Problems to think about (Chapter 2)

1. Let f and g be multiplicative arithmetic functions. Define an arithmetic function h via

$$
h(n)=\sum_{d \mid P(n)} f(d) g(n / d)
$$

where $P(n)=q_{1} q_{2} \cdots q_{r}$ is the product of the distinct primes dividing n and $P(1)=1$. Prove that h is a multiplicative function, then find $F_{h}(t)$ in terms of f and $F_{g}(t)$.
2. Find a multiplicative function f such that

$$
\sum_{d \mid P(n)} f(d) \sigma(n / d)=1
$$

for all n, where $P(n)$ is as above, and express f in terms of the multiplicative functions we have already studied in the course.
3. Define $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ by $f(n)=\chi(n$ is odd). Prove that f is multiplicative and prove that

$$
\sum_{d \mid n} f(d) \phi(n / d)= \begin{cases}n & n \text { is odd } \\ \frac{n}{2} & n \text { is even }\end{cases}
$$

