Vector Spaces Lecture

Abelian group: a set G and an addition operator on the set. Addition is associative and commutative. There must be an identity element and each element must have an additive inverse.

Examples: Integers, rationals, reals, complexes, modulus groups.
Field: an abelian group with a multiplication operator on the set. Multiplication is associative and commutative. There must be an identity element and each non-zero element must have an additive inverse.

Examples: rationals, reals, complexes, prime-modulus groups.
Vector Space over a field: an abelian group with a scalar multiplication defined. the scalar multiplication must satisfy $(r s) \cdot v=r \cdot(s \cdot v), 1 \cdot v=v$, $r \cdot(v+w)=(r \cdot v)+(s \cdot v)$.
Examples: F^{n} where F is a field, solutions in F^{n} to a system of homogeneous equations, real-valued functions defined on a interval, continuous real-valued functions defined on an interval, polynomial functions, polynomial functions that send a subset of values to zero.

Subspaces. Examples: see preceeding paragraph.
Sums of subspaces.
Direct sums of subspaces: each element is a unique sum of elements in the summand subspaces.
Properties of polynomial functions of a field: Degree of a polynomial. Division algorithm. If a is a root of $p(x)$ then $p(x)=(x-a) q(x)$. Therefore a polynomial can only have a finite number of roots. Therefore the coefficients of a polynomial function of an infinite field are unique. Not true in the case of a prime-modulus field since $x^{p}=x$ where p is the modulus of the field. Every complex polynomial function has a root (Math 641), hence every complex polynomial function can be factored into linear factors. If z is a complex root of $p(x) \in \mathbb{R}[x]$ then so is \bar{z}. Hence the complex roots appear in complex conjugate pairs. Hence a real polynomial can be factored into linear and quadratic factors.

A direct sum example: real polynomials can be decomposed into U_{e}, and U_{o} where U_{e} is the span of $\left\{1, x^{2}, x^{4}, \ldots\right\}$ and U_{o} is the span of $\left\{x, x^{3}, x^{5}, \ldots\right\}$. This is not true when the field is \mathbb{Z}_{2} since $x=x^{2}$ is a non-zero vector in $U_{o} \cap U_{e}$.

Abstract properties of vector spaces: see the propositions and the exercises.

