MATH 542 NUMBER THEORY Problems to Think About #1 CH. 1, #1-3

Russell Jahn

January 24th, 2014

(1)

Same idea as in HW set, but use 3 instead of 2. Let $M = 1 + \frac{1}{3} + \frac{1}{5} + ... + \frac{1}{2n+1}$ $n \ge 1$ Let m = lcm(1,3,5,...,2n+1) $\therefore 3|m$ $mM = \frac{m}{1} + \frac{m}{3} + ... + \frac{m}{2n+1}$ contra Pf: Suppose $M \in \mathbb{Z} \implies 3|mM$ Let P_k be largest prime $\le 2n+1$ Let $s = 3^a$ be largest power of 3 in $\{1,3,...,2n+1\}$ Let $t \in \{1,3,...,2n+1\}$, $t = 3^{\alpha_2} p_3^{\alpha_3} \dots p_k^{\alpha_k}$ be UPF of t, where $p_2 = 3$ If t < s, then it's clear that $\alpha_2 < a$ $t > s \Rightarrow$ some $\alpha_i > 0$ $3 \le i \le k$ by maximality of 3^a $\Rightarrow 2n+1 \ge t > 3^{\alpha_2} 3^{\alpha_i} = 3^{\alpha_2+\alpha_i} > 3^{\alpha_2}$ (Since $p_i > 3$) $\Rightarrow \alpha_2 < a$ by maximality of 3^a \therefore If $t \ne s$, the exponent of 3 in the UPF of t is < aNow, let $i = t_i = 3^{\alpha_{i2}} p_3^{\alpha_{i3}} \dots p_k^{\alpha_{ik}}$ $i \in \{1,3,...,2n+1\}$ be the UPF of t_i Let $\delta_j = \max_i \{\alpha_{ij}\} \Rightarrow m = 3^a p_3^{\delta_3} \dots p_k^{\delta_k}$ $\therefore \frac{m}{s} = p_3^{\delta_3} \dots p_k^{\delta_k} \Rightarrow 3 \nmid \frac{m}{s}$ For $t_i \ne s$, $\frac{m}{t_i} = 3^{a-\alpha_{i2}} p_3^{\delta_3-\alpha_{i3}} \dots p_k^{\delta_k-\alpha_{ik}} \Rightarrow 3|\frac{m}{t_i}$ since $a > \alpha_{i2}$ $\Rightarrow 3 \nmid \frac{m}{1} + \frac{m}{3} + ... + \frac{m}{2n+1} = mM$ ($\Rightarrow \ll$) $\therefore M \notin \mathbb{Z}$

(2)

Let q_n be n^{th} largest prime that is $\equiv 3 \pmod{4}$ Let all such primes be denoted $q_i, i \ge 1$ Let q_1, q_2, \dots, q_n be first n of such primes So, $q_i = 3 + 4n_i$ some $n_i \in \mathbb{Z}$ Let $X = 1 + 2 \prod_{i=1}^n q_i$ $= 1 + 2 \prod_{i=1}^n (3 + 4n_i) = 1 + 2(3^n + 4N)$ some $N \in \mathbb{Z}$ 3^n is odd $\Rightarrow 3^n = 1 + 2M$ some $M \in \mathbb{Z}$ $\Rightarrow X = 1 + 2 (1 + 2M + 4N) = 3 + 4(M + 2N) \Rightarrow X \equiv 3 \pmod{4}$ Clear that $2 \nmid X$ and $q_i \nmid X \quad 1 \leq i \leq n$ Suppose <u>all</u> prime factors of X are of the form $1 + 4 m_i$ (which we will denote as p_i) some $m_i \in \mathbb{Z}$ $\Rightarrow X = \prod p_i \equiv 1 \pmod{4}$ ($\Rightarrow \Leftarrow$) \therefore At least one q_l with $l \geq n + 1$ must divide X. $\therefore q_l \leq X$ $\therefore q_{n+1} \leq q_l \leq X = 1 + 2 \prod_{i=1}^n q_i$ Claim: $q_n \leq 2^{2^n} \forall n \geq 1$ (Claim determined by trial and error. i.e. so that an induction proof will work.) Base case: n = 1 $q_1 = 3 \leq 2^{2^1}$ Inductive hypothesis: Assume $q_m \leq 2^{2^m} \forall m \leq \text{some } n \geq 1$ Consider $q_{n+1} \leq 1 + 2 \prod_{i=1}^n q_i \leq 1 + 2 \cdot 2^{2^1} \cdot 2^{2^2} \cdots 2^{2^n}$ by inductive hypothesis $= 1 + 2^{\frac{1-2^{n+1}}{1-2}} = 1 + 2^{2^{n+1}-1} \leq 2^{2^{n+1}-1} + 2^{2^{n+1}-1} = 2^{2^{n+1}}$ \therefore By strong induction, $q_n \leq 2^{2^n} \forall n \geq 1$ \checkmark

(3)

By exercise (2) $q_n \leq 2^{2^n}$ (case 1) $x \geq 2^2$ So, there are \geq n q's that are $\leq 2^{2^n}$ \Rightarrow there are $\geq [log_2 log_2 x]$ q's that are $\leq 2^{2^{[log_2 log_2 x]}}$ \Rightarrow there are $\geq log_2 log_2 x - 1$ q's that are $\leq 2^{2^{log_2 log_2 x}}$ $= 2^{log_2 x} = x$ $\therefore \pi'(x) \geq log_2 log_2 x - 1$ for $x \geq 2^2$ (case 2) $2 \leq x < 2^2$

$$q_1 = 3, q_2 = 7$$

$$\therefore \pi'(x) = \begin{cases} 0, & \text{if } 2 \le x < 3. \\ 1, & \text{if } 3 \le x < 2^2. \end{cases}$$
(1)

$$0 = \log_2 \log_2 2^2 - 1 > \log_2 \log_2 x - 1$$

$$\therefore \pi'(x) \ge \log_2 \log_2 x - 1 \text{ for } 2 \le x < 2^2$$

$$\therefore \pi'(x) \ge \log_2 \log_2 x - 1 \ \forall x \ge 2 \quad \checkmark$$