# MATH 542 NUMBER THEORY Problems to Think About \#1 

CH. 1, \#1-3

Russell Jahn

January 24th, 2014
(1)

Same idea as in HW set, but use 3 instead of 2 .

$$
\begin{aligned}
& \text { Let } \quad \mathrm{M}=1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n+1} \quad n \geq 1 \\
& \text { Let } \quad \mathrm{m}=l \mathrm{lcm}(1,3,5, \ldots, 2 n+1) \quad \therefore 3 \mid m \\
& \mathrm{mM}=\frac{m}{1}+\frac{m}{3}+\ldots+\frac{m}{2 n+1}
\end{aligned}
$$

contra Pf: $\quad$ Suppose $M \in \mathbb{Z} \Rightarrow 3 \mid m M$
Let $P_{k}$ be largest prime $\leq 2 \mathrm{n}+1$
Let $s=3^{a}$ be largest power of 3 in $\{1,3, \ldots, 2 \mathrm{n}+1\}$
Let $\mathrm{t} \in\{1,3, \ldots, 2 \mathrm{n}+1\}, \mathrm{t}=3^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p_{k}^{\alpha_{k}}$ be UPF of t , where $p_{2}=3$
If $\mathrm{t}<\mathrm{s}$, then it's clear that $\alpha_{2}<a$
$\mathrm{t}>\mathrm{s} \Rightarrow$ some $\alpha_{i}>0 \quad 3 \leq i \leq k$ by maximality of $3^{a}$
$\Rightarrow 2 \mathrm{n}+1 \geq \mathrm{t}>3^{\alpha_{2}} 3^{\alpha_{i}}=3^{\alpha_{2}+\alpha_{i}}>3^{\alpha_{2}}\left(\right.$ Since $\left.p_{i}>3\right)$
$\Rightarrow \alpha_{2}<a$ by maximality of $3^{a}$
$\therefore$ If $t \neq s$, the exponent of 3 in the UPF of t is $<\mathrm{a}$
Now, let $\mathrm{i}=t_{i}=3^{\alpha_{i 2}} p_{3}^{\alpha_{i 3}} \ldots p_{k}^{\alpha_{i k}} \quad i \in\{1,3, \ldots, 2 \mathrm{n}+1\} \quad$ be the UPF of $t_{i}$ Let $\delta_{j}=\max _{i}\left\{\alpha_{i j}\right\} \Rightarrow \mathrm{m}=3^{a} p_{3}^{\delta_{3}} \ldots p_{k}^{\delta_{k}}$
$\therefore \frac{m}{s}=p_{3}^{\delta_{3}} \ldots p_{k}^{\delta_{k}} \Rightarrow 3 \nmid \frac{m}{s}$
For $t_{i} \neq s, \left.\quad \frac{m}{t_{i}}=3^{a-\alpha_{i 2}}{ }^{s} p_{3}^{\delta_{3}-\alpha_{i 3}} \ldots p_{k}^{\delta_{k}-\alpha_{i k}} \quad \Rightarrow 3 \right\rvert\, \frac{m}{t_{i}}$ since $a>\alpha_{i 2}$ $\Rightarrow 3 \nmid \frac{m}{1}+\frac{m}{3}+\ldots+\frac{m}{2 n+1}=m M(\Rightarrow \Leftarrow)$
$\therefore \mathrm{M} \notin \mathbb{Z}$
(2)

Let $q_{n}$ be $\mathrm{n}^{\text {th }}$ largest prime that is $\equiv 3(\bmod 4)$
Let all such primes be denoted $q_{i}, i \geq 1$
Let $q_{1}, q_{2}, \ldots, q_{n}$ be first n of such primes
So, $q_{i}=3+4 n_{i}$ some $n_{i} \in \mathbb{Z}$
Let $\mathrm{X}=1+2 \prod_{i=1}^{n} q_{i}$
$=1+2 \prod_{i=1}^{n}\left(3+4 n_{i}\right)=1+2\left(3^{n}+4 N\right)$ some $N \in \mathbb{Z}$
$3^{n}$ is odd $\stackrel{i=1}{\Rightarrow} 3^{n}=1+2 M$ some $M \in \mathbb{Z}$
$\Rightarrow \mathrm{X}=1+2(1+2 M+4 N)=3+4(M+2 N) \Rightarrow X \equiv 3(\bmod 4)$

Clear that $2 \nmid X$ and $q_{i} \nmid X \quad 1 \leq i \leq n$
Suppose all prime factors of X are of the form $1+4 m_{i}$ (which we will denote as $p_{i}$ ) some $m_{i} \in \mathbb{Z}$
$\Rightarrow \mathrm{X}=\prod p_{i} \equiv 1(\bmod 4)(\Rightarrow \Leftarrow)$
$\therefore$ At least one $q_{l}$ with $l \geq n+1$ must divide X. $\quad \therefore q_{l} \leq X$
$\therefore q_{n+1} \leq q_{l} \leq X=1+2 \prod_{i=1}^{n} q_{i}$
Claim: $q_{n} \leq 2^{2^{n}} \forall n \geq 1$ (Claim determined by trial and error. i.e. so that an induction proof will work.) Base case: $\mathrm{n}=1 \quad q_{1}=3 \leq 2^{2^{1}}$
Inductive hypothesis: Assume $q_{m} \leq 2^{2^{m}} \forall m \leq$ some $n \geq 1$
Consider $q_{n+1} \leq 1+2 \prod_{i=1}^{n} q_{i} \leq 1+2 \cdot 2^{2^{1}} \cdot 2^{2^{2}} \cdots 2^{2^{n}}$ by inductive hypothesis

$$
=1+2^{\frac{1-2^{n+1}}{1-2}}=1+2^{2^{n+1}-1} \leq 2^{2^{n+1}-1}+2^{2^{n+1}-1}=2^{2^{n+1}}
$$

$\therefore$ By strong induction, $q_{n} \leq 2^{2^{n}} \quad \forall n \geq 1 \quad \checkmark$

## (3)

By exercise (2) $\quad q_{n} \leq 2^{2^{n}}$
(case 1) $\quad x \geq 2^{2} \quad$ So, there are $\geq \mathrm{n}$ q's that are $\leq 2^{2^{n}}$

$$
\begin{gathered}
\Rightarrow \text { there are } \geq\left[\log _{2} \log _{2} x\right] \text { q's that are } \leq 2^{2^{\left[\log _{2} \log _{2} x\right]}} \\
\Rightarrow \text { there are } \geq \log _{2} \log _{2} x-1 \text { q's that are } \leq 2^{2^{\log _{2} \log _{2} x}} \\
=2^{\log _{2} x}=x
\end{gathered}
$$

$\therefore \pi^{\prime}(x) \geq \log _{2} \log _{2} x-1$ for $x \geq 2^{2}$
(case 2) $2 \leq x<2^{2}$
$q_{1}=3, q_{2}=7$

$$
\therefore \pi^{\prime}(x)= \begin{cases}0, & \text { if } 2 \leq x<3  \tag{1}\\ 1, & \text { if } 3 \leq x<2^{2}\end{cases}
$$

$0=\log _{2} \log _{2} 2^{2}-1>\log _{2} \log _{2} x-1$
$\therefore \pi^{\prime}(x) \geq \log _{2} \log _{2} x-1$ for $2 \leq x<2^{2}$
$\therefore \pi^{\prime}(x) \geq \log _{2} \log _{2} x-1 \forall x \geq 2$

