Linear Maps

Definition

Examples: Identity, differentiation, integration, multiplication by 2, back-
ward shift

Algebra: Vector space with an associative product of vectors. Moreover
X(aY) =a(XY).

The algebra of linear operators from V' to V: multiplication given by
function composition. Notation: £(V).

Nullspace and range of a linear operator. These are subspaces of
domain and codomain. Dimensions are called rank and nullity.

Theorem: A linear operator is injective iff its nullspace is trivial.

Rank-Nullity Theorem: Given a linear operator 7' : V. — W
dim V' = rank + nullity.

Proof: Find a basis {ni, ..., n,} for the nullspace and a basis {y1, ..., ys} for
the range. Pull the range basis back to the codomain, yielding {x1,..., 2y}
where Tz; = y;. Verify that a basis for V' is {ny,...,ng,x1,...,2p}: Let
ve V. Then Tv = ), a;y;, therefore T'Y , a;x; = T, therefore ) . a;z;,—v €
nullspace, therefore ) . a;,xz; —v = ) bin,;, hence v is spanned by these
vectors. Moreover » . a;n; + >, bjxz; = 0 implies ). b;y; = 0, hence each
b; = 0, hence each a; = 0.

Corollary: A linear map is injective if and only if the dimension of its
domain is equal to the dimension of its range. A linear map is surjective if and
only if the dimension of its range is equal to the dimension of its codomain.
A linear map is bijective if and only if domain, range, and codomain have
the same dimension. For a linear map 7' : V — V if T is injective then
dim V' = rank, hence domain, range, and codomain have the same dimension,
hence T'is bijective. The same is true of a surjective map 7" : V' — V. Hence
injective, surjective, and bijective are all equivalent for 7' € L(V, V). Note
that the inverse of a bijective linear map is also linear.

Isomorphic Vector Spaces: A pair of vector spaces with a bijective linear
map from one to the next. Two vector spaces are isomorphic if and only if
they have the same dimension. To construct an isomorphism, map a basis
to another basis.



Counting Solutions to a linear system of equations: If A is an m xn
matrix and x is an n x 1 column vector, then Az is the m x 1 column vector
consisting of the linear combination of the columns of A using the entries of
x. Hence any linear system of equations can be expressed in the form Az = b.
This gives rise to a linear map 7" : R” — R™ via Tx = Axz. The range of T’
is the span of the columns of A, hence rank < n. So if m > n the map is
not surjective. In other words, too many equations implies some solutions to
Ax = b don’t exist. Also, if m < n then the map can’t be injective, so there
must be some non-trivial solution to Az = 0. (Or: there are more column
vectors than the dimension of the space they live in, so they are linearly
dependent.) Solutions to Az = b always exist and are unique (both) if and
only of m = n.

The matrix of a linear map: Let T : V — W be linear with V-basis
{vi,..., v} and W-basis {wy, ..., w,}. Suppose that for each vj,

T?Jj: E Q5 Wy -
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We say that m(T") = (a;;). For a vector v =), x;u; € V we write

I ]
m(v) = |
Tm
For a vector w = ), y;w; € W we write
?/1-
m(w) = | :
Yn |

With these conventions we have

m(Tv) = m(T)m(v).
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Proof: Write m(v) = | : | and m(Tv) = | : |. Then
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J J J i i J

2



which implies

for each 7. In other words,

n T
m(Tv) = | i | = () | | =m(Dm(v),

Yn Tm

The matrix of a composition of linear maps: Let 7" : U — V and
S : V. — W be linear maps with U-basis {u;}, V-basis {v;}, and W-basis
{w;}. Then ST : U — W satisfies m(ST) = m(S)m(T).

Proof: m(STu) = m(S)m(Tu) = m(S)m(T)m(u) for all u. In particular,
m(STu;) = m(S)m(T)m(u;) = m(S)m(T)e; = column i of m(S)m(7T). This
implies that m(ST) = m(S)m(T).

The dimension of £(V,W): There is an isomorphism between L£(V, W) and
the appropriate size matrices which represent these linear maps. This yields

dim L(V, W) =dim V' - dim W.



