MATH 542 NUMBER THEORY
Problems to Think About #b5
CH. 5, #1-7

Russell Jahn

(1)

Let us call:
a: (a,b,c) = (¢,—b,a) for f € (1) or (3)
B:(a,b,c) = (a,b+ 2ka,ak® + bk + c) for f € (2) or (5) where k = [[%2]]
v : (a,b,c) — (a,b— 2ka,ak?® — bk + c) for f € (4) or (7) where k = [[“2—'*:’]]
§:(a,b,c) = (a,b+2a,a+b+c) = (a,a,c) for f € (6)
First, we need to show that each is unimodular: Recall F' = ( 672 bé 2 )
- 0 1 - T - c —b/2
(Oz)LetU,l(_1 O)ﬁdetUa1andUaFU0Z(_b/2 N )
(1 kK B T B a 1/2(b+ 2ka)
(8) Let Up = ( 0 1 ) = det Us = L and Uy FUs = ( 1/2(b+ 2ka)  ak? + bk +
(1 -k B T B a 1/2(b — 2ka)
(v) Let Uy = < 0 1 ) = det Uy =1 and U, FU, = ( 1/2(b— 2ka)  ak? — b +
(11 _ T _ a 1/2(b+ 2a)
() Let Us = ( 0 1 > = det Us =1 and U5 FU; = < 1/2(b+2a) et bic

. Each is unimodular.

Let the transformed BQF be Ax? + Bxy + Cy?.

fe®) (a<c,b:fa)gA<C’,B:A:Sreduced.

fe@) (a=c¢,—a<b<0) 3 A=C,0< B< A= reduced.
—A < B < A= reduced

fe@) (a>e) 3A<C{B=-4%A<C,B=A= reduced
|B| > A (need to go to 5 or 7)

In(B), k=[%2]]=>%t-1<k<%t=-a<b+2ka<a

So,a - A, —A<B<A.

In(y), k=[[%2]=%L-1<k<%= —a<b-2ka<a



So,a— A, —A< B<A.

We will demonstrate f € (2) (a = ¢,b < —a) (f € (5) with (8) and f € (4) or (7) with () are entirely
analogous).
A< (C,—A < B < A= reduced
A<CB=-A%A<CB=A= reduced
A=C,0< B < A= reduced
A=C,-A<B<03 A=C,0< B < A= reduced
—A < B < A= reduced
B:—AiA<C,B:A:>reduced
otherwise, |B| > A and we are back
to apply 5 or

fe@a=cb<—a)>

A>C —-A<B<A3 A<C

Each time we get to a possible A > C' (and then apply «), if not reduced we end up with A < C,|B| > A,
but now A is strictly less than its predecessor. Also, 0 < |B| < A after each application of 8 or . Therefore,
if f not already reduced, | B| will eventually equal 0 after a finite number of steps, in which case f is either
reduced or reduced after one more application of «.

Therefore, f gets reduced after a finite number of steps in all cases.

(2)-(7) mathematica programs attached

(7)

p = 1(mod 4)

Just to summarize the theory of infinite descent for two squares, which is very similar to the case of four
squares but simpler:

Since <’71) =1,32€[0,p—1) 3 2% = —1(mod p).
-3 m > mp = 22+ 1. Furthermore, m € [1,p — 1] as in four square case. Find an m (by brute force).

The rest is identical to the case of four squares, but we do not have to worry about pairing up like parity
addends when m is even, since m even implies both addends are odd or both are even.



