MATH 542 NUMBER THEORY Problems to Think About \#4

CH. 4, \#1-4
Russell Jahn
February 24th, 2014
(1)
p prime, $p \equiv 1(\bmod 4) \Rightarrow p=1+4 k$ some $k \in \mathbb{Z}$
g primitive $(\bmod p) \Rightarrow(g, p)=1$ and $g^{\frac{p-1}{2}} \equiv-1(\bmod p)($ as in PTTA3 no. 1$)$
Let $d=o(-g) \quad(\bmod p)$
$(g, p)=1 \Rightarrow(-g, p)=1 \Rightarrow(-g)^{p-1} \equiv 1(\bmod p) \quad \therefore d \mid p-1$
$(-g)^{\frac{p-1}{2}} \equiv(-1)^{\frac{p-1}{2}} g^{\frac{p-1}{2}} \equiv(1)(-1) \equiv-1(\bmod p)$
$\therefore d \nmid \frac{p-1}{2}$
So, $p-1=d l$ for some $l \in \mathbb{Z}$
$\Rightarrow \frac{p-1}{2}=\frac{d l}{2} \Rightarrow 2 \nmid l\left(\right.$ since this $\Rightarrow d \left\lvert\, \frac{p-1}{2}\right.$)
$\Rightarrow 2 \mid d \Rightarrow d$ is even
$\Rightarrow 1 \equiv(-g)^{d} \equiv(-1)^{d} g^{d} \equiv g^{d}(\bmod p)$
$\Rightarrow d=p-1 \quad(g$ primitive $)$
$\Rightarrow-g$ primitive $(\bmod p) \quad \checkmark$
(2)

Let $p, 2 p+1$ prime $p \equiv 3(\bmod 4) \equiv-1(\bmod 4) \quad$ Let $p=-1+4 k$ for some $k \in \mathbb{Z}$
Clearly, $(-2,2 p+1)=1 \quad \therefore$ By Euler, $(-2)^{\phi(2 p+1)}=(-2)^{2 p} \equiv 1(\bmod 2 p+1)$
Let $d=o(-2) \quad(\bmod 2 p+1)$
$\therefore d \mid 2 p \Rightarrow d \in\{1,2, p, 2 p\}$
Suppose $d=1 \Rightarrow-2 \equiv 1(\bmod 2 p+1) \Rightarrow 3 \equiv 0(\bmod 2 p+1) \Rightarrow 2 p+1 \mid 3$

$$
(\Rightarrow \Leftarrow) \text { since } 2 p+1 \geq 7
$$

$\therefore d \neq 1$
Suppose $d=2 \Rightarrow(-2)^{2} \equiv 1(\bmod 2 p+1) \Rightarrow 4 \equiv 1(\bmod 2 p+1) \Rightarrow 3 \equiv 0(\bmod 2 p+1)$
Same as above $\quad \therefore d \neq 2$

Suppose $d=p \Rightarrow(-2)^{p} \equiv 1(\bmod 2 p+1) \Rightarrow(-1)^{p} 2^{p} \equiv 1 \Rightarrow 2^{p} \equiv-1 \Rightarrow 2^{-1+4 k} \equiv-1(\bmod 2 p+1)$
$\Rightarrow 2^{4 k} \equiv-2 \Rightarrow\left(2^{2 k}\right)^{2} \equiv-2(\bmod 2 p+1)$
$\therefore-2$ is a quadratic residue $(\bmod 2 p+1)$
$\therefore 1=\left(\frac{-2}{2 p+1}\right)=\left(\frac{-1}{2 p+1}\right)\left(\frac{2}{2 p+1}\right)=(-1)^{\frac{1}{2}(2 p+1-1)}(-1)^{\frac{1}{8}\left(4 p^{2}+4 p+1-1\right)}$
$=(-1)^{p}(-1)^{\frac{1}{2}\left(p^{2}+p\right)}=(-1)^{-1+4 k+\frac{1}{2}\left(1-8 k+16 k^{2}-1+4 k\right)}=(-1)^{-1}=-1 \quad(\Rightarrow \Leftarrow)$
$\therefore d \neq p$
$\therefore d=2 p=\phi(2 p+1) \Rightarrow-2$ is primitive $(\bmod 2 p+1) \quad \checkmark$

(3)

Note: $p, \quad 2^{k} p+1$ odd primes $\Rightarrow k \geq 1$
(\Leftarrow) Let $d=o(a) \quad\left(\bmod 2^{k} p+1\right)$
$a^{2^{k}} \not \equiv 1\left(\bmod 2^{k} p+1\right) \Rightarrow d \nmid 2^{k}$
$\left(\frac{a}{2^{k} p+1}\right)=-1 \Rightarrow\left(a, 2^{k} p+1\right)=1 \Rightarrow a^{\left(2^{k} p+1\right)-1} \equiv 1\left(\bmod 2^{k} p+1\right) \Rightarrow a^{2^{k} p} \equiv 1\left(\bmod 2^{k} p+1\right)$
$\therefore d \mid 2^{k} p$ and $d \nmid 2^{k} \Rightarrow d=2^{l} p$ for some $l \leq k$
Now, $-1=\left(\frac{a}{2^{k} p+1}\right) \equiv a^{\frac{1}{2}\left(\left(2^{k} p+1\right)-1\right)}\left(\bmod 2^{k} p+1\right) \equiv a^{2^{k-1} p}\left(\bmod 2^{k} p+1\right)$
$\Rightarrow d \nmid 2^{k-1} p \Rightarrow k-1<l \leq k \Rightarrow d=2^{k} p=\left(2^{k} p+1\right)-1$
$\therefore a$ is primitive $\left(\bmod 2^{k} p+1\right)$
$(\Rightarrow) a$ is primitive $\left(\bmod 2^{k} p+1\right) . \quad$ Let $d=o(a) \quad\left(\bmod 2^{k} p+1\right)$

$$
\Rightarrow d=2^{k} p \Rightarrow a^{2^{k}} \not \equiv 1\left(\bmod 2^{k} p+1\right)
$$

a primitive $\Rightarrow\left(a, 2^{k} p+1\right)=1$
$\left(\frac{a}{2^{k} p+1}\right) \equiv a^{\frac{1}{2}\left(\left(2^{k} p+1\right)-1\right)}\left(\bmod 2^{k} p+1\right) \equiv a^{2^{k-1} p}\left(\bmod 2^{k} p+1\right) \not \equiv 1\left(\bmod 2^{k} p+1\right)(a$ primitive $)$
But, the congruence, $x^{2} \equiv 1\left(\bmod 2^{k} p+1\right)$ has only two solutions.

$$
\therefore a^{2^{k-1} p} \equiv-1\left(\bmod 2^{k} p+1\right) \Rightarrow\left(\frac{a}{2^{k} p+1}\right)=-1
$$

(4)

Let $p=2^{n}-1$ prime (i.e. a Mersenne prime) $\therefore n \geq 2$

$$
\begin{aligned}
& (-1)^{\frac{1}{8}\left(p^{2}-1\right)}=\left(\frac{2}{p}\right) \equiv 2^{\frac{1}{2}(p-1)}(\bmod p) \\
& \Rightarrow(-1)^{\frac{1}{8}\left(2^{2 n}-2^{n+1}\right)} \equiv 2^{\frac{1}{2}(p-1)}(\bmod p)
\end{aligned}
$$

\therefore If $n \geq 3$, then $2^{\frac{1}{2}(p-1)} \equiv 1(\bmod p) \Rightarrow 2$ is not primitive $(\bmod p)$
In addition, $n=2 \Rightarrow p=3$ and 2 is primitive $(\bmod 3)$
Let $p=2^{2^{k}}+1$ prime (i.e. a Fermat prime) $\therefore k \geq 0$

$$
(-1)^{\frac{1}{8}\left(p^{2}-1\right)}=\left(\frac{2}{p}\right) \equiv 2^{\frac{1}{2}(p-1)}(\bmod p)
$$

$\left.\Rightarrow(-1)^{\frac{1}{8}\left(2^{2 k+1}\right.}+2^{2^{k}+1}\right) \equiv 2^{\frac{1}{2}(p-1)}(\bmod p)$
\therefore If $k \geq 2$, then $2^{\frac{1}{2}(p-1)} \equiv 1(\bmod p) \Rightarrow 2$ is not primitive $(\bmod p)$
In addition, $k=0 \Rightarrow p=3$ and 2 is primitive $(\bmod 3)$ and

$$
k=1 \Rightarrow p=5 \text { and } 2 \text { is primitive }(\bmod 5)
$$

In summary, 3 is the only Mersenne prime that has 2 as a primitive root and 3 and 5 are the only Fermat primes that have 2 as a primitive root. \checkmark

