
Operators on Inner-Product Spaces

Self-Adjoint: T ∗ = T .

Normal: TT ∗ = T ∗T .

Positive: Self-adjoint and 〈Tv, v〉 ≥ 0 for all v.

Isometry: ||Tv|| = ||v|| for all v.

Let V be a finite-dimensional inner-product space. We wish to character-
ize those linear operators T : V → V that have an orthonormal basis of
eigenvectors.

Complex Spectral Theorem: When V is a complex vector space, V has
an orthonormal basis of eigenvectors with respect to a linear operator T if
and only if T is normal.

Proof: If V has an orthonormal basis of eigenvectors with respect to a linear
operator T then T has a diagonal matrix representation A, which implies
m(T ∗) = A∗ with respect to the same basis. Since the matrix representations
of T and T ∗ are diagonal, they commute, hence T commutes with T ∗.

Conversely, suppose TT ∗ = T ∗T . Since V is a complex vector space, T has
an upper-triangular matrix representation A with respect to an orthonormal
basis (method: apply Gram-Schmidt to an upper-triangular basis). It will
suffice to show that this matrix is diagonal. It will further suffice to show
that ||Ri||2 = ||Ci||2 for each i. Let {u1, . . . , un} be the orthonormal basis.
We must show ||T ∗ei||2 = ||Tei||2 for all i. However, for any v ∈ V ,

||T ∗v||2 = 〈T ∗v, T ∗v〉 = 〈TT ∗v, v〉 = 〈T ∗Tv, v〉 =

= 〈Tv, Tv〉 = ||Tv||2.

Real Spectral Theorem: When V is a real vector space, V has an or-
thonormal basis of eigenvectors with respect to a linear operator T if and
only if T is self-adjoint.

Proof: If V has an orthonormal basis of eigenvectors with respect to a real
operator T then T has a diagonal matrix representation A which satisfies
AT = A. This implies that T is self-adjoint.

Conversely, suppose that a real operator T : V → V is self-adjoint. We will
define a complex normal operator S : W → W , use the Complex Spectral
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Theorem to find an orthonormal basis of eigenvectors for W , and use this to
find an orthonormal basis of eigenvectors for V .

Let W = V × V with scalar multiplication defined by

(a+ bi)(v, w) = (av − bw, aw + bv)

and inner product defined by

〈(v1, w1), (v2, w2)〉 = (〈v1, v2〉+ 〈w1, w2〉) + i(−〈v1, w2〉+ 〈w1, v2〉).

Let S : W → W be defined by

S(v, w) = (Tv, Tw).

S is self-adjoint, hence normal, hence V × V has an orthonormal basis of
eigenvectors {(v1, w1), . . . , (vn, wn)}. The equation S(v, w) = (a + bi)(v, w)
implies T (v) = av − bw and T (w) = aw + bv. Making these substitutions
into 〈Tv, w〉 = 〈v, Tw〉 and rearranging yields b(〈v, v〉 + 〈w,w〉) = 0. This
forces b = 0. Hence for each (vi, wi) there is a real number ai such that
Tvi = aivi and Twi = aiwi. Since {(v1, w1), . . . , (vn, wn)} is a basis for V ×V
over C, every (x, 0) is in the span of {(v1, w1), . . . , (vn, wn)} over C, which
implies that each x ∈ V is in the span of {v1, w1, . . . , vn, wn} over R. Hence
V has a basis which is a subset of {v1, w1, . . . , vn, wn}, hence V has a basis
of eigenvectors of T .

Now let Ba be the set of those basis eigenvectors corresponding to eigen-
value a. Applying Gram-Schmidt to these produces an orthonormal set of
eigenvectors Oa corresponding to eigenvalue a. If u and v are eigenvectors
corresponding to distinct eigenvalues of T then they are orthogonal to each
other: suppose Tu = au and Tv = bv where a 6= b. Then

a〈u, v〉 = 〈au, v〉 = 〈Tu, v〉 =

〈u, Tv〉 = 〈u, bv〉 = b〈u, v〉.
This forces 〈u, v〉 = 0. The union of the Oa bases forms an orthonormal
eigenvector basis of V .

Remark: Taken together, the two spectral theorems yield an algorithm for
finding an orthonormal basis of eigenvectors for an inner product space V
given a linear operator T : V → V which is normal (V complex) or self-
adjoint (V real): First, find all the eigenvalues of T . Second, compute each
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eigenspace. Since V has in principle an orthonormal basis of eigenvectors,
V is the sum of its eigenspaces. Since eigenvectors corresponding to distinct
eigenvalues are linearly independent, the sum is direct. Hence the union
of the eigenspace bases forms a basis of eigenvectors for V . When V is
complex and T is normal we know that applying Gram-Schmidt to a basis of
eigenvectors produces an orthonormal basis of eigenvectors since the original
basis produces an upper-triangular matrix representation. When V is real
and T is self-adjoint we know that eigenvectors corresponding to distinct
eigenvalues are orthogonal, so applying Gram-Schmidt to a eigenvector basis
produces an orthonormal eigenvector basis. To summarize, in either case we
find a basis for each eigenspace, then apply Gram-Schmidt to the union of
these bases.

Characterization of Real Normal Linear Operators: Let T : V → V
be a normal operator on a real inner product space V . We will show that T
has a block-diagonal matrix representation with respect to an orthonormal
basis, where each of the blocks has dimension ≤ 2 and each of the blocks

of dimension 2 has the form

[
a −b
b a

]
. We can use an induction argument:

for dimension 1 this is trivial. More generally, find an invariant subspace
U of dimension ≤ 2, find an orthonormal basis for it, and expand to an
orthonormal basis for V . The matrix representation of T restricted to U has
the desired form, using the algebra steps which appear in the proof of the
Complex Spectral Theorem. The same algebra steps can be used to show

that the matrix representation of T with respect to this basis is

[
A1 0
0 B

]
.

So we have the foundation for an induction argument: we have decomposed
V into U

⊕
U⊥ where T maps U into U and U⊥ into U⊥ and the matrix

representation of T restricted to these invariant subspaces are A1 and B
and U has dimension ≤ 2. The induction hypothesis enables us to find
an orthonormal basis for U⊥ of the desired form, and adding these vectors
to the orthonormal basis for U produces the desired orthonormal basis for
V . Conversely, if T has such a matrix representation with respect to an
orthonormal basis then it is normal. Note also that T is normal but not self-

adjoint if and only if T has at least one 2×2 block of the form

[
a −b
b a

]
with

b 6= 0. By replacing one basis vector with its additive inverse if necessary we
can assume b > 0.
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(Note: if T is represented by

[
a11 a12
a21 a22

]
with respect to the basis {u1, u2}

then it is represented by the matrix

[
a11 (β/α)a12

(α/β)a21 a22

]
with respect to

the basis {αu1, βu2}.)
Characterization of Positive Operators: An operator T : V → V on a
complex or real finite-dimensional inner product space is said to be positive
if it is self-adjoint and satisfies 〈Tv, v〉 ≥ 0 for each v ∈ V . We know that
the self-adjoint operators are precisely those that have a diagonal matrix
representation with respect to some orthonormal basis of eigenvectors, where
the diagonal entries rii are real numbers. The equation

〈T (
∑
i

αiei),
∑
i

αiei〉 =
∑
i

rii|αi|2 ≥ 0

holds for all choices of (α1, . . . , αn), which happens if and only if the diag-
onal entries are non-negative real numbers. So the positive operators are
precisely those that have a diagonal matrix representation with respect to
some orthonormal basis of eigenvectors, in which the diagonal entries (i.e.
the eigenvalues) are all non-negative. Theorem 7.27 is a list of equivalent
conditions for a positive operator T .

Given this characterization, each positive operator has a positive square root:
just use the same orthonormal basis of eigenvectors, but let the matrix rep-
resentation be that in which the the diagonal entries are replaced by their
non-negative square roots. This square root is unique: let T be a positive
operator and let S be a positive operator that satisfies S2 = T . Computing
S on the eigenvector basis yields Sv =

√
λv where Tv = λv. This determines

S. Notation: S =
√
T .

For any linear operator T : V → V on an inner product space V , the operator
T ∗T is always positive: 〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ||Tv||2 ≥ 0. Hence one can
always construct

√
T ∗T . The map

√
T ∗T has some interesting properties:

1. For all u, v ∈ V , 〈
√
T ∗Tu,

√
T ∗Tv〉 = 〈Tu, Tv〉. Proof:

〈
√
T ∗Tu,

√
T ∗Tv〉 = 〈T ∗Tu, v〉 = 〈Tu, Tv〉.

2. null(
√
T ∗T ) = null(T ). Proof: First note that null(T ) ⊆ null(T ∗T ). On

the other hand, if u ∈ null(T ∗T ) then T ∗Tu = 0, hence 〈T ∗Tu, u〉 = 0,
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therefore 〈Tu, Tu〉 = 0, therefore ||Tu||2 = 0, therefore Tu = 0, there-
fore u ∈ null(T ). Hence null(T ) = null(T ∗T ). Using the diagonal matrix
representation of T ∗T we can show that null(T ∗T ) = null(

√
T ∗T ). Hence

null(T ) = null(
√
T ∗T ).

3. rank(
√
T ∗T ) = rank(T ). Proof: This follows from #2 above and the

Rank-Nullity Theorem.

Isometries: An operator S : V → V on a complex or real finite-dimensional
inner product space is said to be an isometry if satisfies ||Sv|| = ||v|| for each
v ∈ V .

Theorem: The following are equivalent:

(a) S : V → V is an isometry.

(b) For all u, v ∈ V , 〈Su, Sv〉 = 〈u, v〉.

(c) S∗S = I.

(d) S maps an orthonormal basis to an orthonormal basis.

Proof: (a) implies (b): Assume that S is an isometry. Expanding the
equation

||S(λu+ v)||2 = ||λu+ v||2

yields
2Re(λ〈Su, Sv〉) = 2Re(λ〈u, v〉).

If V is real then (b) holds. If V is complex then setting λ = 1, then λ = i,
we see that (b) holds.

(b) implies (c): Assume that S satisfies 〈Su, Sv〉 = 〈u, v〉 for all u, v ∈ V .
Then

〈S∗Su, v〉 = 〈u, v〉,

therefore
〈(S∗S − I)u, v〉 = 0.

Setting v = (S∗S − I)u we obtain

||(S∗S − I)u|| = 0

for all u ∈ V , hence S∗S = I.
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(c) implies (d): Assume that S∗S = I. Let {e1, . . . , en} be an orthormal
basis for V . Then

〈Sei, Sej〉 = 〈S∗Sei, ej〉 = 〈ei, ej〉

for all i and j, hence {Se1, . . . , Sen} is orthonormal.

(d) implies (a): Assume that S maps the orthonormal basis {e1, . . . , en} into
the orthonormal basis {f1, . . . , fn}. Then 〈Sei, Sej〉 = 〈ei, ej〉 for all i and i,
which implies 〈Su, Sv〉 = 〈u, v〉 for all u, v ∈ V . This implies ||Sv|| = ||v||
for all v.

Note that S∗S = I implies that isometries are normal. We have already char-
acterized normal operators above: complex normal operators have a diagonal
matrix representation with respect to an orthonormal basis of eigenvectors,
and real normal operators have a block-diagonal matrix representation in

which the 2 × 2 blocks are of the form

[
a −b
b a

]
. The equation SS∗ = I

implies that the 1-dimensional blocks have norm 1 and the 2-dimensional

blocks can be assumed to be in the form

[
cos θ − sin θ
sin θ cos θ

]
for some θ ∈ (0, π)

(where some of the othornormal basis vectors may need to be replaced by
their additive inverses). Conversely, if a linear operator as a matrix repre-
sentation of this form with respect to an orthonormal basis then it satisfes
S∗S = I hence it is an isometry.

Polar Decomposition and Singular Decomposition

Theorem 7.41 (Polar Decomposition of a Linear Operator): Let T
be a linear operator on a finite-dimensional inner product space V . Then
there is an isometry S ∈ L(V ) such that T = S

√
T ∗T .

Proof: The operator
√
T ∗T maps V onto range(

√
T ∗T ). The mapping

S0 : range(
√
T ∗T )→ range(T ) defined by

S0(
√
T ∗Tv) = Tv

is well-defined, because if
√
T ∗Tv1 =

√
T ∗Tv2

then √
T ∗T (v1 − v2) = 0,

6



therefore
〈
√
T ∗T (v1 − v2),

√
T ∗T (v1 − v2)〉 = 0,

therefore
〈T (v1 − v2), T (v1 − v2) = 0,

therefore
Tv1 = Tv2.

Moreover,

〈S0(
√
T ∗Tu), S(

√
T ∗Tv)〉 = 〈Tu, Tv〉 = 〈

√
T ∗Tu,

√
T ∗Tv〉.

Hence S0 is an inner-product preserving linear map. Since rank(
√
T ∗T ) =

rank(T ), range(
√
T ∗T )⊥ and range(T )⊥ have the same dimension. Let {e1, . . . , ek}

be an orthonormal basis for range(
√
T ∗T )⊥ and let {f1, . . . , fk} be an or-

thonormal basis for range(T )⊥. We will extend S0 to a linear map S : V → V
by declaring that Sei = fi for each i. By construction, 〈Su, Sv〉 = 〈u, v〉 for
each u, v ∈ V , therefore S is an isometry. By construction, T = S

√
T ∗T .

Note that if we choose an orthonormal basis of eigenvectors for
√
T ∗T of the

form {e1, . . . , en} then we have T (ei) = S
√
T ∗Tei = Ssiei = siSei. Setting

fi = Sei for each i, the matrix representation of T with respect to the pair
of orthonormal bases {e1, . . . , en} and {f1, . . . , fn} is diag(s1, . . . , sn). This
choice of bases is called the Singular Value Decomposition of T .

Miscellaneous Results:

Proposition 7.1: Every eigenvalue of a self-adjoint operator is real.

Proof: Let T : V → V be self-adjoint and V a complex vector space. Then
T is normal and has a diagonal matrix representation A. Since A = A∗, its
diagonal entries are real, hence the eigenvalues of T are real.

Proposition 7.3: Let T : V → V be a linear operator on a complex inner-
product space. Then T is self-adjoint if and only if 〈Tv, v〉 ∈ R for all v ∈ V .

Proof: Assume T is self-adjoint. Then it is normal, hence has a diago-
nal matrix representation with real diagonal entries rii with respect to an
orthonormal basis of eigenvectors. This implies

〈T (
∑
i

αiei),
∑
i

αiei〉 =
∑
i

rii|αi|2 ∈ R.
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Conversely, if 〈Tv, v〉 ∈ R for all v ∈ V then

〈Tv, v〉 = 〈v, Tv〉 = 〈v, Tv〉,

hence T is self-adjoint.

Proposition 7.4: If T is a self-adjoint operator on V such that 〈Tv, v〉 = 0
for all v ∈ V then T = 0.

Proof: T has a diagonal matrix representation with respect to an orthonor-
mal basis of eigenvectors. Then

〈T (
∑
i

αiei),
∑
i

αiei〉 =
∑
i

rii|αi|2 = 0

holds for all choices of (α1, . . . , αn). This implies that all the eigenvalues rii
are 0, which implies that T is represented by the 0 matrix, which says T = 0.

Proposition 7.6: A linear operator T : V → V on an inner-product space
is normal if and only if ||Tv|| = ||T ∗v|| for all v.

Proof: T is normal iff T ∗T − TT ∗ = 0 iff 〈(T ∗T − TT ∗)v, v〉 = 0 iff
〈T ∗Tv, v〉 = 〈TT ∗v, v〉 iff 〈Tv, Tv〉 = 〈T ∗v, T ∗v〉 iff ||Tv|| = ||T ∗v|| for all
v.

Corollary 7.7: Let T : V → V be normal. Then v is an eigenvector of
T with respect to eigenvalue λ if and only if v is an eigenvector of T ∗ with
respect to eigenvalue λ.

Proof: Let v be an eigenvector of T . Then ||(T − λI)v|| = 0. Since T is
normal, T −λI is normal with (T −λI)∗ = T ∗−λI. Hence ||(T ∗−λ)v|| = 0.
This makes v an eigenvector of T ∗ with eigenvalue λ. The converse holds as
well.

Proposition 7.8: Let T : V → V be normal. Eigenvectors corresponding
to distinct eigenvalues of T are orthogonal.

Proof: Suppose Tu = αu and Tv = βv where α 6= β. Then

α〈u, v〉 = 〈Tu, v〉 = 〈u, T ∗v〉

= 〈u, βv〉 = β〈u, v〉.
Hence 〈u, v〉 = 0.
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