Inner-Product Spaces

Let V be a vector space over $F=\mathbb{R}$ or $F=\mathbb{C}$, finite or infinitedimensional. An inner product on V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow$ F which satisfies the following axioms:

1. Positive-Definiteness: $\langle v, v\rangle \geq 0$ for all $v \in V$, and $\langle v, v\rangle=0$ if and only if $v=0_{V}$.
2. Multilinearity: $\left\langle v+v^{\prime}, w\right\rangle=\langle v, w\rangle+\left\langle v^{\prime}, w\right\rangle$ and $\langle a v, w\rangle=$ $a\langle v, w\rangle$ for all $v, v^{\prime}, w \in V$ and $a \in W$.
3. Conjugate Symmetry: $\langle w, v\rangle=\overline{\langle v, w\rangle}$ for all $v, w \in V$.

Inner-Product Space: A real or complex vector space V equipped with an inner-product.
Note that axioms 2 and 3 imply $\langle v, a w\rangle=\bar{a}\langle v, w\rangle$ and $\left\langle v, w+w^{\prime}\right\rangle=$ $\langle v, w\rangle+\left\langle v, w^{\prime}\right\rangle$ for all $v, w \in V$ and $a \in F$.
Examples: The usual dot product on \mathbb{R}^{n}, the generalized dot product on \mathbb{C}^{n}, the inner-product on $P([a, b])$ defined by $\langle f, g\rangle=$ $\int_{a}^{b} f(x) g(x) d x$.
Norm: $\|v\|=\sqrt{\langle v, v\rangle}$. This satisfies $\|a v\|=|a| \cdot\|v\|$ where $|a|=\sqrt{a \bar{a}}$ is absolute value (if real) or length (if complex).
Orthogonal vectors: u_{1}, \ldots, u_{n} are mutually orthogonal iff $\left\langle u_{i}, u_{j}\right\rangle=0$ for all $i \neq j$.
Orthonormal vectors: u_{1}, \ldots, u_{n} are mutually orthonormal iff $\left\langle u_{i}, u_{j}\right\rangle=\delta_{i, j}$ for all i, j. In other words, they are mutually orthogonal and have length 1 .
Orthonormal projection: Let u_{1}, \ldots, u_{n} be mutually orthonormal. Let $U=\operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$. The linear operator $P: V \rightarrow U$ defined by $P v=\sum\left\langle v, u_{i}\right\rangle u_{i}$ is called orthonormal projection onto U.

Properties of orthogonal and orthonormal vectors:

1. Mutually orthogonal vectors u_{1}, \ldots, u_{n} are linearly independent.
Proof: Suppose $\sum a_{i} u_{i}=0_{V}$. Taking the inner product with u_{j} we obtain $0=\left\langle 0_{V}, u_{j}\right\rangle=\left\langle\sum a_{i} u_{i}, u_{j}\right\rangle=\sum a_{i}\left\langle u_{i}, u_{j}\right\rangle=$ $a_{j}\left\|u_{j}\right\|^{2}=a_{j}$.
2. Let u_{1}, \ldots, u_{n} be mutually orthogonal. Then $\left\|\sum u_{i}\right\|^{2}=$ $\sum\left\|u_{i}\right\|^{2}$. This is called the Pythagorean Theorem.
Proof: $\left\langle\sum u_{i}, \sum u_{i}\right\rangle=\sum\left\langle u_{i}, u_{j}\right\rangle=\sum\left\langle u_{i}, u_{i}\right\rangle$.
3. Let u_{1}, \ldots, u_{n} be mutually orthonormal. Then $\left\|\sum a_{i} u_{i}\right\|=$ $\sqrt{\sum\left|a_{i}\right|^{2}}$.
Proof: $\left\langle\sum a_{i} u_{i}, \sum a_{i} u_{i}\right\rangle=\sum a_{i} \overline{a_{j}}\left\langle u_{i}, u_{j}\right\rangle=\sum a_{i} \overline{a_{i}}$.
4. Let u_{1}, \ldots, u_{n} be mutually orthonormal. Let $U=\operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$. Then for any $u \in U, u=\sum\left\langle u, u_{i}\right\rangle u_{i}$. In other words, $u=P u$ where P is orthonormal projection onto U. This also implies $P^{2}=P$.
Proof: Write $u=\sum a_{i} u_{i}$. Then $\left\langle u, u_{j}\right\rangle=\left\langle\sum a_{i} u_{i}, u_{i}\right\rangle=$ $\sum a_{i}\left\langle u_{i}, u_{j}\right\rangle=a_{j}$.

Properties of orthonormal projection:

1. Let u_{1}, \ldots, u_{n} be mutually orthonormal. Let $U=\operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$. Then for any $v \in V$ and for any $u \in U, v-P v$ and u are orthogonal to each other, where P is orthonormal projection onto U.
Proof: For any $j,\left\langle P v, u_{j}\right\rangle=\left\langle\sum\left\langle v, u_{i}\right\rangle u_{i}, u_{j}\right\rangle=\sum\left\langle v, u_{i}\right\rangle\left\langle u_{i}, u_{j}\right\rangle=$ $\left\langle v, u_{j}\right\rangle$. Subtracting, $\left\langle v-P v, u_{j}\right\rangle=0$.
2. Let u_{1}, \ldots, u_{n} be mutually orthonormal. Let $U=\operatorname{span}\left(u_{1}, \ldots, u_{n}\right)$. Then for any $v \in V$, the unique vector $u \in U$ that minimizes $\|v-u\|$ is $P v$.

Proof: Let $u \in U$ be given. Then we know that $v-P v$ and $P v-$ u are orthogonal to each other. By the Pythagorean Theorem, $\|v-u\|^{2}=\|v-P v\|^{2}+\|P v-u\|^{2} \geq\|v-P v\|^{2}$, with equality iff $\|P v-u\|=0$ iff $u=P v$.
Theorem: Every finite-dimensional subspace of an inner product space has an orthonormal basis.

Proof: Let V be the inner product space. Let U be a subspace of dimension n. We prove that U has an orthonormal basis by induction on n.
Base Case: $n=1$. Let $\left\{u_{1}\right\}$ be a basis for U. Then $\left\{\frac{u_{1}}{\left\|u_{1}\right\|}\right\}$ is an orthonormal basis for U.
Induction Hypothesis: If U has dimension n then it has an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$.
Inductive Step: Let U be a subspace of dimension $n+1$. Let $\left\{v_{1}, \ldots, v_{n+1}\right\}$ be a basis for U. Write $U_{n}=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$. By the induction hypothesis, U_{n} has an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$. Let P be orthonormal projection onto U_{n}. Then the vectors $u_{1}, \ldots, u_{n}, v_{n+1}-P v_{n+1}$ are mutually orthogonal and form a basis for U. Setting

$$
u_{n+1}=\frac{v_{n+1}-P v_{n+1}}{\left\|v_{n+1}-P v_{n+1}\right\|},
$$

the vectors u_{1}, \ldots, u_{n+1} form an orthonormal basis for U.
Remark: The proof of this last theorem provides an algorithm (Gram-Schmidt) for producing an orthonormal basis for a finitedimensional subspace U : Start with any basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Set $u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}$. This is an orthonormal basis for $\operatorname{span}\left(v_{1}\right)$. Having found an orthonormal basis $\left\{u_{1}, \ldots, u_{k}\right\}$ for $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$, one
can produce an orthonormal basis for $\operatorname{span}\left(v_{1}, \ldots, v_{k+1}\right)$ by appending the vector

$$
u_{k+1}=\frac{v_{k+1}-P v_{k+1}}{\left\|v_{k+1}-P v_{k+1}\right\|},
$$

where P is orthonormal projection onto u_{1}, \ldots, u_{k}.
A Minimization Problem: Consider the problem of finding the best polynomial approximation $p(x) \in P_{5}([-\pi, \pi])$ of $\sin x$, where by best we mean that

$$
\int_{-\pi}^{\pi}(\sin x-p(x))^{2} d x
$$

is a small as possible. To place this in an inner-product setting, we consider $P_{5}([-\pi, \pi])$ to be a subspace of $C([-\pi, \pi])$, where the latter is the vector space of continuous functions from $[-\pi, \pi]$ to \mathbb{R}. Then $C([-\pi, \pi])$ has inner product defined by $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$. We are trying to minimize $\| \sin x-$ $p(x) \|^{2}$. However, we know how to minimize $\|\sin x-p(x)\|$: $p(x)=P(\sin x)$ where P is orthogonal projection onto the finitedimensional subspace $P_{5}([-\pi, \pi])$. The latter has basis

$$
\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}\right\}
$$

and Gram-Schmidt can be applied to produce an orthonormal basis

$$
\left\{u_{0}(x), u_{1}(x), u_{2}(x), u_{3}(x), u_{4}(x), u_{5}(x)\right\} .
$$

Therefore the best polynomial approximation is $\sum \alpha_{i} u_{i}(x)$ where

$$
\alpha_{i}=\left\langle\sin x, u_{i}(x)\right\rangle=\int_{-\pi}^{\pi} \sin x \cdot u_{i}(x) d x .
$$

The approximation to $\sin x$ given in the book on page 115 is

$$
\frac{x}{1.01229}-\frac{x^{3}}{6.44035}+\frac{x^{3}}{177.207},
$$

in contrast to the Taylor Polynomial

$$
\frac{x}{1}-\frac{x^{3}}{6}+\frac{x^{5}}{120} .
$$

Cauchy-Schwarz Inequality: $|\langle u, v\rangle| \leq\|u\| \cdot\|v\|$.
Proof: We have equality when u and v are linearly dependent. Now suppose u and v are linearly independent. Let $\left\{e_{1}, e_{2}\right\}$ be an orthonormal basis for $\operatorname{span}(u, v)$ and write $u=a_{1} e_{1}+a_{2} e_{2}$ and $v=b_{1} e_{1}+b_{2} e_{2}$. Then $|\langle u, v\rangle|=\left|a_{1} \overline{b_{1}}+a_{2} \overline{b_{2}}\right|$ and $\|u\| \cdot\|v\|=$ $\sqrt{a_{1} \overline{a_{1}}+a_{2} \overline{\overline{a_{2}}}} \sqrt{b_{1} \overline{b_{1}}+b_{2} \overline{b_{2}}}$, and we are reduced to proving the complex inequality

$$
\left|a_{1} \overline{b_{1}}+a_{2} \overline{b_{2}}\right| \leq \sqrt{a_{1} \overline{a_{1}}+a_{2} \overline{\overline{a_{2}}}} \sqrt{b_{1} \overline{b_{1}}+b_{2} \overline{b_{2}}} .
$$

Squaring both sides, this is equivalent to

$$
\left(a_{1} \overline{b_{1}}+a_{2} \overline{b_{2}}\right)\left(\overline{a_{1}} b_{1}+\overline{a_{2}} b_{2}\right) \leq\left(a_{1} \overline{a_{1}}+a_{2} \overline{a_{2}}\right)\left(b_{1} \overline{b_{1}}+b_{2} \overline{b_{2}}\right)
$$

which is equivalent to

$$
a_{1} \overline{b_{1}} \overline{a_{2}} b_{2}+a_{2} \overline{b_{2}} \overline{a_{1}} b_{1} \leq a_{1} \overline{a_{1}} b_{2} \overline{b_{2}}+a_{2} \overline{a_{2}} b_{1} \overline{b_{1}},
$$

which is equivalent to

$$
a_{1} \overline{a_{1}} b_{2} \overline{\bar{b}_{2}}+a_{2} \overline{a_{2}} b_{1} \overline{b_{1}}-a_{1} \overline{b_{1}} \overline{a_{2}} b_{2}-a_{2} \overline{b_{2}} \overline{a_{1}} b_{1} \geq 0,
$$

which is equivalent to

$$
\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(\overline{a_{1}} \overline{b_{2}}-\overline{a_{2}} \overline{b_{1}}\right) \geq 0,
$$

which is equivalent to

$$
\left|a_{1} b_{2}-a_{2} b_{1}\right|^{2} \geq 0
$$

which is true.
Triangle Inequality: $\|u+v\| \leq\|u\|+\|v\|$.
Proof: Square both sides and subtract the left-hand side from the right-hand side. The result is
$2||u\|\cdot\| v\|-\langle u, v\rangle-\langle v, u\rangle=2| | u\| \cdot\|v\|-2 \operatorname{Re}\langle u, v\rangle \geq 2\|u\| \cdot\|v\|-2|\langle u, v\rangle| \geq 0$
by Cauchy-Schwarz.
The Orthogonal Complement of a Subspace: Let V be a finite-dimensional inner-product space and let U be a subspace. We define

$$
U^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for all } u \in U\} .
$$

We can construct U^{\perp} explicitly as follows: Let $\left\{u_{1}, \ldots, u_{k}\right\}$ be an orthonormal basis for U. Expand to an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ for V using Gram-Schmidt. The vectors in $\operatorname{span}\left(u_{k+1}, \ldots, u_{n}\right)$ are orthogonal to the vectors in U. Moreover, for any $v \in U^{\perp}$, the coefficients of v in terms of the orthonormal basis are the inner product of v with each basis vector, which places $v \in \operatorname{span}\left(u_{k+1}, \ldots, u_{n}\right)$. Therefore $U^{\perp}=$ $\operatorname{span}\left(u_{k+1}, \ldots, u_{n}\right)$. This immediately implies that $\left(U^{\perp}\right)^{\perp}=$ $\operatorname{span}\left(u_{1}, \ldots, u_{k}\right)=U$. Note also that $V=U \bigoplus U^{\perp}$. To decompose a vector in V into something in U plus something in U^{\perp} we can use $v=P v+(v-P v)$.
Linear Functionals and Adjoints: If V is a finite-dimensional inner-product space with orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ and if $\phi: V \rightarrow F$ is a linear map then a simple calculation shows that $\phi(v)$ can be realized as inner-product with a fixed vector $v_{0}=\sum_{i} \phi\left(e_{i}\right) e_{i}:$
$\phi(v)=\phi\left(\sum\left\langle v, e_{i}\right\rangle e_{i}\right)=\sum\left\langle v, e_{i}\right\rangle \phi\left(e_{i}\right)=\sum\left\langle v, \overline{\phi\left(e_{i}\right)} e_{i}\right\rangle=\left\langle v, v_{0}\right\rangle$.

In particular, if W is a finite-dimensional inner-product space and $T: V \rightarrow W$ is a linear map and $w \in W$, then the linear functional $\phi_{w}: V \rightarrow F$ defined by $\phi_{w}(v)=\langle T v, w\rangle$ satisfies

$$
\begin{gathered}
\phi_{w}(v)=\sum\left\langle v, \overline{\phi_{w}\left(e_{i}\right)} e_{i}\right\rangle=\left\langle v, \sum_{i} \overline{\left\langle T e_{i}, w\right\rangle} e_{i}\right\rangle \\
=\left\langle v, \sum_{i}\left\langle w, T e_{i}\right\rangle e_{i}\right\rangle .
\end{gathered}
$$

This defines a linear map $T^{*}: W \rightarrow V$ via $T^{*}(w)=\sum_{i}\left\langle w, T e_{i}\right\rangle e_{i}$. In other words,

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle .
$$

This gives rise to the properties listed on pp. 119-120.
The matrix representations of T and T^{*} with respect to orthonormal bases $\left\{e_{i}\right\}$ and $\left\{f_{i}\right\}$ are conjugate transposes of each other: Assume that $M(T)=\left(t_{i j}\right)$ and $M\left(T^{*}\right)=\left(t_{i j}^{*}\right)$. Then

$$
\left\langle T e_{i}, f_{j}\right\rangle=\left\langle e_{i}, T^{*} f_{j}\right\rangle=\overline{\left\langle T^{*} f_{j}, e_{i}\right\rangle}
$$

implies

$$
t_{i j}=\overline{t_{j i}^{*}}
$$

implies

$$
t_{i j}^{*}=\overline{t_{j i}} .
$$

