MATH 542 NUMBER THEORY Problems to Think About \#5

CH. 5, \#1-7

Russell Jahn

(1)

Let us call:
$\alpha:(a, b, c) \rightarrow(c,-b, a)$ for $f \in(1)$ or (3)
$\beta:(a, b, c) \rightarrow\left(a, b+2 k a, a k^{2}+b k+c\right)$ for $f \in(2)$ or (5) where $k=\left[\left[\frac{a-b}{2 a}\right]\right]$
$\gamma:(a, b, c) \rightarrow\left(a, b-2 k a, a k^{2}-b k+c\right)$ for $f \in(4)$ or (7) where $k=\left[\left[\frac{a+b}{2 a}\right]\right]$
$\delta:(a, b, c) \rightarrow(a, b+2 a, a+b+c)=(a, a, c)$ for $f \in(6)$
First, we need to show that each is unimodular: Recall $F=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$
(α) Let $U_{\alpha}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \Rightarrow \operatorname{det} U_{\alpha}=1$ and $U_{\alpha}^{T} F U_{\alpha}=\left(\begin{array}{cc}c & -b / 2 \\ -b / 2 & a\end{array}\right)$
(β) Let $U_{\beta}=\left(\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right) \Rightarrow \operatorname{det} U_{\beta}=1$ and $U_{\beta}^{T} F U_{\beta}=\left(\begin{array}{cc}a & 1 / 2(b+2 k a) \\ 1 / 2(b+2 k a) & a k^{2}+b k+c\end{array}\right)$
(γ) Let $U_{\gamma}=\left(\begin{array}{cc}1 & -k \\ 0 & 1\end{array}\right) \Rightarrow \operatorname{det} U_{\gamma}=1$ and $U_{\gamma}^{T} F U_{\gamma}=\left(\begin{array}{cc}a & 1 / 2(b-2 k a) \\ 1 / 2(b-2 k a) & a k^{2}-b k+c\end{array}\right)$
(δ) Let $U_{\delta}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \Rightarrow \operatorname{det} U_{\delta}=1$ and $U_{\delta}^{T} F U_{\delta}=\left(\begin{array}{cc}a & 1 / 2(b+2 a) \\ 1 / 2(b+2 a) & a+b+c\end{array}\right)$
\therefore Each is unimodular.
Let the transformed BQF be $A x^{2}+B x y+C y^{2}$.
$f \in(6)(a<c, b=-a) \xrightarrow{\delta} A<C, B=A \Rightarrow$ reduced.
$f \in(3) \quad(a=c,-a \leq b<0) \xrightarrow{\alpha} A=C, 0<B \leq A \Rightarrow$ reduced.
$f \in(1) \quad(a>c) \xrightarrow{\alpha} A<C\left\{\begin{array}{l}-A<B \leq A \Rightarrow \text { reduced } \\ B=-A \xrightarrow{\delta} A<C, B=A \Rightarrow \text { reduced } \\ |B|>A \text { (need to go to } \beta \text { or } \gamma \text {) }\end{array}\right.$
In $(\beta), k=\left[\left[\frac{a-b}{2 a}\right]\right] \Rightarrow \frac{a-b}{2 a}-1 \leq k<\frac{a-b}{2 a} \Rightarrow-a \leq b+2 k a<a$
So, $a \rightarrow A,-A \leq B<A$.
$\operatorname{In}(\gamma), k=\left[\left[\frac{a+b}{2 a}\right]\right] \Rightarrow \frac{a+b}{2 a}-1 \leq k<\frac{a+b}{2 a} \Rightarrow-a<b-2 k a \leq a$

$$
\text { So, } a \rightarrow A,-A<B \leq A \text {. }
$$

We will demonstrate $f \in(2)(a=c, b<-a)(f \in(5)$ with (β) and $f \in(4)$ or (7) with (γ) are entirely analogous).

$$
f \in(2)(a=c, b<-a) \xrightarrow{\beta}\left\{\begin{array}{l}
A<C,-A<B<A \Rightarrow \text { reduced } \\
A<C, B=-A \xrightarrow{\delta} A<C, B=A \Rightarrow \text { reduced } \\
A=C, 0 \leq B<A \Rightarrow \text { reduced } \\
A=C,-A \leq B<0 \xrightarrow{\alpha} A=C, 0<B \leq A \Rightarrow \text { reduced } \\
A>C,-A \leq B<A \xrightarrow{\alpha} A<C\left\{\begin{array}{l}
-A<B \leq A \Rightarrow \text { reduced } \\
B=-A \xrightarrow{\delta} A<C, B=A \Rightarrow \text { reduced } \\
\text { otherwise, }|B|>A \text { and we are back } \\
\text { to apply } \beta \text { or } \gamma
\end{array}\right.
\end{array}\right.
$$

Each time we get to a possible $A>C$ (and then apply α), if not reduced we end up with $A<C,|B|>A$, but now A is strictly less than its predecessor. Also, $0 \leq|B| \leq A$ after each application of β or γ. Therefore, if f not already reduced, $|B|$ will eventually equal 0 after a finite number of steps, in which case f is either reduced or reduced after one more application of α.

Therefore, f gets reduced after a finite number of steps in all cases.

(2)-(7) mathematica programs attached

(7)
$p \equiv 1(\bmod 4)$
Just to summarize the theory of infinite descent for two squares, which is very similar to the case of four squares but simpler:

Since $\left(\frac{-1}{p}\right)=1, \exists x \in[0, p-1) \ni x^{2} \equiv-1(\bmod p)$.
$\therefore \exists m \ni m p=x^{2}+1$. Furthermore, $m \in[1, p-1]$ as in four square case. Find an m (by brute force).
The rest is identical to the case of four squares, but we do not have to worry about pairing up like parity addends when m is even, since m even implies both addends are odd or both are even.

