Work must be shown to receive credit.

1. Let $f(x)=5 x^{7}-63 x^{5}$. (a) Make a sign chart for $f(x)$. (b) Find all local maximum and minimum values of $f(x)$. (c) Find all points of inflection on the curve $y=f(x)$.
Solution: (a) $f^{\prime}(x)=35 x^{6}-315 x^{4}=35 x^{4}\left(x^{2}-9\right)$ has roots $0, \pm 3 . \quad f^{\prime \prime}(x)=210 x^{5}-1260 x^{3}=210 x^{3}\left(x^{2}-6\right)$ has roots $0, \pm \sqrt{6}$. Sign chart is

x	\cdots	-3	\cdots	$-\sqrt{6}$	\cdots	0	\cdots	$\sqrt{6}$	\cdots	3	\cdots
$f^{\prime}(x)$	+	0	-	-	-	0	-	-	-	0	+
$f^{\prime \prime}(x)$	-	-	-	0	+	0	-	0	+	+	+

Local max value $f(-3)$, local min value $f(3)$, points of inflection $(-\sqrt{6}, f(-\sqrt{6})),(0, f(0)),(\sqrt{6}, f(\sqrt{6}))$.
2. If $900 \mathrm{in}^{2}$ of material is available to make a box with square base and an open top, find the largest possible volume of the box. You must use calculus to receive credit for this problem.
Solution: The dimensions of the box are x by x by h, h to be determined. The area of the base is x^{2} and the area of each of the other four sides is $x h$, therefore $x^{2}+4 x h=900$, therefore $h=\frac{900-x^{2}}{4 x}$. Hence the volume of the box is $x^{2} h=x^{2}\left(\frac{900-x^{2}}{4 x}\right)=$ $\frac{1}{4}\left(900 x-x^{3}\right)$. To ensure a positive height we need $0<x<30$. There is no harm in allowing x to be 0 or 30, because this will not affect maximum volume. In order to find the maximum value of $f(x)=\frac{1}{4}\left(900 x-x^{3}\right)$ on $[0,30]$ we need only check $f(0)$, $f(30)$, and $f(c)$ where $f^{\prime}(c)=0$. Given $f^{\prime}(x)=\frac{1}{4}\left(900-3 x^{2}\right)$,
we have $c=\sqrt{300}$. We can rule out $f(0)=f(30)=0$, therefore maximum volume is $f(\sqrt{30})=1500 \sqrt{3}=2598.08 \mathrm{in}^{3}$.
3. Let $f(x)=x^{4}+x^{2}-x$. Find the minimum value of $f(x)$ on the interval $[0,1]$. Use Newton's Method with $x_{0}=0.8$ to find the critical value of the function, accurate to 2 decimal places.
Solution: Checking the boundary of the interval, $f(0)=0$ and $f(1)=1$. Critical value occurs where $f^{\prime}(x)=0$, i.e.

$$
4 x^{3}+2 x-1=0 .
$$

We solve this equation using Newton's Method applied to $F(x)=$ $4 x^{3}+2 x-1$. Since $F^{\prime}(x)=12 x^{2}+2$, Newton's Method yields

$$
x_{n+1}=x_{n}-\frac{4 x_{n}^{3}+2 x_{n}-1}{12 x_{n}^{2}+2} .
$$

Using $x_{0}=0.8$ we obtain $x_{1}=0.526446, x_{2}=0.406932, x_{3}=$ $0.386013, x_{4}=0.385459$. The approximate critical value is 0.39 . $f(0.39)=-0.214766$, so the minimum value of the function is approximately -0.21 .
4. A car with velocity $v(t)=k-(k / 3) t$ feet per second at time t seconds travels 200 feet from time $t=0$ to time $t=3$. Using the relationship between distance and area, find k.

Solution: By our association with area under the velocity curve and distance travelled, 200 must equal the area under $v(t)=k-$ $(k / 3) t$ for $0 \leq t \leq 3$. The latter is a triangle of height k, length 3. Therefore $200=(1 / 2)(k)(3)=1.5 k, k=\frac{200}{1.5}=133.333$ feet per second.
5. Approximate the definite integral $\int_{0}^{2} 2^{x} d x$ using a Riemann Sum with $N=4$ equally spaced subintervals and the midpoint
rule to generate x_{1}^{*} through x_{4}^{*}. Round your answer to two decimal places.
Solution: The partition points are $x_{i}=0,0.5,1.0,1.5,2.0$ and the midpoint rule yields $x_{i}^{*}=0.25,0.75,1.25,1.75$. The resulting Riemann Sum is

$$
\left(2^{0.25}+2^{0.75}+2^{1.25}+2^{1.75}\right) 0.5 \approx 4.31 .
$$

6. Find the exact value of $\int_{1}^{2} \frac{x+x^{2}}{x^{3}} d x$.

Solution: The integrand is $f(x)=\frac{x+x^{2}}{x^{3}}=x^{-2}+x^{-1}$. An antiderivative is $F(x)=\frac{x^{-1}}{-1}+\ln x=\ln x-\frac{1}{x}$. The definite integral is $F(2)-F(1)=\left(\ln 2-\frac{1}{2}\right)-\left(\ln 1-\frac{1}{1}\right)=\ln 2+\frac{1}{2}$.
7. Oil leaks from a tank at a rate of $1+\sin t$ gallons per hour at time t hours. Find the total amount of oil that has leaked from time $t=\frac{\pi}{2}$ to time $t=\pi$ hours.
Solution: Let $G(t)=$ number of gallons of leaked oil at time t. We are given $G^{\prime}(t)=1+\sin t$, hence the net increase is

$$
\begin{aligned}
& G(\pi)-G\left(\frac{\pi}{2}\right)=\int_{\frac{\pi}{2}}^{\pi} 1+\sin t d t=t-\left.\cos t\right|_{\frac{\pi}{2}} ^{\pi}= \\
& (\pi-\cos (\pi))-\left(\frac{\pi}{2}-\cos \left(\frac{\pi}{2}\right)\right)=1+\frac{\pi}{2} \text { gallons. }
\end{aligned}
$$

8. Evaluate the definite integral $\int_{0}^{1} \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x$ using u-substitution.

Solution: $u=1+x^{3}, d u=3 x^{2} d x, \frac{1}{3} d u=x^{2} d x, u(0)=1$, $u(1)=2$,

$$
\frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x=\frac{1}{\left(1+x^{3}\right)^{2}} \cdot x^{2} d x=\frac{1}{u^{2}} \cdot \frac{1}{3} d u,
$$

$$
\begin{gathered}
\int_{0}^{1} \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x=\int_{1}^{2} \frac{1}{3} u^{-2} d u=\left.\frac{1}{3} \frac{u^{-1}}{-1}\right|_{1} ^{2}= \\
\left(\frac{1}{3}\right)\left(\frac{-1}{2}\right)-\left(\frac{1}{3}\right)\left(\frac{-1}{1}\right)=\frac{1}{6}
\end{gathered}
$$

