
Exercises for Math 411/511: Introduction to Complex Variables

Professor: Dan Singer

Textbook: Complex Analysis, by Elias M. Stein & Rami Shakarachi

The Field C

1. Find all z = a+ bi satisfying z2 − (3− i)z + (4− 3i) = 0.

2. Given n ∈ N, simplify cos θ + cos 3θ + · · ·+ cos(2n+ 1)θ.

3. Page 24, Problem 1.

Sequences in C

1. Prove that limn→∞
n+i
n−i = 1 using an ε-N argument.

The Sum, Product, and Quotient Rules

1. Prove, by induction on n, that if f(z) = a0+a1z+· · ·+anzn is a polynomial
with complex coefficients and limn→∞ zn = c then limn→∞ f(zn) = f(c).

A Brief Review of the Topology of R

1. Let a1 = 2, and for each n ≥ 1 let an+1 = an
2

+ 1
an

. (a) Prove that√
2 < an ≤ 2 for all n. (b) Prove that an > an+1 for all n. (c) Prove that

limn→∞ an =
√

2.

2. For each n ∈ N let an = cos(n), where n has units of radians. Does the
sequence (an) have an increasing subsequence or a decreasing subsequence?

Real and Complex Cauchy Sequences

1. For each n ∈ N let an = (1+i)n

2n
. Let ε > 0 be given. Find N so that

n > m ≥ N =⇒ ||an − am|| < ε.

Topology of C

1. Prove that [0, 1] is closed when regarded as a subset of C.

2. Prove that (0, 1) is not closed when regarded as a subset of C.

3. Let S = {z ∈ C : 1 < ||z|| < 2}. Prove that S is an open subset of C.

Compact Subsets of C

1 Let S = {z ∈ C : 2 ≤ ||z|| ≤ 3}. Prove that S is a compact subset of C.

2. Let S = {a+ bi ∈ C : 0 ≤ a ≤ 1, 0 ≤ b ≤ 2}. Find the diameter of S.
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3. Let S be the set in Problem 2. Let T = {(1 + i)z : z ∈ S}. Find the
diameter of T .

Complex Functions and Continuity

1. Let f : C → C be defined by f(z) = z2. Prove, using an ε-δ argument,
that f is continuous at 1 + i. In other words, given ε > 0, find a formula for
δ > 0 such that ||z − 1− i|| < δ implies ||z2 − (1 + i)2|| < ε.

Holomorphic Complex Functions

1. Let f : C−{0} → C be defined by f(z) = 1
z2

. Let z0 6= 0 be given. Prove,
using the definition of complex derivative, that f ′(z0) = −2

z30
.

The Sum, Product, and Chain Rule for Complex Differentiation

1. Let f : C− {i} → C be defined by f(z) =
(
z+i
z−i

)3
. Find f ′(2i).

Some Real Analysis

1. Let f : [−1, 1] → R be defined by f(x) = x
x2+1

. (a) Graph the function.

(b) Prove that f is injective on [−1, 1]. (c) Prove that f([−1, 1]) = [−1
2
, 1
2
].

(d) Find a formula for the function g : [−1
2
, 1
2
] → [−1, 1] that is the inverse

of the function f : [−1, 1] → [−1
2
, 1
2
] defined by f(x) = x

x2+1
. Check that

your answer is correct by verifying that f(g(a)) = g(f(a)) = a for a = 1
4

and
a = 0.

Complex Extreme Value Theorem

1. Let S = {z ∈ C : 2 ≤ ||z|| ≤ 3}. Define f : S → C by f(z) = 1
z−i . Find

the minimum and maximum values of ||f(z)|| on S.

The Cauchy-Riemann Equations

1. Let f : C → C be defined by f(z) = z3. Verify that f satisfies the
Cauchy-Riemann equations at all a+ bi ∈ C.

2. Assume that the functions u(x, y) and v(x, y) are defined on the set

Bε(a, b) = {(x, y) : (x− a)2 + (y − b)2 < ε2}

and that the partial derivatives ux, uy, vx, vy exist at all (x, y) ∈ Bε(a, b). Let
U(r, θ) = u(r cos θ, r sin θ) and V (r, θ) = v(r cos θ, r sin θ) be defined for all r
and θ satisfying (r cos θ, r sin θ) ∈ Bε(a, b). Prove that if the equations

∂U

∂r
=

1

r

∂V

∂θ
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and
1

r

∂U

∂θ
= −∂V

∂r

are satisfied at the point (r, θ) then u(x, y) and v(x, y) satisfy the Cauchy-
Riemann equations at the point (r cos θ, r sin θ).

3. Problem 9, page 27.

4. Problem 12, page 27.

5. Problem 13, page 28.

The Complex Exponential Function

1. Prove that the function ez satisfies the Cauchy-Riemann equations at all
zC.

2. Find all solutions to ez = 1 + i.

Complex Trigonometric Functions

1. Verify the statements in the notes.

2. Find all solutions to cos z = sin z.

The Complex Logarithm

1. Find all solutions to log(z) = 1− i.

2. Find all solutions to log π
3
(z) = 1− i.

Exponentiation

1. Compute 2i.

2. Find all solutions to zi = 1 + i in the set C− {x+ iy : x ≤ 0}.

Series of Complex Numbers

1. Prove that the series
∑∞

n=1
(1+2i)n

n3n
converges.

2. Prove that the series
∑∞

n=1
in

n
converges.

3. Prove that the series
∑∞

n=1
1
2ni

diverges.

4. Prove that the series
∑∞

n=1
(1+2ni)n

3n
converges.

Functions Defined by Power Series

1. Problem 16, page 28, using the root or ratio tests as needed.
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2. Problem 19 ab, page 29.

Functions Defined by Power Series are Infinitely Differentiable

1. Problem 20, page 29. First find the geometric series representation for 1
1−z ,

then see what you obtain when you differentiate m−1 times. For the second
part of the question, prove that limn→∞

an
bn

= 1 where bn = 1
(m−1)!n

m−1.

Complex Line Integrals

1. Problem 25ab, page 30.

2. Problem 26, page 31. Use the Cauchy-Riemann equations to show that if
f ′(z) = 0 for all z ∈ Br(z0) then f(z) is constant on z ∈ Br(z0). Use this to
show that if F ′(z) = f(z) and G′(z) = f(z) on Br(z0) then F (z) = G(z) + c
for some constant c on Br(z0).

3. Problem 24, page 31. Prove that α : [0, 1] → C is given by α(t) =
x(t) + iy(t) and if β : [0, 1]→ C is defined by β(t) = α(1− t) then∫

β

f(z) dz = −
∫
α

f(z) dz.

Equivalent Paths

1. Let α : [0, 2π] → C be defined by α(θ) = eiθ and let β : [0,
√

2π] → C be
defined by β(θ) = eiθ

2
. Prove that α and β are equivalent paths, then show

by a direct computation that∫
α

1

z
dz =

∫
β

1

z
dz.

Complex Line Integrals over Piecewise Smooth Paths

1. Let α1, α2, α3, α4 : [−1, 1]→ C be defined by

α1(t) = 1 + ti, α2(t) = −t+ i, α3(t) = −1− ti, α4(t) = t− i.

(a) Sketch the piecewise smooth path α1 + α2 + α3 + α4.

(b) Prove by a direct calculation that
∫
α1+α2+α3+α4

z2 dz = 0.
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Change of Variables in a Line Integral

1. Find a formula for
∫
γ
f(az + b) dz where a, b ∈ C and a 6= 0.

2. Problem 25c, page 30. Use a partial-fraction decomposition and evaluate
each piece separately.

3. (a) Let z 6= 1 be a complex number and let R ≥ 1 be a real number.
Prove ∫ R

1

1

tz
dt =

∫ lnR

0

eu(1−z) du

using the change of variables u = ln t.

(b) Prove that ∫ lnR

0

eu(1−z) du =
1

1− z

∫
γ

ew dw

where γ : [0, lnR]→ C is the path defined by γ(u) = u(1− z).

(c) Use (a) and (b) to prove∫ R

1

1

tz
dt =

R1−z − 1

1− z
.

(d) Assume z = a+ bi where a > 1. Prove∫ ∞
1

1

tz
dt =

1

z − 1
.

The M–L Inequality

1. Let f(z) = a0 + a1z + · · · ann be a polynomial of degree n (i.e. an 6= 0).

(a) Prove that

||f(z)|| ≥ ||anzn|| − (||a0||+ ||a1z||+ · · ·+ ||an−1zn−1||)

for all z.

(b) Prove that there exists R > 0 such that

||z|| ≥ R =⇒ ||a0||+ ||a1z||+ · · ·+ ||an−1zn−1|| ≤
1

2
||anzn||.
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(c) Using (a) and (b), prove that there exists R > 0 such that

||z|| ≥ R =⇒ ||f(z)|| ≥ 1

2
||an||Rn.

2. Let f(z) = a0 + a1z + · · · + anz
n and g(z) = b0 + b1z + · · · + bmz

m be
polynomials of degrees n and m, respectively. Using Problem 1, part (c)
prove that there exists R > 0 such that

||z|| ≥ R =⇒
∣∣∣∣∣∣∣∣f(z)

g(z)

∣∣∣∣∣∣∣∣ ≤ 2(||a0||+ ||a1||+ · · ·+ ||an||)
||bm||

Rn−m.

3. Using the M -L inequality, prove that for sufficiently large R,∫
CR(0)

z3 − 4z + 1

(z2 + 5)(z3 − 3)
dz ≤ 24π

R

where CR(0) denotes the path γ : [0, 2π]→ C defined by γ(t) = Reit.

4. Let z = a+bi be a complex number, and let n be a positive integer. Prove
that when n ≤ x ≤ n+ 1, ∣∣∣∣∣∣∣∣ 1

nz
− 1

xz

∣∣∣∣∣∣∣∣ ≤ ||z||na+1
.

Method: Let γ : [n, t] be defined by γ(x) = 1
xz

. Use the M -L inequality
combined with the equation

1

nz
− 1

xz
= γ(x)− γ(n) =

∫ x

n

γ′(t) dt.

Complex Line Integrals over Straight Line Paths

1. Verify the claims made in the proof of the lemma in this section of the
notes, i.e. that α is equivalent to γz1,z2 and β is equivalent to γz2,z3 .

Goursat’s Theorem

1. Prove that Br(a) is a convex subset of C.
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2. Let z1 = 0 + 0i, z2 = 1 + 0i, and z3 = 1 + 1i.

(a) Let f(x+ iy) = x2 − y2 + 3xyi. Prove by a direct calculation that∫
γz1,z3

f(z) dz 6=
∫
γz1,z2

f(z) dz +

∫
γz2,z3

f(z) dz.

If f holomophic on C?

2. Let z1 = 0 + 0i, z2 = 1 + 0i, and z3 = 1 + 1i.

(a) Let f(x+ iy) = x2 − y2 + 2xyi. Prove by a direct calculation that∫
γz1,z3

f(z) dz =

∫
γz1,z2

f(z) dz +

∫
γz2,z3

f(z) dz.

If f holomophic on C?

Antiderivative Construction in an Open Convex Set

1. Let S = {x + iy ∈ C : x > 1}. Then S is a convex open set, and the
holomorphic function f : S → C defined by f(z) = 1

z
has antiderivative

F : S → C defined by

F (z) =

∫
γ2,z

1

z
dz

where γ2,z parameterizes the line between 2 and z. Now suppose z = a+bi ∈
S. Then by Goursat’s Theorem,

F (z) =

∫
γ2,2+bi

1

z
dz +

∫
γ2+bi,a+bi

1

z
dz.

By evaluating the latter expression, derive a formula for F (a+ bi).

Cauchy’s Theorem in an Open Convex Set

1. Problem 2, page 64. Use the technique of Example 2, page 44, discussed
in these notes, applied to the function f(z) = eiz−1

z
.

2. Problem 3, page 64. There is an alternative way to do this problem: let
γR : [0, R] → C be defined by γR(t) = t. Compute

∫
γR
e(−a+bi)z dz = cR by

using an appropriate antiderivative, argue that this implies∫ R

0

e−ax cos(bx) dx+ i

∫ R

0

e−ax sin(bx) dx = cR,
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then let R→∞.

Cauchy’s Integral Formula

1. Let f : C− {0} be defined by f(z) = 1
z
. Then f meets the hypotheses of

Cauchy’s Theorem on D1(2). Verify that for all z ∈ B1(2),

f(z) =
1

2πi

∫
C1(2)

f(w)

w − z
dw,

i.e.
1

z
=

1

2πi

∫
C1(2)

1

w(w − z)
dw

by evaluating the integral using a partial fraction decomposition.

Sequences of Functions

1. Let (hn) be an arbitrary sequence of non-zero complex numbers satisfying
limn→∞ hn = 0. For each n ∈ Z define fn : C→ C by

fn(z) =
(z + hn)2 − z2

hn
.

Define f : C → C by f(z) = 2z. Prove that (fn) converges to f uniformly
on C.

2. Let (hn) be an arbitrary sequence of non-zero complex numbers satisfying
limn→∞ hn = 0. For each n ∈ Z define fn : C− {0} → C by

fn(z) =
1

z+hn
− 1

z

hn
.

Define f : C → C by f(z) = −1
z2

. Prove that (fn) does not converge to f
uniformly on C− {0}.
3. Fix a+ bi ∈ C where a > 0. For each n ∈ N define f : Ba

2
(a+ bi)→ C by

fn(z) =

∫ n+1

n

1

nz
− 1

xz
dx.

Using the Weierstrass M -Test, prove that
∑∞

n=1 fn converges uniformly on
Ba

2
(a+ bi). Make use of the information in Problem 4 in the section on the

M -L inequality.

8



4. Fix z ∈ C and n ∈ N. Prove that

∞∑
k=0

[∫ n+1

n

(lnn)k − (lnx)k

k!
(−z)k dx

]
=

∫ n+1

n

[
∞∑
k=0

(lnn)k − (lnx)k

k!
(−z)k

]
dx.

Method: For each k ≥ 0 define fk : {x+ yi ∈ C : x > 0} → C via

fk(w) =
(lnn)k − (logw)k

k!
(−z)k.

Apply the Weierstrass M -test to (fk) on the set S = [n, n + 1], then justify
exchanging the order of summation and integration in the equation

∞∑
k=0

∫
γ

fk(w) dw =

∫
γ

∞∑
k=0

fk(w) dw

where γ : [n, n+ 1]→ C is defined by γ(x) = x.

Power Series Expansion of Holomorphic Functions

1. Let c be a fixed complex number. Define f : B1(0)→ C by f(z) = (1+z)c.
Find a power series expansion for f .

2. Fix t > 0. Find the power series expansion of the function f : C → C
defined by f(z) = 1

tz
.

3. Fix z ∈ C and n ∈ N. Prove that

∞∑
k=0

[∫ n+1

n

(lnn)k − (lnx)k

k!
(−z)k dx

]
=

∫ n+1

n

1

nk
− 1

zk
dx.

4. Fix a + bi ∈ C with a > 0. Fix n ∈ N. For each k ≥ 0 define fk :
Ba

2
(a+ bi)→ C by

fk(z) =

∫ n+1

n

(lnn)k − (lnx)k

k!
(−z)k dx.

Prove that (
∑∞

k=0 fk) converges uniformly to the function f : Ba
2
(a+bi)→ C

defined by

f(z) =

∫ n+1

n

1

nz
− 1

xz
dx.
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Power Series Expansions of Products and Quotients

1. Let f : B1(0) → C be defined by f(z) = ez

cos π
2
z
, and suppose that the

power series expansion for f(z) is
∑∞

n=0 anz
n. Compute a0 through a5.

Liouville’s Theorem and The Fundamental Theorem of Algebra

1. Factor the following polynomials into linear factors of the form z−(a+bi)
where a, b ∈ R: (a) z3 + z2 + z + 1, and (b) z5 + z4 + z3 + z2 + z + 1.

Laurent Series

1. Consider the function f : C− {0, i,−i} defined by

f(z) =
z + 1

z4 + z2
.

Compute each of the coefficients of the Laurent expansion of f(z) when
expanded in powers of: (a) z, and (b) z − i.

The Residue Theorem

1. Using the Residue Theorem, compute the following three integrals:

(a)
∫
C 1

2
(0)

z+1
z4+z2

dz.

(b)
∫
C 1

2
(1)

z+1
z4+z2

dz.

(c)
∫
C 1

2
(i)

z+1
z4+z2

dz.

Computing Residues

1. Compute the residue of f(z) = 1
z6+3z4+3z2+1

at z = i.

2. Compute the residue of f(z) = z−π
1+cos z

at z = π.

Generalized Residue Theorem

1. Evaluate the following integrals:

(a)
∫
C1(0)

ekz

zn+1 dz.

(b)
∫
C2(0)

z3

z2−2z+2
dz.

(c)
∫
C3(0)

ez

πi−2z dz.
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(d)
∫
C4(0)

sin2 z

(z−π6 )
2
(z+π

6 )
dz.

Trigonometric Integrals

1. Evaluate
∫ 2π

0
dθ

10+cos θ
by contour integration of an appropriate complex

integrand.

2. Problem 8, page 104.

3. Problem 7, page 104.

Improper Integrals

1. Explain why the improper integral
∫∞
0

dx
5+x4

converges.

2. Explain why P.V.
∫∞
−∞

x+1
5+x4

dx =
∫∞
−∞

x+1
5+x4

dx.

3. Explain why P.V.
∫∞
−∞

x9

1+x2
dx 6=

∫∞
−∞

x9

1+x2
dx.

Improper Integrals and Semicircular Paths

I. Prove
∫∞
0

1
1+x4

dx =
√
2
4
π.

Hint: z4 + 1 = (z2 − i)(z2 − i). To factor z2 − i, use the fact that i = e
π
2
i.

To factor z2 + i, use the fact that −i = e−
π
2
i.

II. Prove
∫∞
0

cosx
(1+x2)2

dx = π
2e

.

III.a Prove
∫∞
0

sinx
x(1+x2)

dx = π e−1
2e

.

Hint: Integrate the function f(z) = eiz−1
z(1+z2)

over the indented contour. Show

that the sum over the two paths along the x-axis is equal to 2i
∫ R
r

sinx
x(1+x2)

dx.

Use a differential approximation of e
iz−1
z

near the origin as we did for the eval-

uation of
∫∞
0

1−cosx
x2

dx to show that limr→0

∫
βr

eiz−1
z(1+z2)

dz = limr→0

∫
βr

i
1+z2

dz =
0 using the M -L inequality.

III.b Problem 10, page 104.

IV. Prove
∫∞
0

1
1+x3

dx = 2
√
3

9
π.

Hint: Integrate f(z) = 1
1+z3

over the contour γ = α+ β − δ, where α(t) = t

on [0, R], β(t) = Reit on [0, 2πi
3

], and δ(t) = te
2πi
3 on [0, R], then let R→∞.

Improper Integrals and Rectangular Paths

1. Problem 3, page 103.
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Rectangular Paths of Fixed Width

1. Let 0 < a < 1. By considering the integral of f(z) = z
a−e−iz around the

rectangle with sides defined by x = −π, x = π, y = 0, y = R > 0, show that∫ π

0

t sin t

1− 2a cos t+ a2
dt =

π

a
ln(1 + a).

Hint: Show that f(z) is holomorphic above and on the x-axis, i.e. that
a − e−iz 6= 0, therefore the integral around the contour is 0. Show that the
integral along the y = R side of the integral tends to 0 as R → ∞ using
the M -L inequality. Show that the real part of the sum of the integrals over
the vertical sides of the rectangle is equal to zero. You can evaluate the
imaginary part of the sum of the integrals over the vertical sides using the
substitution u = a+ et and partial fraction decomposition.

Some Infinite Series Evaluations

1. Evaluate
∑∞

k=1
(−1)k−1

k8
.

2. Evaluate
∑∞

k=1
1
k8

.

3. Using the function f(z) = 1
(2z+1)5 sinπz

, prove
∑∞

k=0
(−1)k

(2k+1)5
= 5

1536
π5.

Analytic Continuation of Holomorphic Functions

1. Let f : C− {3} → C be defined by

f(z) =
ez − e3(z − 2)

(z − 3)2
.

Find an analytic continuation of f to C.

The Riemann Zeta Function

1. Evaluate ζ(2).

2. Evaluate
∏∞

n=1
1

1− 1

p3n

, where (pn) is the sequence of prime numbers.

3. Prove that

ζ1

(
1

2

)
= lim

n→∞

(
1√
1

+
1√
2

+ · · ·+ 1√
n
− 2
√
n+ 1

)
.

Plot the first 100 terms of the sequence.
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4. Prove that

re ζ1(1 + i) = lim
n→∞

(
cos ln 1

1
+

cos ln 2

2
+ · · ·+ cos lnn

n
− sin ln(n+ 1)

)
.

Plot the first 100 terms of the sequence.

The Prime Number Theorem

1. Prove that F (1) = limn→∞
(
1 + 1

2
+ · · ·+ 1

n
− ln(n+ 1)

)
. Plot the first

100 terms of the sequence.
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