
Linear Maps

Definition

Examples: Identity, differentiation, integration, multiplication by x2, back-
ward shift

Algebra: Vector space with an associative product of vectors. Moreover
X(aY ) = a(XY ).

The algebra of linear operators from V to V : multiplication given by
function composition. Notation: L(V ).

Nullspace and range of a linear operator. These are subspaces of
domain and codomain. Dimensions are called rank and nullity.

Theorem: A linear operator is injective iff its nullspace is trivial.

Rank-Nullity Theorem: Given a linear operator T : V → W ,

dimV = rank + nullity.

Proof: Find a basis {n1, . . . , na} for the nullspace and a basis {y1, . . . , yb} for
the range. Pull the range basis back to the codomain, yielding {x1, . . . , xb}
where Txi = yi. Verify that a basis for V is {n1, . . . , na, x1, . . . , xb}: Let
v ∈ V . Then Tv =

∑
i aiyi, therefore T

∑
i aixi = Tv, therefore

∑
i aixi−v ∈

nullspace, therefore
∑

i aixi − v =
∑

i bini, hence v is spanned by these
vectors. Moreover

∑
i aini +

∑
i bixi = 0 implies

∑
i biyi = 0, hence each

bi = 0, hence each ai = 0.

Corollary: A linear map is injective if and only if the dimension of its
domain is equal to the dimension of its range. A linear map is surjective if and
only if the dimension of its range is equal to the dimension of its codomain.
A linear map is bijective if and only if domain, range, and codomain have
the same dimension. For a linear map T : V → V , if T is injective then
dimV = rank, hence domain, range, and codomain have the same dimension,
hence T is bijective. The same is true of a surjective map T : V → V . Hence
injective, surjective, and bijective are all equivalent for T ∈ L(V, V ). Note
that the inverse of a bijective linear map is also linear.

Isomorphic Vector Spaces: A pair of vector spaces with a bijective linear
map from one to the next. Two vector spaces are isomorphic if and only if
they have the same dimension. To construct an isomorphism, map a basis
to another basis.

1



Counting Solutions to a linear system of equations: If A is an m× n
matrix and x is an n× 1 column vector, then Ax is the m× 1 column vector
consisting of the linear combination of the columns of A using the entries of
x. Hence any linear system of equations can be expressed in the form Ax = b.
This gives rise to a linear map T : Rn → Rm via Tx = Ax. The range of T
is the span of the columns of A, hence rank ≤ n. So if m > n the map is
not surjective. In other words, too many equations implies some solutions to
Ax = b don’t exist. Also, if m < n then the map can’t be injective, so there
must be some non-trivial solution to Ax = 0. (Or: there are more column
vectors than the dimension of the space they live in, so they are linearly
dependent.) Solutions to Ax = b always exist and are unique (both) if and
only of m = n.

The matrix of a linear map: Let T : V → W be linear with V -basis
{v1, . . . , vm} and W -basis {w1, . . . , wn}. Suppose that for each vj,

Tvj =
∑
i

aijwi.

We say that m(T ) = (aij). For a vector v =
∑

i xivi ∈ V we write

m(v) =

x1
...
xm

 .

For a vector w =
∑

i yiwi ∈ W we write

m(w) =

y1...
yn

 .

With these conventions we have

m(Tv) = m(T )m(v).

Proof: Write m(v) =

x1
...
xm

 and m(Tv) =

y1...
yn

. Then

Tv = T (
∑
j

xjvj) =
∑
j

xjTvj =
∑
j

xj(
∑
i

aijwi) =
∑
i

(
∑
j

aijxj)wi,
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which implies

yi =
∑
j

aijxj

for each i. In other words,

m(Tv) =

y1...
yn

 = (aij)

x1
...
xm

 = m(T )m(v).

The matrix of a composition of linear maps: Let T : U → V and
S : V → W be linear maps with U -basis {ui}, V -basis {vi}, and W -basis
{wi}. Then ST : U → W satisfies m(ST ) = m(S)m(T ).

Proof: m(STu) = m(S)m(Tu) = m(S)m(T )m(u) for all u. In particular,
m(STui) = m(S)m(T )m(ui) = m(S)m(T )ei = column i of m(S)m(T ). This
implies that m(ST ) = m(S)m(T ).

The dimension of L(V,W ): There is an isomorphism between L(V,W ) and
the appropriate size matrices which represent these linear maps. This yields

dimL(V,W ) = dimV · dimW.
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