Problem to think about (Chapter 3), revised

1. Prove that if p is a prime number satisfying $p \equiv 3 \mod 4$, then whenever g is primitive mod p, -g is not primitive mod p.

2. Let p be a prime number and let (a, p) = 1. Prove that a is a primitive root mod p if and only if $a^{\frac{p-1}{q}} \not\equiv 1 \mod p$ for every prime divisor q of p-1.

3. Let p be a prime number and let a > 1 be a number that satisfies $a \equiv 1 \mod p$. Let $o_n(a)$ denote the order of $a \mod p^n$, i.e. the least positive integer k such that $a^k \equiv 1 \mod p^n$. Let j be the largest positive integer such that $p^j|(a-1)$. Find a formula for $o_n(a)$ in terms of n and j. A proof is required, not a conjecture, but it helps to work out some examples and make a conjecture first.