Inner-Product Spaces

Let V be a vector space over F' = R or F' = C, finite or infinite-
dimensional. An inner product on V' is a function (-,-) : VxV —
F which satisfies the following axioms:

1. Positive-Definiteness: (v,v) > 0 for all v € V, and
(v,v) =0 if and only if v = Oy.

2. Multilinearity: (v + v, w) = (v,w) + (v, w) and (av,w) =
a{v,w) for all v,v",w € V and a € W.

3. Conjugate Symmetry: (w,v) = (v,w) for all v,w € V.
Inner-Product Space: A real or complex vector space V
equipped with an inner-product.

Note that axioms 2 and 3 imply (v, aw) = @(v, w) and (v, w + w') =
(v,w) + (v,w’) for all v,w € V and a € F.

Examples: The usual dot product on R”, the generalized dot
product on C", the inner-product on P([a, b]) defined by (f, g) =

b
Jo f(@)g(x) da.
Norm: ||v|| = /(v,v). This satisfies ||av|| = |a| - ||v|| where
la| = v aa is absolute value (if real) or length (if complex).

Orthogonal vectors: ui,...,u, are mutually orthogonal iff
(ui,uj) = 0 for all 4 # j.
Orthonormal vectors: wui,...,u, are mutually orthonormal

iff (u;,uj) = 9;; for all 4,j. In other words, they are mutually
orthogonal and have length 1.

Orthonormal projection: Let uq, ..., u, be mutually orthonor-
mal. Let U = span(uy,...,u,). The linear operator P : V — U
defined by Pv = > (v, u;)u; is called orthonormal projection
onto U.



Properties of orthogonal and orthonormal vectors:

1. Mutually orthogonal vectors uq,...,u, are linearly indepen-
dent.

Proof: Suppose > a;u; = 0y. Taking the inner product with
u; we obtain 0 = (Oy,u;) = O au,uj) = Y ai{u,uj) =
a;l|ug||* = a;.

2. Let uy,...,u, be mutually orthogonal. Then || > u|? =
S ||u;]|%. This is called the Pythagorean Theorem.

Proof: (3> u;, > wi) = (ui,u;) = (wi, wi).

3. Let uy,...,u, be mutually orthonormal. Then || > a;u;|| =
V2 lail?.

Proof: (3 aju;, Y aiuw) =) aa;(ui, uj) = ) a;a;.

4. Let uy, ..., u, be mutually orthonormal. Let U = span(uy, ..., uy,).
Then for any v € U, u = Y (u,u;)u;. In other words, u = Pu
where P is orthonormal projection onto U. This also implies
P2 =P.

Proof: Write u = ) aju;. Then (u,uj) = O aius,u;) =
> ai{ui, uj) = a;.

Properties of orthonormal projection:

1. Let uq, ..., u, be mutually orthonormal. Let U = span(u, ..., u,).
Then for any v € V and for any v € U, v — Pv and u are or-
thogonal to each other, where P is orthonormal projection onto

U.
Proof: Forany j, (Pv,u;) = O (v, uj)us, uj) = > (v, u;) (wi, uj) =
(v,u;). Subtracting, (v — Pv,u;) = 0.

2. Let uy, ..., u, be mutually orthonormal. Let U = span(uy, ..., uy).
Then for any v € V, the unique vector u € U that minimizes
l|v — u| is Po.



Proof: Let u € U be given. Then we know that v—Pv and Pv—
u are orthogonal to each other. By the Pythagorean Theorem,
v —ul|? = ||v — Pv||? + ||Pv — u||? > ||v — Pvl||?, with equality
iff ||Pv — ul| = 0 iff u = Pu.

Theorem: Every finite-dimensional subspace of an inner prod-
uct space has an orthonormal basis.

Proof: Let V be the inner product space. Let U be a subspace
of dimension n. We prove that U has an orthonormal basis by
induction on n.

Base Case: n = 1. Let {u1} be a basis for U. Then {2} is
an orthonormal basis for U.

Induction Hypothesis: If U has dimension n then it has an
orthonormal basis {uy, ..., u,}.

Inductive Step: Let U be a subspace of dimension n 4+ 1. Let
{v1,..., U451} be a basis for U. Write U,, = span(vy,...,v,). By
the induction hypothesis, U,, has an orthonormal basis {u1, ..., u,}.
Let P be orthonormal projection onto U,. Then the vectors
Ui, ..., Uy, UVpr1 — Puyaq are mutually orthogonal and form a ba-
sis for U. Setting

Upg1 — Pupg

a1 — Popia|’

Up+1 =

the vectors uq, ..., u,1 form an orthonormal basis for U.

Remark: The proof of this last theorem provides an algorithm
(Gram-Schmidt) for producing an orthonormal basis for a finite-

dimensional subspace U: Start with any basis {vy,...,v,}. Set
U = m This is an orthonormal basis for span(v;). Having
found an orthonormal basis {u1, . .., u} for span(vy, ..., v), one



can produce an orthonormal basis for span(vy, ..., vk 1) by ap-
pending the vector
Vg1 — P
Y
Vg1 — Pogs1]|

where P is orthonormal projection onto uq, ..., us.

Uk+1 = |

A Minimization Problem: Consider the problem of finding
the best polynomial approximation p(x) € Ps(|—m,7]) of sinz,
where by best we mean that

/ " (sinz — p(x))? da

is a small as possible. To place this in an inner-product set-
ting, we consider Ps([—m,7]) to be a subspace of C([—m,n]),
where the latter is the vector space of continuous functions from
[—m, 7] to R. Then C(|—m,7]) has inner product defined by
(f.g) = [7_f(z)g(z) dv. We are trying to minimize |[sinz —
p(x)||>. However, we know how to minimize |[sinz — p(z)||:
p(z) = P(sinx) where P is orthogonal projection onto the finite-
dimensional subspace Ps([—m,7]). The latter has basis

{17 €Z, ZEQ) .13'3, 3347 5135},

and Gram-Schmidt can be applied to produce an orthonormal
basis

{uo(z), ur(z), ua(x), us(x), ua(w), us(z)}.

Therefore the best polynomial approximation is ) _ c;u; () where

™

0 = (sin 2, uy(x)) = / sing - uy(x) dr.

The approximation to sinz given in the book on page 115 is

X 5173 $3

1.01229  6.44035  177.207°
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in contrast to the Taylor Polynomial

3 5135

x x+
1 6 120

Cauchy-Schwarz Inequality: |(u,v)| < ||u|| - ||v]].

Proof: We have equality when v and v are linearly dependent.
Now suppose u and v are linearly independent. Let {e1,e2} be
an orthonormal basis for span(u, v) and write u = aje;1+ases and
v = biey + baea. Then |{u,v)| = |arby + agbo| and ||ul| - ||v]| =

Vaiar + asaz\/biby + bebe, and we are reduced to proving the

complex inequality

|a1by + agbs| < Vaiar + azaz\/biby + babs.
Squaring both sides, this is equivalent to
(a1by + azby)(arby + @zby) < (arar + agaz)(biby + babs),
which is equivalent to
arbiagby + asbyaiby < ajarbobs + asazbyby,
which is equivalent to
a1@1baby + asazbiby — arbiagzby — asbyarby > 0,
which is equivalent to
(a1by — agby)(@by — azby) > 0,
which is equivalent to
|arby — asbi|* > 0,
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which is true.
Triangle Inequality: ||u + v|| < ||u|| + ||v]].

Proof: Square both sides and subtract the left-hand side from
the right-hand side. The result is

2[ul[-Jo]]=(u, v)—=(v, u) = 2[[ul]-|[v][-2Re (u,v) = 2[[ul]-|[v][=2[(u, v)[ = 0
by Cauchy-Schwarz.

The Orthogonal Complement of a Subspace: Let V be a

finite-dimensional inner-product space and let U be a subspace.
We define

Ut={veV:(vu) =0foraluecU}.

We can construct U~ explicitly as follows: Let {uy,...,u;} be
an orthonormal basis for U. Expand to an orthonormal ba-
sis {u1,...,u,} for V using Gram-Schmidt. The vectors in
span(uy41, ..., U,) are orthogonal to the vectors in U. More-
over, for any v € U™, the coefficients of v in terms of the
orthonormal basis are the inner product of v with each basis
vector, which places v € span(uy;1,...,u,). Therefore U+ =
span (g1, ...,U,). This immediately implies that (U+)t =
span(uy,...,u;) = U. Note also that V = U@ U*L. To de-
compose a vector in V' into something in U plus something in
U+t we can use v = Pv + (v — Po).

Linear Functionals and Adjoints: If V is a finite-dimensional
inner-product space with orthonormal basis {e1,...,e,} and if
¢ : V. — F'is a linear map then a simple calculation shows
that ¢(v) can be realized as inner-product with a fixed vector

vo = ), plei)ei
p(v) = (> (vee) =Y (v.edpler) = (v,6(es)er) = (v, v0).
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In particular, if W is a finite-dimensional inner-product space
and T": V — W is a linear map and w € W, then the linear
functional ¢, : V' — F defined by ¢, (v) = (Tv, w) satisfies

Gu(v) =Y (v, 0ulee) = (v, ) (Te, w)e;)

= (v, Z (w, Tej)e;).
This defines a linear map 7% : W — V viaT*(w) = >, (w, T'e;)e;.
In other words,

(Tv,w) = (v, T"w).
This gives rise to the properties listed on pp. 119-120.

The matrix representations of 7" and T™ with respect to or-

thonormal bases {e;} and {f;} are conjugate transposes of each
other: Assume that M(T) = (¢;;) and M(T*) = (¢;;). Then

(Tei, fj) = (e, T" fj) = (T* fj, ei)

implies

implies



