Linear Maps

Definition

Examples: Identity, differentiation, integration, multiplication by x^{2}, backward shift
Algebra: Vector space with an associative product of vectors. Moreover $X(a Y)=a(X Y)$.
The algebra of linear operators from V to V : multiplication given by function composition. Notation: $\mathcal{L}(V)$.
Nullspace and range of a linear operator. These are subspaces of domain and codomain. Dimensions are called rank and nullity.

Theorem: A linear operator is injective iff its nullspace is trivial.
Rank-Nullity Theorem: Given a linear operator $T: V \rightarrow W$,

$$
\operatorname{dim} V=\operatorname{rank}+\text { nullity }
$$

Proof: Find a basis $\left\{n_{1}, \ldots, n_{a}\right\}$ for the nullspace and a basis $\left\{y_{1}, \ldots, y_{b}\right\}$ for the range. Pull the range basis back to the codomain, yielding $\left\{x_{1}, \ldots, x_{b}\right\}$ where $T x_{i}=y_{i}$. Verify that a basis for V is $\left\{n_{1}, \ldots, n_{a}, x_{1}, \ldots, x_{b}\right\}$: Let $v \in V$. Then $T v=\sum_{i} a_{i} y_{i}$, therefore $T \sum_{i} a_{i} x_{i}=T v$, therefore $\sum_{i} a_{i} x_{i}-v \in$ nullspace, therefore $\sum_{i} a_{i} x_{i}-v=\sum_{i} b_{i} n_{i}$, hence v is spanned by these vectors. Moreover $\sum_{i} a_{i} n_{i}+\sum_{i} b_{i} x_{i}=0$ implies $\sum_{i} b_{i} y_{i}=0$, hence each $b_{i}=0$, hence each $a_{i}=0$.
Corollary: A linear map is injective if and only if the dimension of its domain is equal to the dimension of its range. A linear map is surjective if and only if the dimension of its range is equal to the dimension of its codomain. A linear map is bijective if and only if domain, range, and codomain have the same dimension. For a linear map $T: V \rightarrow V$, if T is injective then $\operatorname{dim} V=$ rank, hence domain, range, and codomain have the same dimension, hence T is bijective. The same is true of a surjective map $T: V \rightarrow V$. Hence injective, surjective, and bijective are all equivalent for $T \in \mathcal{L}(V, V)$. Note that the inverse of a bijective linear map is also linear.
Isomorphic Vector Spaces: A pair of vector spaces with a bijective linear map from one to the next. Two vector spaces are isomorphic if and only if they have the same dimension. To construct an isomorphism, map a basis to another basis.

Counting Solutions to a linear system of equations: If A is an $m \times n$ matrix and x is an $n \times 1$ column vector, then $A x$ is the $m \times 1$ column vector consisting of the linear combination of the columns of A using the entries of x. Hence any linear system of equations can be expressed in the form $A x=b$. This gives rise to a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ via $T x=A x$. The range of T is the span of the columns of A, hence rank $\leq n$. So if $m>n$ the map is not surjective. In other words, too many equations implies some solutions to $A x=b$ don't exist. Also, if $m<n$ then the map can't be injective, so there must be some non-trivial solution to $A x=0$. (Or: there are more column vectors than the dimension of the space they live in, so they are linearly dependent.) Solutions to $A x=b$ always exist and are unique (both) if and only of $m=n$.
The matrix of a linear map: Let $T: V \rightarrow W$ be linear with V-basis $\left\{v_{1}, \ldots, v_{m}\right\}$ and W-basis $\left\{w_{1}, \ldots, w_{n}\right\}$. Suppose that for each v_{j},

$$
T v_{j}=\sum_{i} a_{i j} w_{i} .
$$

We say that $m(T)=\left(a_{i j}\right)$. For a vector $v=\sum_{i} x_{i} v_{i} \in V$ we write

$$
m(v)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]
$$

For a vector $w=\sum_{i} y_{i} w_{i} \in W$ we write

$$
m(w)=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

With these conventions we have

$$
m(T v)=m(T) m(v)
$$

Proof: Write $m(v)=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{m}\end{array}\right]$ and $m(T v)=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$. Then

$$
T v=T\left(\sum_{j} x_{j} v_{j}\right)=\sum_{j} x_{j} T v_{j}=\sum_{j} x_{j}\left(\sum_{i} a_{i j} w_{i}\right)=\sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) w_{i},
$$

which implies

$$
y_{i}=\sum_{j} a_{i j} x_{j}
$$

for each i. In other words,

$$
m(T v)=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left(a_{i j}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=m(T) m(v) .
$$

The matrix of a composition of linear maps: Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be linear maps with U-basis $\left\{u_{i}\right\}, V$-basis $\left\{v_{i}\right\}$, and W-basis $\left\{w_{i}\right\}$. Then $S T: U \rightarrow W$ satisfies $m(S T)=m(S) m(T)$.
Proof: $m(S T u)=m(S) m(T u)=m(S) m(T) m(u)$ for all u. In particular, $m\left(S T u_{i}\right)=m(S) m(T) m\left(u_{i}\right)=m(S) m(T) e_{i}=$ column i of $m(S) m(T)$. This implies that $m(S T)=m(S) m(T)$.
The dimension of $\mathcal{L}(V, W)$: There is an isomorphism between $\mathcal{L}(V, W)$ and the appropriate size matrices which represent these linear maps. This yields

$$
\operatorname{dim} \mathcal{L}(V, W)=\operatorname{dim} V \cdot \operatorname{dim} W
$$

