwﬁ

Theorem: Given a continuously differentiable function ~ : [a,b] — C and a
holomorphic function f : S — C where v([a,b]) C S,

—(f(y(1) = F'(v(0)Y'(8)
for each t € [a, b].
Proof: For any t; € [a, ],

Aforto (1) = Dpto) (£) - Doy (1)

The formula results from letting ¢t — ¢,. O

Corollary: When F(z) is an antiderivative of f(z) along ~([a, b)),

| 1G) d= = FO@) - Fo@)

Proof: The path F(v(t)) is an antiderivative of the path f(y(t))v'(t) along
la, b]. O

Corollary: When f(z) has an antiderivative along ([a, b]) and v(a) = v(b),

Af@ﬁh=

Example: Let 7 : [0,27] — C be defined by () = €. Then

1 2 - gt
/— dz :/ “_ at = 2mi,
1 o €

hence £ does not have an antiderivative on C—{0}. If we define v, : [0,7] — C
by v1(t) = e and v, : [, 271] by 72(t) = €%, then

1 1 1
/—dz:/—dz—i—/—dz:
v mF v2 #
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1

1
+ logg<2) . =

logsx ()
2 1

log(—iz)|; " + log(iz)|, =
log (i) — log(—i) + log(i) — log(—i) =

7T.+7T.+7T.+7T. 9
—1 —1 —1 —1 = 1.
9! Tl TRt Tyt T A
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Equivalent Paths

Definition: Two paths v : [a,b] = C and v, : [¢,d] — C are equivalent if
and only if 75 = 7, 0 s where s : [¢,d] — [a,]] is a differentiable bijection
satisfying s'(t) > 0 for all ¢.

Theorem: When v, : [a,b] = C and 75 : [¢,d] — C are equivalent,

/M F(2) dz = /Wf(z) dz.

Proof: Write f(z) = u(z) + v(2)i, 11 (t) = z(t) + iy(t). Then
d
/ f(z) dz :/ u(m1(s(1)))2'(s(1))s'(t) — v(7(s(2)))y' (s(£))s'(2) di+

d
( [ G s )0 + o0 (1) 0 dt)

Making the substitution 6 = s(t), df = s'(t) dt in the two summands, we
obtain

[ un@)50) — r 0/ 0) o+ ( [ @)y ®) +vu@)0) de) i =

/7 | f(2) de.

Complex Line Integrals over Piecewise Smooth Paths

For 1 < i < nlet v : [a;,b] — C be a continuously differentiable path
satisfying 7v;(b;) = vi41(a;) for 1 < i < n — 1. Then we will say that v =
Y1+ - -+ + v, is a piecewise smooth path and define

/f(z) dz:z f(z) dz.
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Theorem: When f : S — C has an antiderivative F' defined on the image
of a continuous piecewise smooth path v from z; to z3, then

/j@wuzpug—F@g

Proof: This follows from
[ #6) 4z = Fu) = Flaten)

for each i, where 7; has domain [a;, b;] for each 4. O

Corollary: When f : S — C has an antiderivative F' defined on the image
of a closed piecewise-smooth path =, then

Af@ym:u

Change of Variables in a Line Integral

Theorem (Change of Variables ): Let f : S — C be continuous, and
g : T — C be holomorphic function, and let v : [a,b] — T be piecewise
smooth. Then

/go7 f(z) dz = /7 Fg(2))d' () dz.

Proof: We have

/ ROLE / Fav(®))g (1) (8) dt = / F9(2))9(2) d=.

Example: For any a € C,
dz = ! dz = d
/7 fla+2) dz / Fg(2))g'(2) d= /Wf(Z) :

using g(z) = a + z, where a 4 v is the translation of v by a.

36



Example: For any a € C — {0}, f7 flaz) dz = (llfv flg(2)d'(z) dz =
1 fav f(2) dz where a7 is the dilation of v by a.

Example: Let 7 > 0 be given, and define v, : [0, 27| by 7,(t) = re*. Then
/ dz )0 7 <]|la
Lz—a | 2w a>||all.

Proof: We will start by making the change of variables

/ dz _/ dz
%Z_a_ a+%vz.

When 7 < ||a||, @ + 7. is a curve entirely contained one of the two vertical
half-planes not touching the line z = 0, and % has an antiderivative on each
half-plane. Hence the integral evaluates to zero.

Suppose r > ||al|. Then for sufficiently small s the curve 75 is inside the
curve a + ,, and there are two closed piece-wise smooth curves a and [,
intersecting along the real axis only and restricted to regions where % has an
antiderivative, satisfying

/ dz / dz / dz dz
o 2 5 2 aty ? ye 2
d d
/ Yo
atvr v %
The M-L Inequality

Lemma: Let v : [a,b] — C be integrable. Then

| [w < [ b a

Proof: Write fabv(t) dt = z. If z = 0 there is nothing to prove. If z # 0,
then

This implies

b b
||2]|? = z2 :/ Zy(t) dt = / re (zZy(t)) dt <
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b b
[ @ de= el [ i) e

Now divide by |[|z||. O

Theorem (M—-L Inequality): Let 7 : [a,b] — C be continuously differen-
tiable and let f be continuous. Then

z)dz|| < ML

where M = sup,c. o) |1f(7(2))]] and L = f 17/ (#)]] dt.

Proof:
dﬂ /Hf Hﬁ<M/Hv!Mt

[]

Remarks:

(1) By continuity of f and compactness of y([a,b]), M = ||f(v(w))|| for some
w € 7([a, b))-

(2) The expression L = f [|7/(t)]| dt can be interpreted as the length of .
For example, when 7(t) = z; + (22 — 21) on [0, 1] we have

1
= [z = 21l de = [fza = 5L
0
and when (t) = zo + re’ on [0, 27r] we have
2T )
L= / [|re®i|| dt = 2mr.
0

(3) Then M—-L-inequality generalizes in a natural way to piecewise smooth
paths.

Complex Line Integrals over Straight Line Paths

Notation: Given z,w € C, 7., : [0,1] — C is the straight path from z to
w defined by

Yew(t) = 2+ t(w — 2).

38



Lemma:

(1) When 23 is a point on the line strictly between z; and zy then

/

£(2) dz—/v £(2) dz+/ f(2) d=.

21,23 Vz3,29

/7 F(2) dz = —A F(2) de.

21,72 22521

21,29

Proof: (1) For any path v:[0,1] - Cand 0 < a < b <1 we have

/ FO®)y'(t) dt = /O f(y(a+(b—a)u)y'(a+ (b—a)u)(b—a) du,

where we have made the change of variables ¢ = a + (b — a)u. Defining
~:10,1] — C by

~

(u) =~(a+ (b —au),

we have , 1
| r6n @ a = [ G e
This implies

/ab F(Ver oo ()Y, 2, () dt = / £(2) dz

’Y’wl,’wQ
where w; = v(a) and wy = v(b). Now write z3 = (1 — A\)z; + Aze where
A € [0,1]. Then
/

A 1
/ (o (D)L, (6) dlt + / Frenma (D)1 (1) dt =
0 A

/y f(2) dz—{—[y f(z) dz.

%123 #3,%2

f(2) dz = / F (o ma (O (8) it =

21,23
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ﬂ@dmzé(ﬂa+ﬂa—zﬁm@—a)ﬁ:

/

2271

_/1 flz14+ (1 —u)(ze —21))(20 — 21) du =

/01 flza +u(z = 29))(22 — 21) du = _/ f(2) de.

Vzg,21

Goursat’s Theorem

Definition: A convex subset of C is any set S with the property that if
21 € Cand 25 € C then z+1t(29—21) € S for 0 <t < 1, i.e. that the straight
line segment joining z; an z, is a subset of S.

Goursat’s Theorem: Let S C C be a convex open set and let 21, 29, 23 the
vertices of a triangle contained in S. Let f : S — C be holomorphic on S.

Then
/

This result lifts the restriction that z, be a point on the line between z; and
23, assuming the hypotheses of the theorem are met.

ﬂ@mzl ﬂ@@+/ £(2) dz.

21,23 21,29 Vzg,23

Proof of Goursat’s Theorem: Let T denote the triangle. It will suffice

to prove
/ f(z) dz=0.
T

Joining the midpoints of the sides of 7' we obtain the four triangles T’ 1,71 2, 71 3,11 4.
Using the properties of piecewise smooth paths described above, we obtain

/Tf(z) dz = Z f(z) d=.

i=1 YT,

Choose iy € {1,2,3,4} such that HfT - f(2) dzH is maximal. Then
1,49

‘ R

<4 f(2) dz

Ty ,iq
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Joining the midpoints of the sides of T} ;, we obtain the four triangles 15 1,752, T5 3, 15 4,

and
4

f(z) dz = Z f(z) dz.

T,y i=1 Y12,

is maximal. Then

Choose iy € {1,2,3,4} such that Hsz' f(z) dz
222

<4

' f(2) dz f(z) dz ‘

Tl,il

/T F(2) dz

Keep on going, obtaining a nested sequence of triangles 17 ;,,T5,, T35, - - -

satisfying
'/Tf(z) dz /T f(z) dz

for all n. If we define X,, as the set of all points enclosed by 7}, ;,, then each
X, is compact and diam (X,,) < z%p — 0 where p is the perimeter of T,
hence (2, X, = {20} for some z, € T'. Given that

f(2) = f(20) + f'(20)(2 — 20) + (2 — 20)¥(2)

where ¥(z) — 0 as z — zp, and given that the first two terms have an
antiderivative, we have

hence

< 47 f(2) dz

T3,y

<4"

‘ f(z) dz|| = / (z — 20)¥(z) dz|| < M, L,
Ty in T,
where .
M, = [[wn — 20l [[ [ (wn)]] < 2—np||¢(wn)||
for some w,, € T,,;, and
1
L, =—n.
n=onP
Hence
1 [ 56 || < otw
T
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We have w,, — zg as n — oo, hence

|9 (wn)[ = 0
as n — co. This implies [, f(z) dz = 0. O

Antiderivative Construction in an Open Convex Set

Morera’s Theorem: Let S C C be an open and convex set. Let f: S — C
be continuous on S. If

/7 f(2) al,z:/7

for all z1, 29,29 € S then then f has the antiderivative F' on S, where for a
fixed point 2y € S we define

f(z) dz +/ f(z) dz

21,23 21,22 Vz9,23

F(z) = f(w) dw.

Vzg,z

Proof: Since S is open, there exists ¢ > 0 such that h € B.(0) implies
B.(z) € S. By hypothesis, for all h € B.(0) we have

F@+M—F@%i/ Fw)dw— [ fw) dw=

Vzq,2

(w) dw —I—/ fw) dw — fw) dw =

Vzq,z
/ f(w) dw.
Yz,z4+h

b= [ ) dw
Yz,z+h
Therefore we have, for non-zero values of h € B,(0),

F(z+h) — F(z) = hf(2) f(w) = f(2)

Vzq,z

We also have

hence

HF@+2—H@_ﬂd

] < 1f () — £
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for some z;, on the line between z and z + h by continuity of f. As h — 0,
zp — z, hence || f(wy) — f(2)|| — 0. This implies F'(z) = f(2). O

Theorem: Let S C C be an open and convex set. Let f : S — C be
holomorphic on S. Then f has the antiderivative F' on S, where for a fixed
point zy € S we define

F(z)= f(w) dw.

Vzg,z

Proof: By Goursat’s Theorem, f meets the hypotheses of Morera’s Theo-
rem. [

Cauchy’s Theorem in an Open Convex Set

Theorem: Let S C C be an open and convex set. Let f : S — C be
holomorphic on S. Then for all closed curves piecewise smooth v : [a,b] — S,

/7f(2) dz = 0.

Proof: The function f has an antiderivative on S. O

Remark: The convex hypothesis can be relaxed in specific examples. For
example, if S and T are open and convex, f : SUT — C is holomorphic, and
v =« + f is a piecewise smooth curve where « is a closed piecewise smooth
curve mapping into S and f is a closed piecewise smooth curve mapping into

T, then
/yf( ) /aJrB ( )

™

Example, page 44: [~ 1= dx = Z. Split path down the y-axis, and
argue that each closed subpath belongs to open convex set where 1;222 is

holomorphic. To prove that

1_eiz

— dz =,

lim
e—0 ,yj 2z

use the following technique: The expression
e —1

z
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is a difference quotient of F(z) = ¢** and approaches F'(0) = ¢ as z — 0. So

we can write ,
el —

. =i+ R(2)

where R(z) — 0 as z — 0. This yields

1—e* —i—R(2)

22 z

Therefore

/1_26 dz:—z'/ 1al,z—/ Mdz:ﬂ—/ @dz.
42 a2 G 7 42

€ €

Let M. be the maximum value of ||R(z)|| on . By the M-L inequality,

i

as € — 0. This yields the desired result.

1
/ MdzHSMe-—-ﬁe:WMe—)O
”

+ z €

€

Cauchy’s Integral Formula

Notation: Fix r» > 0 and a € C. Then

Crla) ={z€C: [z —al| =},

D,(a) ={z€C: ||z —all <1},

[t
Cr(a)

denotes the line integral over the path 7 : [0, 27] — C defined by

and

v(t) = a+ re’.

Theorem (Cauchy’s Integral Formula): Let S C C be an open and
convex set containing D, (a). Let f : S — C be holomorphic on D,(a). Then

for all z € B,(a),
1 f(w)
- — dw.
f(z) : /CT( w

2mi o) W—2
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Proof: Fix z € B,(a) and s € R, 0 < s < r. The expression 5—1‘2 is a
holomorphic function of w on B,.(a) — {a} by the quotient rule, and it is
possible to define four piecewise smooth close curves 7, v2, 73,7, restricted
to convex open subsets of S that satisfy

oz/ J(w) dw:/ f(w) dw—/ ) g,
Yt+y2+ystya W T Cr(a) W= % Cs(z) W 2

Therefore
/ RAC) R B () R,
Cr(a)

) W — 2 s—0 Cs(z)w—z

On C4(z) we have

fw) )

w—z w—z

hence

/ f(w) dw :/ Sw) dw+/ Ag(w) dw = 27Tf(z)i+/ Ag(w) dw,
Cs(z) W— 2 Cs(z) W— 2 Cs(2) Cs(2)

hence

/ f(w) dw =27 f(z)i + lim Ay (w) dw.
Cr(a) )

w— z s—0 Cs(z

By the M—L-inequality,

for some wy € Cy(2). As s = 0, wy — 2, hence Ay, (ws) — f'(2), hence
27s|| Ay . (ws)|| — 0, hence

1

| Anw de < omsl|Ay ()]
Cs(z)

/ Ag . (w) de — 0.
Cs(z)

This implies

/ EAC IR
Cr(a)

w—z
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Remark: Let S C C be an open and convex set containing D,(a). Let
f S — C be holomorphic on D,(a). Then for all z € B,(a) and for all w
satisfying ||w — a|| = r,

o0
wW—a 1 Z z—a\"
w—z 1—24 w—a) '
n=0

w—a

hence by Cauchy’s Formula

" 2mi a w—a
271 Jey(a) \ oo

We would like to exchange the order of integration and summation, but
we must do this carefully. Hence we make a digression into sequences of
functions.

Sequences of Functions

Definition: The norm of a function f: 5 — C is

A1} = sup{[[f(2)]| - = € S}

Definition: Let S be a subset of C and for each n > 0 let f, : S — C be
a function. We say that (f,) converges uniformly if and only there exists a
function f : S — C such that

lim ||f, — fl| =0,
n—oo

in which case we say that (f,) converges uniformly to f.

Theorem: If (f,,) converges uniformly to f on S and each f, is continuous
on S, then f is continuous on S.

Proof: Fix z; € S and let € > 0 be given. For any z € S we have
1f(2) = f(z0)l] <

1F(2) = (DI + 11fn(2) = falz0)ll + [[fn(20) = f(20)I] <
2/[fn = FIl+ 11fn(2) = ful20)l]
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for all n. We can choose N so that ||fy — f|| < {. Having fixed N, we have

17 (2) = f(z0)l < §+ 1 Fn(2) = F(20)ll-

By continuity of fy, there exists 6 > 0 such that for all z € S satisfying
|z = 20| <0, ||fn(2) = fn(20)|| < 5. Hence

|z = 20ll <0 = [|f(2) = f(20)ll <e

for all z € S. O]

Weierstrass M-Test: Let S be a subset of C, and for each n > 0 let
fn: S — C be a function. If

D lfall = M < o0
n=0

then Y, fn(2) converges to a complex number for each z € S and the
sequence of functions ()";_, fx) converges uniformly to the function f : S —
C defined by

1) =3 ful2).

Proof: For any given z € S, ||fu.(2)|| < [|fx]], and since >~ 7 || fal| con-
verges, > o fa(z) converges by the Comparison Test. For any n > m and
z € S we have

m

D Sz = ful2)

k=0

= Hfm-i—l(z) ++fn(z)H <

st I+ NI < Ml 4+ U fall <M = N1l
k=0

Hence the sequence of partial sums is Cauchy and converges. Fixing m and
letting n — oo,

m

DS =D fulz) = f(2) =) fla),

k=0 k=0
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hence

SR =S h)|| - Hf(z) -SR],
hence - .
|f(z)—2fk(2) <M ZkaH

Since this holds for all z € S,

m m—1
Hf—ka <M= [ fill
k=0 k=0
Since
m—1
M=) |lfull =0
k=0
as m — 0o,
Hf T
k=0
as m — oo. This implies (> ;_, fi) converges to f uniormly on S. O]

Theorem: Let S be a subset of C, let v : [a,b] — S be piecewise smooth,
and for each n let f,, : S — C be continuous. If (f,) converges uniformly to
f on S then

lim fn ) dz = / f(z

n—o0

Proof: It suffices to prove that

2) dz—[yfn(z) dz
z) dz — Lfn(z) dz

/an(Z)—f(Z)H dzé/llfn—fll dz = |1fa — fIIL = 0

We have
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where L is the length of ~. O

Corollary: Let S be a subset of C, let v : [a,b] — S be piecewise smooth,
and for each n > 0 let f, : S — C be continuous. If

ni:; an” =M < o0
then )
H;O <[y fu(2) dz) :[Y (nzzo fn(z)> dz.

Proof: Since (> ;_, fi) converges uniformly to the function f defined by

1) =3 ful2),

we have by the previous theorem

g: (/V fu(2) dz) = lim (i fu(2) dz) = lim i (i fn(2)> ds —

k=07

lf(z) dz:l<gfn(z) dz).

Power Series Expansion of Holomorphic Functions

Theorem: Let S C C be an open and convex set containing D,(a). Let
f S — C be holomorphic on D,(a). Then for all z € B,(a),

f(z) =) au(z —a)"

where

1
o[,
270 J e, (a) (w — a)t!

49



Proof: Fix z € B,(a). As we argued above, by Cauchy’s Formula we have

1 o f(w) n
f(z) = 27 Jo (o) (nzzo (w — a)n+ (2 —a) ) dw.
For each n > 0 let f, : C.(a) — C be defined by

fulw) = I g

(w — a)t!

Then
_ n+1
weay = (=)

hence >~ ° || f,]| converges by comparison with the geometric series

Sy

n=0

Il =su { || 2 -

By the last result proved in the section on sequences of functions, this implies

n=0

i </Cr<a> # dw) (z—a)"

n=0

]

Corollary: Let S C C be an open and convex set containing D,(a). Let
f S — C be holomorphic on D,(a). Then f is infinitely differentiable on

B, (a), ‘ f(w)
M (g) = - D
PO =g [ g

for all n > 0, and

% n)(g
1) =3 D gy

for all z € B,(a).
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Proof: These statements follow from the fact that f(z) has a power series
expansion in B,(a). We showed earlier that functions define by power series
are infinitely differentiable. O

Remark: Assume f is holomorphic on B,.(a). For any s satisfying 0 < s < r,
f is holomorphic on Ds(a), hence

o £n)(g
fo) =3 LD gy

n:

for all z € By(a). Since B,(a) = J,,, Bs(a),

for all z € B,(a). Hence f is infinitely differentiable on B, (a). Choosing any
s satisfying 0 < s < r, we have

(n)/ .\ _ ”_' f(w)
[ (a) = o /Cs(a) (w — a)™+! dw

for all n > 0.

Remark: It is now possible to derive the power series expansions

=, (-1
cosz = Z W,

n=0
o0 (_1)n22n+1

SinZ:Zm

n=0
for all z € C. We also have

logz = Z (=" (z—1)"

n=1

for all z € By(1+ 0i) and




for all z € Bjjc—q)(a).

Power Series Expansions of Products and Quotients

Theorem: Let f and g be holomorphic on B,.(a) and have power series
expansions

1) =S fulz —a)
and

9(z) = galz—a)"

respectively. Then fg is holomorphic on B,.(a) and has power series expan-
sion

o0

f(2)9(z) = (Z fkgnk> (z—a)".

Proof: We have

hence

Matrix Computation of Power Series Products and Quotients

Definition: Let a(z) =Y~ a,2" be convergent in B,(0). Then we define

a 0 o --- 0

ap  ao 0 ..o 0

Mn(a) = | a2 ai ap .- 0
_an Qp—1 QAp—2 - *° CLO_
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Theorem: Let a(z) = > 7 a,2z" and b(z) = > b,2" be convergent in
B.(0). Then ¢(z) = a(z)b(z) is convergent in B,(0) and

M, (c) = M, (a)M,(b).

Proof: The functions a(z) and b(z) are holomorphic on B,(0). The function
c(z) = a(2)b(z) = > .~ cn2" is holomorphic on B,.(0) and ¢, = D) _, axbn_k.
Now let n > N be given. For 0 <1,7 < n define

)i 12y
T N0 i<

Fixing ¢ and j,

- Cij 127
Zai,kﬁk,j = Z ai—kby—j = Z Qi—j—pbp = { T } = Vi
— 0 1<

J<k<i 0<p<i—j
This implies
(i j)(Big) = (Vig),

which implies

O

Corollary: Let a(z) = > -, a,2z" be holomorphic and non-zero in B, (a).

Then ]
Mn(a) = Mn(a)_l'
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Proof: This follows from a(z)ﬁ =1 and

1 00 0
010 0
M,(1) = 0 01 0
000 q
[l
Example: Let ¢(z) = > 7 % and s(z) = Y 7, % Both func-

tions are holomorphic at all z € C, and cos(z) = ¢(2?) and sin(z) = zs(2?).
Since sin(z) = 0 if and only if z is an odd multiple of 7, s(z) is non-zero on
B /z(0). We have

1 0 0 0 1 0 0 0
1 1 0 0 -1 0 0
M;s(c) = f 1 91 9| Ms(s) = j 1 91 9|
24 2 120 6
S 1y s S DA B
720 24 2 5040 120 6
1 0 00 1 0 0 O
_ 1 1 00 i -1 1 0 0
M3(S> t= i 1 1 0 ) M3(C)M3(S) = _i _1 1 0
360 6 45 3
3L 71 g 2 1 _1 4
15120 360 6 945 15 3
This implies that
1 L 1 . 7T 4 L 31 5 .
=—4 -2+ —2z —z
sin z z 6 360 15120
and
CoS 2 1 1 1, 2 5
- = — — -z — —2 = —2° — ...
sin z z 3 45 945

on B,(0) — {0}.
Liouville’s Theorem and The Fundamental Theorem of Algebra

Definition: A function f : C — C that is holomorphic at every z € C is
called entire.

Theorem: A bounded and entire holomorphic function is constant.
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Proof: Suppose f : C — C is holomorphic on C and satisfies || f|| = M < 0.
Let a € C be given. By Cauchy’s Formula and the M-L-inequality, for all
r > 0 we have

Il = |

1 1 M M
—/ o) dw|| < ——=27r = —.
21 Jo, () (0 — a)? 27 r? r

Hence f'(a) = 0. Since f’(z) is identically zero on C, it is a constant function
by Exercise 26, page 31. [

Corollary: Every polynomial p(z) of degree > 1 with complex coefficients
has a root in C.

Proof: Suppose p(z) # 0 for all z € C. Then the function f : C — C
defined by

z
f(z) =
=) p(2)
is entire. It is bounded: write p(z) = ap+aiz+- - -+a,z" where ag, .. .,a, € C

and a, # 0. Then
2"p(1/2) = apz™ + a1 2"+ -+ ap,
hence

lim z"p(1/2) = ay,

z—0

hence there exists & > 0 such that

. 1
0<[lzl] <0 = [[z"p(1/2) = anl| < Fllanll

hence
1 n n
0<|]z]| <6 = a0~ 12"p(1/2)]] = llan — (2"p(1/2) — a,)||
N 1
2 [lanl] = [[z"p(1/2) = an]| > 5llan]]

1 2

zll > - = ||f(»)]| < .

el > 5 = WG < oy

Since f is continuous and D1 (0) is compact, f(z) attains a maximum value
of f(zo) on D%(O). Hence

15 < max (2 1)
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for all z € C. By Liouville’s theorem, this implies that f(z) is constant.
Hence p(z) = cz™ for some ¢ € C, contradicting the fact that p(z) # 0 for all
z € C. Therefore p(z) # 0 for some z € C. O

Corollary: Every non-constant polynomial p(z) of degree > 1 with complex
coefficients factors into linear factors.

Proof: We can prove this by induction on the degree of p(z), using the fact
that if p(c) = 0 then p(z) = ¢q(2)(z — ¢) for some polynomial ¢(z) of lower
degree. O]

Laurent Series

Definition: A Laurent Series is an expression of the form ) _, c,(z —a)”
where a € C and ¢, € C for each n € Z. We say that the Laurent series
converges at z if and only if the two infinite series Y~ c,(z —a)™ and
Yo c_n(z —a)™™ converge, in which case we define

E cn(z —a)” E cn(z —a) —{—E Cn(z—a)™.

neZ

Example: A Laurent series expansion for (z — a)eﬁ in powers of z — a on
C — {a} is given by

(z—a)ezlazl(z—a)+1z—a0+z —a)™".
n=1

n—l—l

Example: Consider the function f : C — {0,4, —i} defined by

z+1
2t 4 227

fz) =
A partial fraction decomposition yields

f&) =5+

22z z—1 z4+i

r S

where p =1, ¢ =1, 7 = (-1+44), and s = 3(—1 —i). A Laurent series
expansion for f(z) in powers of z is

f(2)=pz2+qz "+ Z (ra, + sb,)z"
n=0
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for all z € By(0) — {0}, where = = > ja,2" and zﬂ =3 ybp2". On
the other hand, a Laurent series expansion of f(z) in powers of z — i is

f(z) =r(z—1) 1+Z (pan + qby + scy)(z —1)"
n=0
for all z € By(i) — {i}, where & = Y jan(z —4)", £ = > 07 bz — )",

z
and —= =Y (cn(z — 1)

The Residue Theorem

Definition: Let f: B,(a) — {a} — C have a Laurent series expansion

f2)=) ez —a)

nel

The residue of f at a with respect to this expansion is

res,f = c_1.

Theorem: Assume that f : B,(a) — {a} — C is holomorphic and has
Laurent series expansion

Then for any 0 < s < r,

f(2) dz = 2mi res, f.

Cs(a)

Proof: We have f(z) = g(2) + h(z) where

= Z cn(z —a)"

and



Since g(z) converges on B,(a), it is holomorphic on B,(a), hence h(z) =
f(2)—g(z) is holomorphic on B,(a)—{a}. Hence both g and h are continuous
on B,.(a) — {a}, and we have

(2) dz = / g(z) dz —|—/ h(z) dz.
Cs(a) Cs(a) Cs(a)

By Cauchy’s Theorem in an open convex set,

/ g(z) dz=0.
Cs(a)

Therefore

/Cs(a)f(z) dz = /cs@ h(z) dz = /CS(O) heta) ds =

/ (Z cnz_"> dz.
Cs(0) n=1

We wish to exchange the order of integration and summation.

Choose any ¢ satisfying 0 < ¢ < s. Since Y -, c_t~* converges, >~ c_xz"
converges absolutely on C%(O), hence Y 77, c_rz~" converges absolutely on

{z € C: ||z]| > t}. By the Weierstrass M-test, > -, c_z~"* is the uniform
limit of the sequence of functions (3> 7_, c_x27 %) on {z € C: ||z|| > ¢}, and
since C5(0) C {z € C : ||z|| > t}, we have

c_p2 | dz= [/ c_pz " dz] = / c_1z tdz =
/ +(0) [Z ] 2 C4(0) Ca(0)

n=1
2mic_1 = 2mi res, f.

O
Computing Residues

I. If f(2) is holomorphic in B,(29) — {20} and f(z) = ﬁg(z) where ¢(z)
is holomorphic in B,(2p), then g(z) has a power series expansion

9(2) = ar(z — 2)",
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which yields the Laurent Series expansion

f(z) = Zak(z — z9)" "

This yields
1

(n—1)

res,, f = a,—1 = 'g(”_l)(zo).

Example: Let f: C — {0,4, —i} be defined by

z+1
24 4+ 22

f(z) =
We will compute the residue of f at zy = 0,4, —2. Observe that we have

z+1

fz) = 22(z+10)(z —1)

Residue at zg = 0: We have

1 /241
f<z):?(zz2+1)’

resof:%(z+1)/(0): (ﬂ> (0) = 1.

2241 (2241)

Residue at zg = i: We have

f(z) = Ziz (zzi;:w)

f 1 1+ 1 1 n 7
res;, ] = s\ 5-—=<)—=—%5 71T =
0! \é2(i +1) 2 2

Residue at zp = —i: We have

0= (s555)
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N | .

res_;f = & (%) - _% Bl

II. We can compute residues by working with Laurent series directly. For
eD.Z

example, consider f(2) = %z where a € R. We will compute the residue at

z = mi. Expanding the denominator in powers of z — m we obtain

o) . A\n 0o a1
R L ) Dl e Y) g Gl
n=0 ' n=1 ’

This yields, for z # 7,

where

Since g(mi) = 1, g(z) # 0 on some sufficiently small neighborhood B.(i),

hence %Z; is holomorphic on B.(7i). This implies

1 _eam'

res i f = ag(m') = —e

Generalized Residue Theorem

Theorem: Let f : S — C be holomorphic on S —{ay,...,a,}. Assume that
f has a Laurent series expansions in powers of z—ay, in B, (ay)—{ax} for each
1, that 0 < s < r; for each k, and that there exist closed piecewise smooth
paths 7, ...,yn restricted to open and convex subsets of S — {ay,...,a,}
such that

dz = dz — dz.
/Y0+"'+’7Nf(z) : /Yof(Z) : /C"s1(a1)+"'+03n(an)f(z) ’

/ f(z) dz = 2mi iresakf.
7o k=1

ari

Then

Proof: Since f has an antiderivative on ~; for each k,

/”°+"'+7N £(2) dz = 0.
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Hence

/ f(2) dz:/ f(2) dZZQWinesakf.
Y0 Csl (al)++09n(an) k=1

Example: Let f: C — {0,i,—i} — C be defined by f(z) = 2tL;. Then

z4422

1
/ % dz = 2w (reso f + res; f) = —m + mi.
Cs (i)

Trigonometric Integrals

Let c¢(z) = L;/Z = 2+1 let s(z) = Z_Qli/z = z;—zl, and let f(z,y) be a

real-valued function. Then

27
fle(z),s(2))2" 1 dz = z/ f(cos@,sin@)(cosnb + isinnd) do.
C1(0) 0

Comparing real and imaginary parts,

2w
f(cos,sin@) cosnb df = im/ fle(z),s(2))2" ! dz
if

0

and .
/ f(cos@,sinf)sinnd dj = — / f(c 1 gy
0

So for example

2 2 4
1 1
/ cos' @ df = im <z + ) —dz =
0 C1(0) 2z z

z2+1)41 B 4+4264+6224+422+1 3

= 1im 271 - resy = —.

P 1625 4

im 277 - resg ( 5
z

Improper Integrals

Let f(x) be a complex-valued function on (—oo,00). Then by definition

[ s o [ )0
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[ sy ae= o [ 500 s

/ dx—/ f(x d:zc—l—/ f(z
PV, /: f(2) dx:]%gxgo/_if(x) dz

assuming the limits exist. When [ f(z) d exists,

/: f(x) dz = P.V. /_Z f(2) da

dx exists: write fo 1+ Lo dr = a.

and

Example: The improper integral fo
Then for each R > 1,

L | L R q
dr = dr < — dr =
/0 L0 T a+/1 1+ 23 X a—i—/l 3 €r =

1 1 1
‘o sty
Hence the sequence ([ 1755 d) is increasing and bounded above by a + §
hence converges to a finite limit L. Therefore

R |
/ drx = L.
0 ].+./L'3

Improper Integrals and Semicircular Paths

1+3

I. Suppose that f(z) is holomorphic on the real axis and at all but a finite
number of points {ai,...,a,} above the real axis. Then integrating f(z)
around the piecewise smooth path ag + g where ag(z) = x on [—R, R] and
Br(t) = Re™ on [0, 7] we obtain

/ f(z) dx + f(z) dz = 2mi Z res,, f
Br
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See the figure on page 79. Let || f||r denote the maximum value of || f(2)||
on Cr(0). Then

lim R||f|lr=0 =

R—o0

P.V./ f(z) de = 2mi Z res,, f-
- k=1

Example: The function f(z) = 5 +122 = (Z_i)l(z 5 s holomorphic on the real

axis and at all points except z = ¢ above the real axis. Moreover when
l|z]| = R > 1 we have

1 1
1+22|| - R2-1
hence R||f||r < 725 — 0 as R — co. Given that
1 1
e = T

we have

*®  dx 271
pv. [ 2 ___
/001+x2 2% "

Since ﬁ is an even function, this implies
* dr  2mi ow
o L1422 2% 2

IT. Suppose that f(z) is holomorphic on the real axis and at all but a finite
number of points {ai, ..., a,} above the real axis. Let F(z) = f(z)e**. Then
integrating F'(z) around the piecewise smooth path ar+ g where ag(z) =
on [—R, R] and Sx(t) = Re" on [0, 7|, we obtain

R n
/ f(x)e™ dx + f(2)e" dz = 2mi Z resy, F.
—R Pr k=1

See the figure on page 79. Let || f||r denote the maximum value of || f(2)||
on Cg(0). Given that |[e”*|] <1 when z is above the z-axis,

R—o0
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P.V. / f(z)(cosx +isinz) dor = 2mi Z res,, F'.
- k=1

Example: The function f(z) = 5 yields

/ f(z)cosz dx = mires; F'
0

o eiz o eiz
where F(z) = 1775 = =z757- We have
‘ -1
e e
res; [’ = : = —,
2+, 2

therefore

/°° CcoS T p T
T = —.
o 14 a2 2e

ITI. We get similar results if f(z) is not holomorphic at z = 0, lim,_q [’ 5, /(2) dz
exists, and f(z) otherwise meets the conditions above. Just use the indented
semicircle on page 105.

Inz

Example: Let a > 0. To compute fooo ez dr, use

log_r9(2)  log(—iz)  Inr+(0—7%)i
22442 22442 22+ a? '

f(2)

When z =re?, a >r > 0,0 <6 <, we have

us

rllnr| +r
r\\f\\rg%—)Oasr%O.
a?—r

When z = Re??, R > a, 0 < § < 7, we have

RIn R+ RT

7 o2 — 0 as R — oo.

Rl[f]lr <

IV. If f(z) is not holomorphic at a given point along the z-axis, we can
try using a semicircular contour that avoids this point. We can apply this

method to evaluating fooo T +1x5 dx — see the exercise set.
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Improper Integrals and Rectangular Paths

I. Suppose that f(z) is holomorphic on the real axis and at all but a finite
number of points {ay,...,a,} above the real axis. Assume

Ve>0:3R>0:|[z] > R = ||f(?)|]| <e

Then -
/ f(z)e™ dx = 27i - Z res,, f(2)e”.

To see that [ f(z)e™ dx converges, let M be an upper bound of ||f(z)|]
and choose T' > 0 so each of the points in {a4,...,a,} are within 7" units of
the origin. On the path a(t) = =T + it, t > 0, we have || f(2)e”|| < Me™,
therefore the integral [J f(a(t))e"Ma/(t) dt converges. On the path B,(t) =
t +qi, t > =T, we have || f(2)e**|| < Me™4, which implies that the integral
[ F(By()e P! (¢) dt approaches zero as ¢ — oo. On the path ,(t) =
q+it, t > 0 we have ||f(2)e || < M,, where M, is the maximum norm
of f(z) on this path, which implies that the integral [;' f(y,(£))e™e M~/ (t) dt
approaches zero as ¢ — 00. Integrating around the rectangle with vertices
—T, q, q+1q, =T + iq, and letting ¢ — 0o, we obtain

/O; f(z)e” dx = /000 fla)e Do/ (t) dt + QWZresaif(z)eiz.

aj

This implies that [~ f(x)e™ dx converges. Similarly, fi]oo f(z)e® dx con-
verges.

Integrating around the rectangle with vertices — R, R, R + Ri, —R + Ri, and
letting R — oo, we obtain the desired formula.

Example: f(z) = 757 satisfies these conditions and has singularity z = bi

above the z-axis. We have
o—b

5

iz iz

ze ze
resy; = ‘
2402 z44b

z=1b

0 ix R ix —-b
xre xre e

P et [ g oS
/_R 22+ b2 /0 2 4+ b2 T 2

0 —iu R iz —b
—ue xre e

— | 0 d —— dr — 27—

/R(—u)2+b2 u+/0 2 T
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Ro: . o —b
2
/ —lf Y e omi S
0 x24+b? 2

*® rsinz T
e
/0 2 4+ b? 2

IT. We get similar results if f(z) is not holomorphic at z = 0, lim,_,o+ | s, ) (2)e* dz
exists, and f(z) otherwise meets the conditions above. Use a semicircular
indentation about the origin. We obtain

n

/ f(x)(cosx +isinz) dr + lim / f(2)e” dz = 2mi Z res,, F.
—00 Be

e—0t
k=1

Example: We can use f(z) = % to prove fooo sin

differential approximation

dr = 7. This requires the

e e -1 1 1
— = +-=i+YP(z)+ -
z 2 z z

where ¢(z) — 0 as z — 0.
Rectangular Paths of Fixed Width

(i) Let a < b and p < ¢ be real numbers. Let R(a,b,p,q) denote the rectangle
with sides through x = a, = b, y = p, y = ¢, and for a function f(z) let
I fllas 1f]]6s [If]]ps and || f]|, denote the maximum value of || f(2)|| on each
of these sides. Fixing a and b, and assuming that lim, , . ||f]|, = 0 and
lim, o || f|l; = 0 and that for sufficiently large p and ¢, f is holomorphic
on R(a,b,p,q) and has a finite number of singularities in the set S in the
interior of R(a,b,p,q), we have

i/oo fb+it) — fla+it) dt =2mi ) res.f.

z€S

(ii) Similarly, fixing p and ¢, assuming that lim,,_ || f||o = 0 and limp_,o0 || f]|» =
0 and that for sufficiently large a and b, f is holomorphic on R(a, b, p,q) and
has a finite number of singularities in the set .S in the interior of R(a,b,p,q),

we have

/OO ft+ip) — f(t+iq) dt = QWineszf.

z€S
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Example: Let 0 < & < 1 be given. The function f(z) = ff; meets the
conditions in (ii) when p = 0 and ¢ = 27. This yields

o] kt 00 kt+2kmi kz
e e e
dt — ———— dt = 2mires,;;————
/ 1+ et / 1+ et+2m 1+ e

] 00 ekt
(1 — 2 / dt = —2miek™
oo L+ €l
/oo ekt g — _27m'€km' - T
o ldet T 1 —ekmi ginkr

A Rectilinear Path.

The function f(z) = smﬁ(” j is holomorphic on C—{2k : k € Z}. Let o = a+bi
be a non-zero complex number with @ > 0 and b > 0. The rectilinear path v
around the figure with vertices 1 — Ra, 1 + Ra, —1 + Ra, —1 — Ra encloses
the single singularity 0, hence

6122}2

=2m - — = 4.

IR | =

/ f(2) dz = 2mi - resy

sin(5z2)

The contribution to this integral along the long sides of this path is

R e Tl (1+at)? edi(l— at)?
« — dt =
Sln 3

(Z(1+ at)) sm( (1—at))

dt =

z(1+2at+a2t2) +€ZZ(1 2at+a?t?)
a/
R

cos(Fat)

) R ezza 242 €2atz +e Eatz
zoz/ ( ) dt =
R cos(Gat)

R
us 212
46410(/ ex " dt.
0

The contribution along the narrow sides is

i(t+aR)? 1 eailt— aR)?
dt = 204/ - dt.
) 1 sin(g

Zi(t—aR)? e
T(t—aR)) sin(Z(t+aR (t —aR))

Q
(i
—_ =
&,
=
—~| ®
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Given ||e”T%|| = e* and || sin(z + iy)|| > % for |y| > 1, we have

e 1ilt—aR)?

sin(3(t — aR))

< FORU-1-aR)

hence
1 Zi(t—aR)?
/ - dt
-1 Sln(§<t — OCR))

as R — oo. This implies

' TpR(t—1—aR) e 290 bR
< 2T dt = 1—e™%) =0
</, i )

(o)
i 242 .
464’a/ eat @t = 44,
0

Rescaling and simplifying,

/ et gt = [ LT,
0 4s

3
s>0and%<¢§7’r.

Setting ¢ = m and s = 1 we obtain
/ e dt = ﬁ
0 2
Setting 1 = 37” and s = 1 yields

/OOO cos(t?) dt = /Ooo sin(t?) dt = ﬁ

Setting se¥’ = —1 4+ mi, m > 0, we obtain

00 ) 1 /M2 _
0 4 m?2 +1 m2+1
Some Infinite Series Evaluations

Theorem: Let f: C — .S — C be holomorphic at each z € C — S, where S
is a countable set. For each n € N let v, denote the piecewise-smooth path
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parameterizing the square centered at the origin with sides of length 2n + 1.
Let I, an P, denote the interior and boundary of the square bounded by ~,,.
Let f(z) be a function having the following the properties:

1. SN 1, is finite for each n.
2. SN B, = 0 for each n.

3. There exist real numbers A > 0 and B > 0 such that ||f(2)|| < 45 for
all z in the domain of f satisfying ||z|| > B.

Then
nlLHQO Z res,f = 0.
a€Sn
Proof:
1 A 8 4
Zresaf :‘ —/ f(z) dz S—L”%O
= 2mi )., 2m (n+ 3)
as n — o00. [
Example: The function f: C — Z — C defined by
1
J(z) = 26 8in(7z)

is holomorphic at all z in its domain, S = Z, and for each n € N,
Sy, ={-n,—n+1,...,n—1,n}.

Moreover
1 1 16 16

1 () = : < <
2112 | sin(m2)[[2 — ||2][** ~ |]=]*

for all z in the domain of f satisfying ||z|| > 1. Hence f meets the hypotheses
of the theorem. Hence

n n 1
Jim, D vosf =l D xen s
When k = 0 we have ]
0 sin(mz) -
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1(1 1 7 .4 31 .. ) 3170
resy — 4+ —mz+ —7m2+ ——72"+ - | =
T2

26 6 360 15120 15120°
When k # 0,
1 1
ks sin(m(z — k) + k) -
res ! " _
FOsin(r(z — k)
1 (-1 e
Y2 — kS S %(z — k)2 kS
Therefore

3170 2 o (—1)F
lim = =0
15120 a7 ; I ’
i (-1t 31x°
ES  30240°
k=1

Example: The function f: C —7Z — C defined by

cos(mz)

f(z) =

20 8in(7z)
is holomorphic at all z in its domain, S = Z, and for each n € N,
Sp={-n,—n+1,...,n—1,n}.

Moreover

|| cot?(m2)|| || esc®(mz) + 1| 17 17
If()I* = = < <
[|2][* 121" 2] []=]*

for all z in the domain of f satisfying ||z|| > 1. Hence f meets the hypotheses
of the theorem. Hence

cos(mz)
lim E res, f = hm E reSk g~ =0.
nyoo 28 sin(7z)

When £ = 0 we have
cos(mz)
resp—————— =
28 8in(7z)
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S \7mz 377 45 045 0945’
When k # 0,
cos(mz) 1 cos(m(z — k) + 7k)
resy—————— = — =
F 6 sin(mz) F 6 sin(m(z — k) + 7k)
1 _
reSk_Cf)s(ﬂ(z k)) _
28 sin(m(z — k))
0o _ 7L7.(.27L n
1 1 ano( (lg)n)[ (Z - k)2 1
resy, T = :
z—kmnzb S, ((12)717)'(2 — k) wkS
Therefore
27° 2« 1
2 im 2N L o
045 "t r 278
kS 945
k=1

Analytic Continuation of Holomorphic Functions

Definition: Let f:S — C be holomorphicon S. If SCT and F : T — C
is holomorphic on 7" and satisfies F'(z) = f(z) for all z € S, then we say that
F' is an analytic continuation of f to the set T

Example: Let f: B.(a) — {a} have Laurent series expansion

o0

f2)=) calz—a)"

n=-—1

Then f(z) — <= has analytic continuation " ¢,(z — )" to B,(a).

z—

The Riemann Zeta Function

I. Definition of the Riemann Zeta Function

Recall that for a complex number z € C — {x + 0i : < 0} and for any
other complex number w, z% = ¢®!°6%, In particular, for a positive integer
n, n*tW = e@tw)losn — nT cog(n¥) + n? sin(n¥)i.
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Definition: The Riemann Zeta function is the function

(:{z€eC:rez>1} -»C

defined by
— 1
)=
n=1
Since ||[n**%|| = n*, ((z) is absolutely convergent for each z in its domain.

Lemma: Let S be an open and convex subset of C and for each n > 0
let f, : S — C be holomorphic on S. If f, — f uniformly on S then f is
holomorphic on S and f'(z) = lim,_, f(2) for each z € S.

Proof: Since each f,, is continuous, f is continuous on S. Moreover, for any
piecewise smooth v parameterizing a triangle T in S,

n—o0
T

/ f(z) dz = lim fu(2) dz=0

since each f,(z) is holomorphic on S. Therefore f has an antiderivative F
on S by Morera’s Theorem. Since F' is infinitely differentiable on S, so is f.

Now let z € S be given. Choose r > 0 so that C,(z) C S. By Cauchy’s
Integral Formula,

fo2) = f1(2) = o

omi

2! fa(w) — f(w)
/Cr(z) !

therefore by the M-L inequality we have
2! — 1 _
Cr(z) T

2mi (w— 2) 72

1£22) = P < '

as n — oo. O

Corollary: Let S be an open and convex subset of C and for each n > 0 let
fn : S — C be holomorphic on S. If >>>° || f.|| converges then >~ f, is
holomorphic and has derivative equal to >~ fr. O

Theorem: The Riemann Zeta function is holomorphic at each z in its do-
main.
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Proof: Let zy = xg + iyg be given, where xy > 1. Fix z; satisfying 1 < 21 <
g, and set
Xi={z+iyeC:x>ux}.

For each n € N define f,, : X; — C by

Then each f,, is holomorphic on X; and we have

00 [eS) 1
Sl <o
n=1 n=1

Hence ( is on X7, and in particular at z;. Moreover

o0

() ==Y 12? -

n=1

II. The Euler Product Formula

Lemma: Let (p,) be the sequence of prime numbers, let Ny = N, and for
k>0 let

Ny = {n € N: n is not divisible by p; for 1 <i < k}.
Then for all k,
Nir1 = Ng — {prr1n : n € N}
Proof: It is clear that
N1 € Ny — {pry1n :n € Ni}.

Now let x € Ny — {prr1n : n € Ny} be given. Then z is not divisible by any

of the primes py,...,pr, and so z = pj ;m for some r > 0 and m € Nyy1.
If » > 0 then x = pry1n where n = p};jrllm € Ny, a contradiction. Therefore
r=0and xr =m € Np . O
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Lemma: Fix a real number xy > 1. Then

GII(-5) -

uniformly on {z +iy € C:z > z}.
Proof: For any £ > 0 we have

D O P LD o

neNy neNg neNg

Pit1

by the Lemma. This yields the sequence of identities

1 1
e (1) Y
1 1 1
@ (1-5) (-5) = S

(- (- (-2)-E =
p1 P3 P3 neNg

etc. Since Ny = {1} U Sy where Sy, C {pr + 1,px +2,...},
& 1

R ()
k=1 P

Corollary: For all z € C with re z > 1,

[e.9]

1
Z %%0

n=pr+1

as k — oo.

ITI. The Logarithmic Derivative of ((z)
Theorem: For all z € C satisfying re z > 1,

') _ 5 logr

C(2) = 1-p;
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Proof: Write

() = ﬁ <1 _ i).

2
k=1 Py

Fix zg = xg 41y with zg > 1. Choose x; satisfying 1 < x; < xg. By uniform
convergence on {x + iy : x > x1} and the lemma in I, for all z in this set we
have

Hence

() II(

(z)  a(2)
¢'(2) . II(2) = (1=pr7) = logpn
¢(2) novoo T, (2) noo ~ 1-p~ ; 1—p;

IV. Analytic Continuation of {(z) to {z€ C:re z >0} — {1}

Lemma: For all z € C with re z > 1,

1 <1
:/ — dz.
z—1 . T

we have

Since a > 1,

l1-a)In R

| ‘elnR(l—z) ’ | — | ‘elnR—alnR—blnRi‘ =0

=

as R — oo since 1 — a < 0. This implies




Theorem: The function F': {z € C:re z > 0} — C defined by

A

is holomorphic on its domain and satisfies F(z) = ((z) — =5 for all z € C
such that re z > 1.

Proof: Fix 2z = a + bi with a > 1. Then

oS e[ G

By a previous exercise, for each n > 1 the function f, : Ba(a + bi) — C

defined by
n+1 1 1
n(2) = —— — ) d
e - | (n x) v
is the uniform limit of

2 (™ (Inn)k — (Inx)* &

k=0

Since each summand in the latter expression is a holomorphic function of z
on Ba(a + bi), fu(2) is holomorphic on Ba(a + bi). By a previous exercise,
> > o fn converges uniformly on Ba(a + bi), hence is holomorphic on that
set. Since

{zeCirez>0}=|J Bz(a+bi),
(a,b)€(0,00) xR
> o2 o Jn is holomorphic on {z € C : re z > 0}. O

We will define (;(z) = F(z) + -5 forall z € {z € C : re z > 0} — {1}. Since
both F(z) and - are holomorphic in this domain, so is (;(z). We have
(1(z) = ((2) for all z in the domain of (.

V. (i1(z) has no zeros on the line re z =1
Theorem: For all z € C withre z =1 and z # 1, (;(2) # 0.

Proof: Note that for any a + bi with ¢ > 1 and prime number p we have

H a-HnH _p > 1
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therefore

1
€ By(1+ 0i),

L- paerz

therefore log(1 — Iﬁ) is defined. Hence

G (a+ bi)[[ - [y (a + b2)|[ — 1,

In||¢i(a + bi)|| + In||IL,(a + bi)|| — 0,

Opr%
(=) |-

mHQm+boH+§:m

In ||C1(a + bi)|| = }:m

1
oo o0 —(atbi)n 00 00 bn
A B cos(In p”)
e ) D =)
k=1 n=1 k=1 n=1 k
hence
In [|Gi(a)*Ci(a + bi) G (a + 200)|| =
2bn)

ZZ 3 + 4 cos(In p*™) + cos(In p
k=1 n=1 pk

bn) we

Each summand in this expression is non-negative: setting 6,, = In(p
have

3+ 4 cos(In p”) + cos(In p*®™) = 3 + 4 cos(6,,) + cos(26,,) = 2(cos b,, +1)* > 0.

This implies
11¢1(a)* G (a + bi) ¢ (a + 20i) ]| > 1.

Now suppose that (;(1 + bi) = 0 for some b # 0. Since F' is continuous at
z=1and ¢(i(a) = F(a) + 15 for all a > 1,

lim (a — 1) (a) = 1.

a—1*t
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Since (; is holomorphic at 1 + bi,

lip S@Hb) o Glatb) —Gd+bi) ¢ (1 + bi).
am1t  a—1 a—1+ a—1
Therefore
3 \4 ; \4
lim G(a)’G(a J; lil)lCl(a +2bi) tim (o 1%¢(a)? Cl(gl_;lb;) - Cila+ 2bi) =

CHL 4+ bi) ¢y (1 + 204).
But this contradicts

for all @ > 1. Therefore (;(1 + bi) # 0 for all b # 0.

The Prime Number Theorem

1

C1(a)3¢i(a + bi)*¢i(a + 2bi) ‘
T a-—1

a—1

Definition: Let n > 2 be a real number. Then 7(n) is the number of prime
numbers < n.

Remark: If we name the primes py, ps, p3, ... in increasing order, then the
larger n is, the more ways there are to form products of p; through pry)

yielding all the numbers in {1,2,...,n}. One would expect that @ — 0 as

n — 00, or equivalently % — o0o. A graph of % versus n resembles the

graph of logn versus n:

I I I I
500 1000 1500 2000

Prime Number Theorem:

() 105(7)

n— o0 n

= 1.
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We will prove this theorem in stages below.
Tchebychev’s Theta Function
Definition: The Tchebychev Theta Function is defined by

0(x) = logp,

p<z

the sum ranging over prime numbers bounded above by z.
Theorem: For all z > 1, 0(x) < zlog 16.

Proof: For any k € N, all the prime numbers between 2¥~1 41 and 2* divide

the binomial coefficient (2,3:), hence

I #)|(s.)

2k71<p§2k

2k 2k:
H p S (Qk—l) S 27

2k—1 <p§2k

hence

This implies
[[ p <o &+ =22

1<p<2k
0(2F) < (2" — 2)log 2.
Given z > 1, choose k € N such that 2! < z < 2. Then

9

0(z) < 0(2%) < 2" 1log2 =4 - 28 log2 < xlog 16.

Theorem:

0(x)

o 2 gy T los(2)

T—0o0 I T—00 X

=1.

Proof: Assume lim,_ . @ = 1. Let € > 0 be given. Write § = 1+1 . We

N

have
O(x) = Zlogp < m(x)logx

p<z
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and

xd<p<z
therefore p | p |
() _ rlo)logla) _ (€ 0lo)  loge
x T 4) =z xl-9
For z sufficiently large we have
14 €
1l—€e< ( ) < + z
1+ 1
and |
ogr €
x1-9 < 2’
hence |
e T@os@
T

80



A Condition that Implies lim, ., 2 =1

Theorem: If the improper integral

/ O(e')e " — 1 dt
0

converges then lim, @ =1.

Proof: Assume that

O(e')e ™t — 1 dt

0

converges. Making the change of variables x = ¢, the improper integral

/ T N g

., T\ x

converges. Suppose lim,_, @ # 1. Then there exists € > 0 and a sequence
(x,) such that z,, > n and

for each n. Hence either (x") — 1 > € for infinitely many n or (I”) -1< -
for infinitely many n. The two cases are similar, so we will just treat the ﬁrst
case.

Choose a subsequence (y,,) of (z,) satisfying e(y") —1>eand y,i1 > (14€)y,
for each n. For each n we have

(1+€)yn (1+€)yn
/ l(@_1> dxz/ E(M_l) i >
Yn T T Yn x Zz

(+9vn 1 /(1
/ —(M—l) dr = e —log(l+¢€) > 0.
y

T T

n

This implies

/1""1(@_ ) dz 2 (e —log(1 +€)) = 00

T T

as n — 00, a contradiction. Therefore lim,_, ., @ =1. O
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The Laplace Transform of f(e')e™" — 1
Theorem: For all z € C with re z > 0,

o0

> _ _ 1 log p 1
t t tz n Z
/0 (O(e)e™ —1)e = dt = o E preaild

n=1

Proof: Let z = o + 7i € C with o0 > 1 be given. For each k£ € N let

Vi : [logpk,logpk“] —C

be defined by
() = 0(e')e ",

Then for log pr <t < log pri1,

Ye(t) = 0(pr)e™".

t -1 _—tz

—e "%, we have

log pr+1 e(pk) <l 1 >

Given that an antiderivative for e™** with respect to ¢ is

log pr+1 -1
/ lt) dt = —(2)
1

Og Pk

z

z 4
Py Pk

log pg,

This implies

logpn1 1< 1 1
Oee ™ dt == 0 — - =
[ e a2 (5 - )

n k n n
ézzlogpi(i— ! ):ézlogpiZ(piz— ! )Z

k=1 i=1 Pe Pin i=1 k=i Prs1
1« 1 1 1 <~ log pi 0(pn
P> (e ) = (20 ) -G
Ry bi  Pny1 i3 bi DPry1
Given that
‘ 0(pn)||  logl6
¥4 < o—1
pn+1 pn
as n — 0o,
°° 1 <= log p;
O(ee ™ dt = = L
/0 (©) z; P;

82



Hence for z € C with re z > 0,

e}

o o > _ 1 log p;
z _ t t(z+1 _ %
/0 O(e e te dt—/o 0(e)e (+)dt—z+1 E e

i—1 Pi
o 1
/ e dt = -
0 z

completes the proof. O
Analytic Continuation of [~ (6(e')e™" — 1) dt

Combining this with

The expression S_°° | %822 converges for each z € C with re z > 0, and we

pit!
have
~logp, = logp,  ~= logp,
Z 1 Z 411 Z 2:42 _ patl’
n=1 7 n=1+" n=1+" n

The expression
o
log pn
Z 2242 __ pz+1
n=1"" n
is holomorphic at all z € C satisfying re z > —%. For all z € C satistying
re z > 0 we have

— logp,
n=1 n

Since (;1(z + 1) is holomorphic for all z € C satisfying re z > —1 and z # 0,
and is non-zero when re (z) > 0, the expression

G+l P+l -5 PP+ 41
Glz+1) Flr+l)+1  2F(z+1)+z

is holomorphic at each z # 0 satisfying re z > 0 and agrees with

00 ] .
>

n=1+"

when re z > 0. Hence an analytic continuation of }_ ;;fﬁf to all z # 0
satisfying re z > 0 is

—z2F’(z+1)+1_i log py,
22F(z+1)+ 2 2242 — petl

G(z) =

n=1

83



Hence

—22F'(z+1)+1 1 i log py, 1

(z+1)(2F(z4+ 1)+ 2) 21 pt2 — patl 2

n=1

—2F'(z+1) -+ DFz+1) -1 1 i log p,
(z+1D(zF(z+1)+1) z4+1

is an analytic continuation of

1 Z logp 1
z+1 szrl z

p

2242 _ pyz+1
n=1 Py Py

on this set. Since the Laurent series expansion of H(z) does not include
any negative powers of z, the resulting power series expansion represents
an analytic continuation of [ (f(e')e™ —1)e™* dt = 3 ;‘fﬂf to the set
{z € C:re (z) > 0}. This has a constant term of

[0)=-F(1)-1-Y" log pn

P2 — P

n=1

Proof that [ (f(e')e" —1)e™"* dt converges

Let I(z) be the analytic continuation of [ (f(ef)e™" — 1)e™'* dt to a neigh-
borhood of {z € C : re (z) > 0}. While we have proved that the integral
expression converges for all z satisfying re z > 0, we do not yet know that it
converges using z = 0.

Theorem: [~ 0(e")e™ —1 dt = 1(0).
Proof: For each T' > 0 define gy : C — C by

gr(z) = /O (B(e)et — 1) dt.

We can verify, in the usual way, that each gy is holomorphic.

Fix R. For each y € [—R, R] there is €(y) > 0 such that I(z) is holomorphic
on B (0 + bi). By a compactness argument there exists dg > 0 such that
I(2) is holomorphic on

{r+yi:(x,y) € [-0r,00) X [-R, R]}.
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Let Cg be the counterclockwise path in this set that winds around the origin
and incorporates the circle of radius R about the origin and the line re (z) =
—dg. We will write Cr = ag + 8r + 75, where ag is the vertical part of Chg,
fBr is the circular part of Cr where re (z) < 0, and 7}, is the circular part of
Cgr where re (z) > 0. We will also denote by Q(R) the region bounded by

Cr and v, the counterclockwise path around the semicircle ||z|| = R where
re (z) <0.
Br
TR arl | QR) Vi
—§- |0
\ 4
e
Br
By Cauchy’s Integral Formula we have
1 2% dz
1(0) — gr(0) = — I(z) — 21+ )=
O =90 = 55 [ 06 = ar@)em0+ )T
the extra factor of e*(1 + f—;) included to simplify some of the calculations.
Observe that for ||z|| = R and z = = + iy we have
L+ 22 2Z + 22 1l 42 2|x|
— || = = Z4zl=—.
R? R? R? R

For z € v} and z = z + iy and z > 0 we have

11(2) = gr(2)|| = ‘ /TOO (O(e")e™t — 1)e dtH -
/T°° |[(6(e")e™ = 1)e || dt < 17/TOO oot gt — 172—@’
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therefore

2 —xT
Ts 271 17e 21 34
|1 - s+ gt < T e - 2
therefore
1 2% dz 17
- I . Tz 1 ~ N -
=y RUCRPCIENIRE=Es (B

Since gr(z) is entire,

22 dz

N1+ )T = [ (o )T
/OéR+5R R? 2 Tr R
For z € v, and 2 = —x + iy and = > 0 we have

lgr(2)]] = ‘ / " 0ty — 1)e dtH -

T T 17
e)e " —1)e < e < —,
/ |(6(ee™ — 1)e || dt<17/ "t <
0

0 T

therefore 2 4 17 o 1 "

Tz 1 Z_ - - =T $_
gr(@)e U+ )|l s ¢ RRS R
therefore

1 T 22 dz 1 T 2?2 dz 17
— 14+ )= = || — 1+ )= < =,
\27”. [ s % = |55 /ﬁmm 1+ | <

Since I(z) is continuous on Q(R) and Q(R) is compact,
sup{[[1(2)]] : 2 € UR)} = [[(2(R,0r))]l
for some z(R,0gr) € Cr. This yields

1 22 dz
- _[ Tz 1 ~ N
i |, 10 1)

2|1 (2(R, 0r))[le*""R
7T5R .

1 1
< — I ) e ORT 9. = 9R =
< 5 I G(R o) e 5 2R
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Given that the length of fp is 2Rsin™" %2, we have

R )
1 22 dz
_— T Tz(1 4L 2 N2
‘ 21 /R (2)e (1 + Rz) z
Therefore

34 2 —rT R )
110) = g2 O] < 5 + I (=(R. 5] ( T 15)

for all R > 0. For any fixed R we are free to choose g > 0 arbitrarily small,
and when 0% < Jg,

1 Lo g0
< oo M(2(R.GR))|[ 12 - 2Rsin™! = =

2 )
;HI(Z(R 6r))|| sin 1ER'

I (=(R, 0p)I| < [[1(2(R, 6r))I]-

Moreover 5
. —1YR
— =0
sin”" —
as 0r — 0. Given any € > 0, choose R sufficiently large that
34 - €
R 3
then choose 0 sufficiently small to ensure
2 5R €
Z|I(2(R, 6 in! = < .
[11(=(R,3)) | sin™ 2% < £

This yields
e OrTR
or

110) g O] < 2 4 2)1(:(R, 53|

Fixing R, for all sufficiently large T" we have
1(0) = gr(0)[| <e.
We have proved
Ve>0:3T5:T>T, = ||I(0) — gr(0)]| <e.
Therefore

lim gr(0) = I1(0).

T—00
In other words,

/mﬂék4—ldt_ﬂm.
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