Multiplicative functions and their generating functions:

A multiplicative arithmetical function is a function f : Z* — R that satisfies
f(ab) = f(a)f(b) when (a,b) = 1, and more generally

foipg ) = Ft)fps) -
When f is not nontrivial (not identically 0) then f(1) =

Generating function of a non-trivial multiplicative function: Let f be a non-
trivial multiplicative function and set

= Z SRt
e=0
Then

fi'ps ) = fOI)fP5) - = [t75° - - - [Fi(t) Fa(ta) - - -

Therefore a generating function for fis Fy(t) = Fy(t1,t2,...) = Fi(t1)Fa(ta) - - -.

Any such product with constant terms 1 in the Fj is the generating function
of a multiplicative arithmetic function.

Products of generating functions:

If
F(t) tlat%"' Zf pl p2 ' teltSQ"':Zf(n)tn
n>1
and
G(t) = Glti,ta,...) =Y _gpf'ps -+ )55 - =Y g(n)t"
n>1
then
= s )gphpl - gt =
ZZf g(n/d)t"
n>1 d|n

This implies that if @ and b are multiplicative functions with generating
functions F,(t) and F,(t) then the multiplicative function ¢ with generating
function F,(t)F,(t) is defined by

c(n) :Z Yb(n/d) = Zb a(n/d).

dn



Examples:

1

1. The unit function u(n) = 1 has generating function F,(t) = (et

If f(n) is multiplicative then so is

g(n) =Y f(n/d) =" f(d)

din din
and Fit)
F(t) = F,(t)F;(t) = ! .
g() ()f() (1—t1)(1—t2>"'
2. The identity function i(n) = n has generating function i tl)(ll_m Yt If

f(n) is multiplicative then so is

h(n) = Y df(n/d) = 3~ f(d)

din dn

and
Fy(1)

Bl = 00— pata) -

3. The Mobius function u(n) defined by
plt o pf) = (DX = = e =1)
has generating function
Fut) = (1 =t)(1 = ta) -,

hence is multiplicative. If f is a multiplicative function and ¢ is defined by

g(n) =Y f(d)

din

then we have seen by Example 1 above that

B0 = Gy Ly = RO (0) =

This implies



hence
Z pu(d)g(n/d) = Z g(d)u(n/d).
djn djn
In particular,
F°) = g(p°) — g(r*™")
when p is prime and e > 1.

4. The unit characteristic function v(n) = x(n = 1) has generating function
F,(t) = 1. Given that F,(t) = F,(t)F,(t), we have

=3 uld) = 3 uln/d).

din dln

5. Euler’s (totient) function ¢(n): This is defined as the number of natural
numbers < n that are relatively prime to n. What we see in the textbook is
a proof of the inclusion-exclusion formula. Working through the details, let
P1,--.,pr be the primes which divide n. We want to count all the numbers
not divisible by any of these primes, i.e. throw away the numbers divisible at
least one of these. Setting A; equal to the numbersin {1,2,...,n} divisible by
pi, the numbers that are divisible by some p; are counted by n; —ng+mng—- - -
where ny, is the sum of the sizes of the k-fold intersection intersection of sets.

Since
n

A,N Ay NA] = —
PaPb - Dz

we have . . .
k
ng=2"nl+—)14+—)---(1+ —).
e+ D)1+ D) (14 D)
So

T

1 1

6(n) = 3 (DAl + )1+ =)o (14 =) =n(l=—)(1=—) - (1-—).

=0 D1 D2 Dr D1 D2

One can check that ¢ is multiplicative given this formula. Now define
= o)
din

This is multiplicative. It satisfies

g(p") :Z¢(pi) =1+(p-1)+ @ —p)+ -+ " —p") =",

1
Dr



hence g(n) = n for all n. Therefore

> o(d) =

din

To obtain a generating function for ¢(n), note that
Fi(t) = Fy(t) = Fu(t)Fy,

hence
(I —t1)(1 —tg)---

T A= pit) (1 —paty) -

6. Mobius Inversion: Let f: R — R be given and define
=>_fla/n),
n<x
summing over positive integers. Then

> uln)gla/n) = pln) > fle/mn) = pn) Y flz/mn) =

n<x n<x m<z/n n<x mn<z
DS/ pl/m) = fla/Dr(l) = f(z).
<z m|l <z

Conversely, if we define

Z,u g(x/n)

then
D [y =2 > wmgle/kn) = Y pln)glw/kn) = g(x/l) Y u(l/m) =
n<z n<x k<z/n n<z kn<x <z ml

> glz/hv(l) = g(x).

<z

When a multiplicative function is used to define the other this way then the
second function is also multiplicative, and we obtain

= f(d)

din
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if and only if

Zu g(n/d).

We already derived this by the method of generating functions above.
7. Applying Mobius inversion to the functions

:Zl’

dln

:Zd’

dln

n=>_ ¢(d)

din

1= u(d)r(S
din

=" uldo(5
din
= > )

dln

we obtain

The identities above also follow from F, = F.F),, F; = F,F,,, Fy = F;F),.

8. Summary of generating functions:

p(n): Fy =1 —t)(1—ty)---

v(n) =x(n=1)=3 4, un): F, =1

u(n)=1: F, = m

in) = n: B = gyt

T(n) =Yg 1 = Xy uld): Fr = F} = gty

0(n) = L d = Lo 1(d): Fo = FuFs = oiymgyapma s
o(n): Fy = 1%:2%8:;21;;_. = FuF



9. The Riemann zeta-function. Take any generating function F'(t) = F(ty,ts,...) =
Fy(t1)Fy(ty) - - for a multiplicative function f. Making the substitution

t; — L+ where s is a complex number yields an infinite product. For exam-
ple, recall that we have

p.
Fult) = 1 D S
(1 —t1)(1 —tg)---

e1,e2,e3,->0
Hence
s s 1 1
FU(S)ZE(I/plal/p2,>: Z e — -

€1 ,.€62, €3 s
I) Z?} p‘ ct e n
e1,€2,e3,->0 1

This is called the Riemann zeta-function ((s). In particular,

1 =1 =
@@=l -2e=%

We will derive this evaluation this shortly.
More generally, if Fy(t) =37, f(n)t" then

Fyls) = Fy(1/pi. 13 ) = 3 T2,

Examples:

L. F,(s) = 7(5- This implies

In particular,

2. F,.(s) = F,(s)?. This implies




In particular,

—pun) w
Z n2 36

n=1

3. Fils) = X0, 2 = (s — ).
4. F,(s) = F;(s)Fy(s). This implies

S s - 1)cs).

n=1

5. Fy(s) = F,(s)Fi(s). This implies
I
¢(s)
6. For arbitrary functions f : Z* — R and ¢ : ZT — R we have

SO = S TR =3 L St

n=1 a,b>1

assuming the expressions converge.



