Problems to think about solution (Chapter 4)

1. Prove that if p is a prime number that satisfies $p \equiv 1 \bmod 4$ then whenever g is primitive $\bmod p$, so is $-g$.
2. Prove that if p and $2 p+1$ are prime numbers with $p \equiv 3 \bmod 4$ then -2 is primitive $\bmod 2 p+1$.
3. Prove that if p and $p^{\prime}=2^{k} p+1$ are odd primes then a is a primitive root $\bmod p^{\prime}$ if and only if $a^{2^{k}} \not \equiv 1 \bmod p^{\prime}$ and $\left(\frac{a}{p^{\prime}}\right)=-1$.
4. Identify all Fermat and Mersenne primes p that have 2 as a primitive root.
