Problem to think about (Chapter 3), revised

1. Prove that if p is a prime number satisfying $p \equiv 3 \bmod 4$, then whenever g is primitive $\bmod p,-g$ is not primitive $\bmod p$.
2. Let p be a prime number and let $(a, p)=1$. Prove that a is a primitive root $\bmod p$ if and only if $a^{\frac{p-1}{q}} \not \equiv 1 \bmod p$ for every prime divisor q of $p-1$. 3. Let p be a prime number and let $a>1$ be a number that satisfies $a \equiv 1$ $\bmod p$. Let $o_{n}(a)$ denote the order of $a \bmod p^{n}$, i.e. the least positive integer k such that $a^{k} \equiv 1 \bmod p^{n}$. Let j be the largest positive integer such that $p^{j} \mid(a-1)$. Find a formula for $o_{n}(a)$ in terms of n and j. A proof is required, not a conjecture, but it helps to work out some examples and make a conjecture first.
