An Infinite Descent Problem

Let p be a prime number. Then $a^{3}+p b^{3}+p^{2} c^{3}=p a b c$ has no non-trivial integer solutions.
Proof: Suppose there is a solution with $a \neq 0$. We have $p \mid a$. Substituting $a=p \alpha$ we obtain

$$
p^{3} \alpha^{3}+p b^{3}+p^{2} c^{3}=p^{2} \alpha b c
$$

Dividing by p we obtain

$$
p^{2} \alpha^{3}+b^{3}+p c^{3}=p \alpha b c
$$

Substituting $b=p \beta$ we obtain

$$
p^{2} \alpha^{3}+p^{3} \beta^{3}+p c^{3}=p^{2} \alpha \beta c
$$

Dividing by p we obtain

$$
p \alpha^{3}+p^{2} \beta^{3}+c^{3}=p \alpha \beta c .
$$

Substituting $c=p \gamma$ we obtain

$$
p \alpha^{3}+p^{2} \beta^{3}+p^{3} \gamma^{3}=p^{2} \alpha \beta \gamma
$$

Dividing by p we obtain

$$
\alpha^{3}+p \beta^{3}+p^{2} \gamma^{3}=p \alpha \beta \gamma
$$

So if there is a solution with a non-zero value of a then there is another solution with a replaced by a / p. This yields solutions with a non-zero integer a / p^{k} for all $k \geq 1$, which is not possible. Hence any solution must satisfy $a=0$. If there is a solution with $b \neq 0$, then

$$
\begin{gathered}
p b^{3}+p^{2} c^{3}=0 \\
b^{3}+p c^{3}=0
\end{gathered}
$$

Substituting $b=p \beta$ we obtain

$$
\begin{aligned}
p^{3} \beta^{3}+p c^{3} & =0 \\
p^{2} \beta^{3}+c^{3} & =0
\end{aligned}
$$

Substituting $c=p \gamma$ we obtain

$$
\begin{gathered}
p^{2} \beta^{3}+p^{3} \gamma^{3}=0 \\
\beta^{3}+p \gamma^{3}=0
\end{gathered}
$$

This yields another infinite descent, so $b=0$. Hence $a=b=c=0$ is the only solution.

More generally, let p be a prime number. Then $a_{1}^{n}+p a_{2}^{n}+\cdots+p^{n-1} a_{n}^{n}=$ $p a_{1} a_{2} \cdots a_{n}$ has no non-trivial integer solutions.

