Provide brief and logically correct solutions to the following problems:

1. Partition the set $S=\{x \in \mathbb{Z}: 2 \leq x \leq 15\}$ into seven 2-element subsets of the form $\{a, b\}$ where $a<b$ and $a b \equiv 1 \bmod 17$.

Solution: One way to do this is to work out the entire 17×17 multiplication table. Another way is to be on the lookout for products congruent to 1 mod 17. The products must be in the set $\{1,18,35,52,69,86, \ldots\}$. The numbers in this set factor as follows:

$$
\begin{gathered}
1=1 \cdot 1 \\
18=2 \cdot 9=3 \cdot 6 \\
35=5 \cdot 7 \\
52=4 \cdot 13 \\
69=3 \cdot 23 \\
\text { etc. }
\end{gathered}
$$

However one proceeds, the answer is

$$
S=\{2,9\} \cup\{3,6\} \cup\{4,13\} \cup\{5,7\} \cup\{8,15\} \cup\{10,12\} \cup\{11,14\} .
$$

2. Let n be a positive integer with prime factorization

$$
n=2^{n_{2}} 3^{n_{3}} 5^{n_{5}} 7^{n_{7}} 11^{n_{11}} \cdots
$$

Using unique factorization into primes, prove that \sqrt{n} is a rational number if and only if each of the exponents $n_{2}, n_{3}, n_{5}, n_{7}, n_{11}, \ldots$ is an even number. Do not use negative or fractional exponents in your proof.

Proof: Assume \sqrt{n} is rational. Then $\sqrt{n}=p / q$ for some $p, q \in \mathbb{Z}^{+}$. Therefore $n=p^{2} / q^{2}$ and $q^{2} n=p^{2}$. Write

$$
p=2^{p_{2}} 3^{p_{3}} 5^{p_{5}} 7^{p_{7}} 11^{p_{11}} \cdots
$$

and

$$
q=2^{q_{2}} 3^{q_{3}} 5^{q_{5}} 7^{q_{7}} 11^{q_{11}} \cdots .
$$

Then

$$
2^{2 q_{2}+n_{2}} 3^{2 q_{3}+n_{3}} 5^{2 q_{5}+n_{5}} 7^{2 q_{7}+n_{7}} 11^{2 q_{11}+n_{11}} \cdots=2^{2 p_{2}} 3^{2 p_{3}} 5^{2 p_{5}} 7^{2 p_{7}} 11^{2 p_{11}} \cdots
$$

Comparing the exponents, $2 q_{i}+n_{i}=2 p_{i}$ for each i, hence $n_{i}=2 p_{i}-2 q_{i}$ for each i, hence each n_{i} is an even number.

Conversely, assume each n_{i} is an even number. Write $n_{i}=2 m_{i}$ for each i. Then

$$
\begin{gathered}
n=2^{2 m_{2}} 3^{2 m_{3}} 5^{2 m_{5}} 7^{2 m_{7}} 11^{2 m_{11}} \cdots, \\
\sqrt{n}=2^{m_{2}} 3^{m_{3}} 5^{m_{5}} 7^{m_{7}} 11^{m_{11}} \cdots,
\end{gathered}
$$

Hence \sqrt{n} is rational.
3. Without using a calculator, find the remainder of 3^{1002} after division by 101.

Solution: Since 101 is a prime number and does not divide 3, by Fermat's Theorem we have $3^{100} \equiv 1 \bmod 101$. Raising both sides to the $10^{\text {th }}$ power, this implies $3^{1000} \equiv 1 \bmod 101$. Multiplying through by 3^{2} yields $3^{1002} \equiv 9$ $\bmod 101$. Hence the remainder is 9 .
4. Recall that the order of $x \bmod p$ is the smallest positive integer k such that $x^{k} \equiv 1 \bmod p$. Let $S=\{1,2,3,4,5,6\}$.
(a) Find the order of each x in $S \bmod 7$.
(b) Based on your calculations for (a), find a number g in S having the following property: $\forall x \in S: \exists k \in \mathbb{Z}^{+}: x \equiv g^{k} \bmod 7$.

Solution: Taking each x and forming $x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6} \bmod 7$, we obtain
$1,1,1,1,1,1:$ order 1
$2,4,1,2,4,1:$ order 3
$3,2,6,4,5,1:$ order 6
$4,2,1,4,2,1:$ order 3
$5,4,6,2,3,1:$ order 6
$6,1,6,1,6,1:$ order 2.

The number g can be any number with order 6 . So $g=3$ and $g=5$ both work. Using $g=3$, we have

$$
\begin{aligned}
& 1 \equiv 3^{6} \\
& 2 \equiv 3^{2} \\
& 3 \equiv 3^{1} \\
& 4 \equiv 3^{4} \\
& 5 \equiv 3^{5} \\
& 6 \equiv 3^{3}
\end{aligned}
$$

5. Define a relation on \mathbb{Z} via $a \sim b$ if and only if $2 \mid\left(a^{2}-b\right)$. Decide whether or not \sim is an equivalence relation. If it is, describe all the distinct equivalence classes.

Solution: Since $a^{2} \equiv a \bmod 2$ for all a using Fermat's theorem or just by thinking about even and odd numbers, we have $a \sim b$ if and only if $a \equiv b$ mod 2. This is a known equivalence equation whose equivalence classes are [0] and [1]: the even integers and the odd integers.

