Problems to think about (Chapter 5)

1. Let $f=a x^{2}+b x y+c y^{2}$ be a non-reduced binary quadratic form with $a>0$ and $d=b^{2}-4 a c<0$. Then f falls into exactly one of the following categories: (1) $a>c$. (2) $a=c$ and $b<-a$. (3) $a=c$ and $-a \leq b<0$. (4) $a=c$ and $b>a$. (5) $a<c$ and $b<-a$. (6) $a<c$ and $b=-a$. (7) $a<c$ and $b>a$. Prove that the following actions, applied a finite number of times, yield an equivalent reduced form. In the statements below, $[[x]]$ represents the largest integer strictly less than x.

If f is in category (1) or (3), replace by $f=c x^{2}-b x y+a x^{2}$.
If f is in categories (2) or (5), replace by $f=a x^{2}+(b+2 k a) x y+\left(a k^{2}+b k+c\right) y^{2}$ where $k=[[-b / a]]$.
If f is in category (4) or (7), replace by $f=a x^{2}+(b-2 k a) x y+\left(a k^{2}-b k+c\right) y^{2}$ where $k=[[b / a]]$.
If f is in category (6), replace by $f=a x^{2}+(b+2 a) x y+(a+b+c) y^{2}=$ $a x^{2}+a x y+c y^{2}$.
2. Assuming you have successfully completed Problem 1, use the information it contains to write a Mathematica program that inputs $\{a, b, c\}$ where $a>0$ and $b^{2}-4 a c<0$ and outputs $\{A, B, C\}$ where $A x^{2}+B x y+C y^{2}$ is reduced and equivalent to $a x^{2}+b x y+c y^{2}$. The program should output all intermediate forms between $a x^{2}+b x y+c y^{2}$ and $A x^{2}+B x y+C y^{2}$.
3. $f(x, y)=12345 x^{2}+18309 x y+6789 y^{2}$. Find a unimodular matrix U such that $f \circ U$ is reduced. Compute the minimum positive value of $f(x, y)$ given $x, y \in \mathbb{Z}$, and identify the corresponding values of x and y.
4. Write a Mathematica program that inputs an odd prime p and outputs $\{x, y, z, w\}$ satisfying $p=x^{2}+y^{2}+z^{2}+w^{2}$ using the infinite descent procedure outlined in class.
5. Write a Mathematica program that inputs $\left\{\left\{p_{1}, e_{1}\right\},\left\{p_{2}, e_{2}\right\}, \ldots,\left\{p_{r}, e_{r}\right\}\right\}$ and outputs $\{x, y, z, w\}$ satisfying $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}=x^{2}+y^{2}+z^{2}+w^{2}$ where the p_{i} are prime numbers and the e_{i} are positive integers. Use the program in Problem 4 as a subroutine.
6. The Mathematica expression FactorInteger $[\mathrm{n}]$ outputs the prime factorization of n in the form $\left\{\left\{p_{1}, e_{1}\right\},\left\{p_{2}, e_{2}\right\}, \ldots,\left\{p_{r}, e_{r}\right\}\right\}$. Using this, express the number 123456789 as a sum of four squares.
7. Devise an infinite descent algorithm for expressing a prime p of the form $4 k+1$ as a sum of two squares and implement it in Mathematica.

