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(1)

p prime, p ≡ 3(mod 4)

g primitive (mod p)⇒ (g, p) = 1 and gφ(p) ≡ 1(mod p) and gd 6≡ 1(mod p) for 1 ≤ d < φ(p) = p−1

Consider {g, g2, ..., gp−1}

(g, p) = 1⇒ (gi, p) = 1 ∀i

Suppose gi ≡ gj(mod p) WLOG, let 1 ≤ i ≤ j ≤ p− 1 (∴ 0 ≤ j − i ≤ p− 2)

⇒ gj−i ≡ 1(mod p)⇒ j = i (since g primitive and j − i ≤ p− 2)

∴ {gi : 1 ≤ i ≤ p− 1} are distinct (mod p)

∴ {gi : 1 ≤ i ≤ p− 1} ≡ {1, 2, ..., p− 1}(mod p) in some order

⇒ gi ≡ p− 1 ≡ −1(mod p) for some i 3 1 ≤ i ≤ p− 2 (remembering that gp−1 ≡ 1)

Now, gp−1 ≡ 1⇒ g
p−1
2 ≡ −1 (since Lagrange’s Theorem implies 1 and -1

are the only solutions and g
p−1
2 6≡ 1 since g is primitive)

⇒ g
3+4k−1

2 ≡ −1 for some k ∈ Z

⇒ g1+2k ≡ −1 (where 1 + 2k = p−1
2 )

Now, −g ≡ (−1)(g)⇒ (−g)1+2k ≡ (−1)1+2kg1+2k ≡ (−1)(−1) ≡ 1

∴ (−g)
p−1
2 ≡ 1(mod p) and p−1

2 < p− 1 = φ(p)

∴ −g is not primitive (mod p) X

(2)

Let p prime and (a, p) = 1 let p− 1 = qe11 q
e2
2 · · · qerr be the UPF of p− 1

(⇒) a is primitive (mod p)

⇒ o(a) = p− 1 (mod p)

Suppose a
p−1
qi ≡ 1(mod p) for some qi 1 ≤ i ≤ r

⇒ o(a) < p− 1 (⇒⇐)
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∴ a
p−1
qi 6≡ 1(mod p) ∀qi 1 ≤ i ≤ r

(⇐) a
p−1
qi 6≡ 1(mod p) ∀qi 1 ≤ i ≤ r

Let o(a) = d (mod p)

⇒ d | p− 1 and d - p−1
qi

∀qi 1 ≤ i ≤ r (else a
p−1
qi ≡ 1(mod p))

d | p− 1⇒ p− 1 = ds for some s ∈ Z

⇒ ds
qi

= p−1
qi
⇒ s

qi
=

p−1
qi

d 6∈ Z

⇒ s contains no powers of qi in its UPF ∀i 1 ≤ i ≤ r

ds = p− 1 = qe11 q
e2
2 · · · qerr ⇒ s | qe11 q

e2
2 · · · qerr ⇒ s = 1

⇒ d = p− 1⇒ a is primitive (mod p) X

(3)

I wrote a program on Mathematica to gain insight on a possible conjecture. The program calculates the
order (mod pn) of the first few positive a ≡ 1(mod p) with a > 1 (e.g. a = 1 + p, a = 1 + 2p, etc.) for the
first few n = 1, 2, ... .

At first, I made the BIG mistake of running it for just p = 2, which seemingly had no discernible pattern,
and I began to think the problem was undoable for me. However, by running the program for the first few
odd primes, the pattern became clear. Furthermore, in the course of working out the proof for the odd
primes, there was nothing in the proof preventing the conjecture from holding for p = 2 ...(as long as j 6= 1).
Upon restudying the output for p = 2, j 6= 1, I could see this was the case.

The case of p = 2, j = 1 was very difficult. After some study, it became evident that the pattern must
depend on the integer l that divides a − 1 (i.e. a − 1 = 2l). After much trial and error, it turned out that
the needed information was how large of a power of 2 divides l + 1.

I then made a conjecture based on the output for this case and proceeded to prove with essentially the
same type of proof as in the first case.

Conjecture: For p odd, j ≥1 and p = 2, j > 1, we claim, for a > 1, a ≡ 1(mod p),

that on(a) = Max(1, pn−j) where j is the largest positive integer 3 pj | a− 1

Proof: By induction on n we will show:

(1) on(a) = Max(1, pn−j) and

(2) pn+1 - aon(a) − 1 if n ≥ j (this part is necessary to imply the validity of (1) for n+ 1)

First of all , we note a ≡ 1(mod p)⇒ p | a− 1⇒ j ≥ 1

and a = 1 + lpj for some l ∈ N 3 (l, p) = 1

Base case: n = 1⇒ a = 1 + lppj−1 ⇒ a ≡ 1(mod p)⇒ o1(a) = 1

n = 1 ≤ j ⇒ Max(1, p1−j) = 1 = o1(a) ∴ (1) is satisfied

Furthermore,


j = 1 = n⇒ pn+1 = p2 - a− 1 by maximality of j

j > 1 = n⇒ (2) is vacuously satisfied (a strategy employed by Dr. Fenrick

in several of her Sylow proofs)

∴ (1) and (2) are satisfied for n = 1
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Inductive Hypotheses: Assume, for m = some n ≥ 1, (1) om(a) = Max(1, pm−j) and

(2) pm+1 - aom(a) − 1 if m ≥ j

(case 1) j > n⇒ on(a) = Max(1, pn−j) = 1

We have a = 1 + lpj where (l, p) = 1 for some l ∈ N

j > n⇒ j ≥ n+ 1⇒ a = 1 + lpn+1pj−(n+1) ⇒ on+1(a) = 1 = Max(1, pn+1−j)

Moreover,

{
j = n+ 1⇒ pn+2 - a− 1 by maximality of j

j > n+ 1⇒ (2) is vacuously satisfied for m = n+ 1

∴ (1) and (2) are satisfied for m = n+ 1

(case 2) j ≤ n⇒ on(a) = pn−j

∴ ap
n−j

= 1 + pnr for some r ∈ N 3 (p, r) = 1 by inductive hypotheses

⇒ ap
n+1−j

= ap
n−jp = (1 + pnr)p = 1 + (

p−1∑
i=1

(
p
i

)
pniri) + pnprp (∗)

For 1 ≤ i ≤ p− 1,
(
p
i

)
= p(p−1)!

i!(p−i)! ∈ Z with all factors in denominator < p ⇒ p |
(
p
i

)
⇒ Every term in the Σ is divisible by pn+1

Furthermore, since np ≥ n+ 1 (the last term on the right),

we get pn+1 | apn+1−j − 1⇒ ap
n+1−j ≡ 1(mod pn+1)⇒ on+1(a) | pn+1−j

Moreover, pn+1 - apn−j − 1 by inductive hypothesis (2) ⇒ pn+1 - apt − 1 ∀t ≤ n− j

⇒ on+1(a) = ap
n+1−j

∴ (1) is satisfied for m = n+ 1

To show (2) is satisfied for m = n+ 1 > j :

From (∗) ap
n+1−j − 1 = ppnr + (

p−1∑
i=2

(
p
i

)
pniri) + pnprp

= pn+1(r + rppnp−(n+1)) + (
p−1∑
i=2

(
p
i

)
pniri) (∗∗)

Now,
(
p
i

)
pniri = p(p−1)!

i!(p−i)!p
niri ∈ Z

All factors in the denominator are < p

⇒ exponent of p in this term is 1+ni where 1+ni ≥ 1+2n = 1+n+n ≥ n+2 for 2 ≤ i ≤ p−1

⇒ pn+2 |
p−1∑
i=2

(
p
i

)
pniri

Now, referring to the term on the left of (∗∗),

If np− (n+ 1) ≥ 1, then pn+2 - this term (since (r, p) = 1)

⇒ pn+2 - apn+1−j − 1 thus satisfying (2)

However, np− (n+ 1) = 0 only when p = 2 and n = 1 (∴ j = 1 since n ≥ j)

But, we excluded the case of p = 2, j = 1 in our original hypotheses

∴ (2) is satisfied for m = n+ 1

∴ (1) and (2) have been satisfied for m = n+ 1 in all cases
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∴ By induction, in particular, on(a) =Max(1, pn−j) for p odd, j ≥ 1 and p = 2, j > 1 ∀n ≥ 1 X

Conjecture for a formula for p = 2, j = 1 is:

When a = 1 + 2l and l+ 1 = 2ks where (l, 2) = 1 (since j = 1) and (s, 2) = 1 (so k is the greatest positive
integer such that 2k divides l + 1 then:

on(a) =

{
1, n = 1

Max(2, 2n−k−1), n ≥ 2

Pf:

(case 1) n = 1

We have a = 1 + 2l where l ≥ 1 (since a > 1), l + 1 = 2ks, (s, 2) = 1, (l, 2) = 1 (since j = 1)

⇒ 2 | a− 1⇒ o1(a) = 1

(case 2) n > 1

By induction on n, we will show: (1) on(a) =Max(2, 2n−k−1)

(2) 2n+1 - aon(a) − 1 for n ≥ k + 2

Base case: n = 2

Note: l odd ⇒ l + 1 even ⇒ k ≥ 1⇒ n− k − 1 = 2− k − 1 ≤ 0

∴ a = 1 + 2l = 1 + 2((l + 1)− 1) = 1 + 2 · 2ks− 2⇒ 22 - a− 1 ∴ o2(a) 6= 1

But, a2 = 1 + 2 · 2l + 22l2 ⇒ 22 | a2 − 1 ∴ o2(a) = 2 = Max(2, 21−k) = Max(2, 2n−k−1)

∴ (1) is satisfied

Moreover, k + 2 ≥ 3 > 2 = n ∴ (2) is vacuously satisfied

∴ Base case is satisfied

Inductive hypotheses: Assume for m = some n ≥ 2 that: (1) om(a) =Max(2, 2m−k−1)

(2) 2m+1 - aom(a) − 1 for m ≥ k + 2

(case 2a) 2 ≤ n < k + 2⇒ on(a) = 2 and n+ 1 ≤ k + 2

As above, a− 1 = 2k+1s− 2 = 2(2ks− 1)⇒ 23 - a− 1⇒ 2n+1 - a− 1 ∴ on+1(a) 6= 1

a2 = (1 + 2l)2 = 1 + 22l(l + 1) = 1 + 22l2ks = 1 + 2k+2ls

⇒ 2k+2 | a2 − 1⇒ 2n+1 | a2 − 1 ∴ on+1(a) = 2 = Max(2, 2n+1−k−1)

∴ (1) is satisfied for m = n+ 1

Also,


n+ 1 < k + 2⇒ (2) is vacuously satisfied for m = n+ 1

n+ 1 = k + 2⇒ n = k + 1⇒ aon+1(a) = a2 = 1 + ls2k+2 = 1 + ls2n+1 ⇒ 2n+2 - aon+1 − 1

∴ (2) is satisfied for m = n+ 1

∴ (1) and (2) are satisfied for m = n+ 1 for (case 2a)

(case 2b) n ≥ k + 2⇒ on(a) = 2n−k−1

⇒ a2
n+1−k−1

= a2
n−k−12 = (1 + 2nr)2 where (r, 2) = 1

(since 2n+1 - a2n−k−1 − 1 by ind. hyp. (2))

= 1 + 2 · 2nr + 22nr2 = 1 + 2n+1(r + 2n−1r2) (∗ ∗ ∗)
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⇒ 2n+1 | a2n+1−k−1 − 1 ∴ on+1(a) | 2n+1−k−1

However, by inductive hypothesis (2),

2n+1 - aon(a) − 1 = a2
n−k−1 − 1

⇒ 2n+1 - a2t − 1 for t ≤ n− k − 1

∴ on+1(a) = 2n+1−k−1 ∴ (1) is satisfied for m = n+ 1

Furthermore, from (∗ ∗ ∗), since n− 1 ≥ k + 1 ≥ 2 and (r, 2) = 1, we get

2n+2 - a2n+1−k−1 − 1⇒ 2n+2 - aon+1(a) − 1 and (2) is satisfied for m = n+ 1

∴ All cases are satisfied for m = n+ 1

∴ By induction, and in particular, on(a) = Max(2, 2n−k−1) for n ≥ 2

∴ Conjecture for p = 2, j = 1 is proved X
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