
Inner-Product Spaces

Let V be a vector space over F = R or F = C, finite or infinite-
dimensional. An inner product on V is a function 〈·, ·〉 : V ×V →
F which satisfies the following axioms:

1. Positive-Definiteness: 〈v, v〉 ≥ 0 for all v ∈ V , and
〈v, v〉 = 0 if and only if v = 0V .

2. Multilinearity: 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉 and 〈av, w〉 =
a〈v, w〉 for all v, v′, w ∈ V and a ∈ W .

3. Conjugate Symmetry: 〈w, v〉 = 〈v, w〉 for all v, w ∈ V .

Inner-Product Space: A real or complex vector space V
equipped with an inner-product.

Note that axioms 2 and 3 imply 〈v, aw〉 = a〈v, w〉 and 〈v, w + w′〉 =
〈v, w〉+ 〈v, w′〉 for all v, w ∈ V and a ∈ F .

Examples: The usual dot product on Rn, the generalized dot
product on Cn, the inner-product on P ([a, b]) defined by 〈f, g〉 =∫ b
a f(x)g(x) dx.

Norm: ||v|| =
√
〈v, v〉. This satisfies ||av|| = |a| · ||v|| where

|a| =
√
aa is absolute value (if real) or length (if complex).

Orthogonal vectors: u1, . . . , un are mutually orthogonal iff
〈ui, uj〉 = 0 for all i 6= j.

Orthonormal vectors: u1, . . . , un are mutually orthonormal
iff 〈ui, uj〉 = δi,j for all i, j. In other words, they are mutually
orthogonal and have length 1.

Orthonormal projection: Let u1, . . . , un be mutually orthonor-
mal. Let U = span(u1, . . . , un). The linear operator P : V → U
defined by Pv =

∑
〈v, ui〉ui is called orthonormal projection

onto U .
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Properties of orthogonal and orthonormal vectors:

1. Mutually orthogonal vectors u1, . . . , un are linearly indepen-
dent.

Proof: Suppose
∑
aiui = 0V . Taking the inner product with

uj we obtain 0 = 〈0V , uj〉 = 〈
∑
aiui, uj〉 =

∑
ai〈ui, uj〉 =

aj||uj||2 = aj.

2. Let u1, . . . , un be mutually orthogonal. Then ||
∑
ui||2 =∑

||ui||2. This is called the Pythagorean Theorem.

Proof: 〈
∑
ui,

∑
ui〉 =

∑
〈ui, uj〉 =

∑
〈ui, ui〉.

3. Let u1, . . . , un be mutually orthonormal. Then ||
∑
aiui|| =√∑

|ai|2.
Proof: 〈

∑
aiui,

∑
aiui〉 =

∑
aiaj〈ui, uj〉 =

∑
aiai.

4. Let u1, . . . , un be mutually orthonormal. Let U = span(u1, . . . , un).
Then for any u ∈ U , u =

∑
〈u, ui〉ui. In other words, u = Pu

where P is orthonormal projection onto U . This also implies
P 2 = P .

Proof: Write u =
∑
aiui. Then 〈u, uj〉 = 〈

∑
aiui, ui〉 =∑

ai〈ui, uj〉 = aj.

Properties of orthonormal projection:

1. Let u1, . . . , un be mutually orthonormal. Let U = span(u1, . . . , un).
Then for any v ∈ V and for any u ∈ U , v − Pv and u are or-
thogonal to each other, where P is orthonormal projection onto
U .

Proof: For any j, 〈Pv, uj〉 = 〈
∑
〈v, ui〉ui, uj〉 =

∑
〈v, ui〉〈ui, uj〉 =

〈v, uj〉. Subtracting, 〈v − Pv, uj〉 = 0.

2. Let u1, . . . , un be mutually orthonormal. Let U = span(u1, . . . , un).
Then for any v ∈ V , the unique vector u ∈ U that minimizes
||v − u|| is Pv.
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Proof: Let u ∈ U be given. Then we know that v−Pv and Pv−
u are orthogonal to each other. By the Pythagorean Theorem,
||v− u||2 = ||v− Pv||2 + ||Pv− u||2 ≥ ||v− Pv||2, with equality
iff ||Pv − u|| = 0 iff u = Pv.

Theorem: Every finite-dimensional subspace of an inner prod-
uct space has an orthonormal basis.

Proof: Let V be the inner product space. Let U be a subspace
of dimension n. We prove that U has an orthonormal basis by
induction on n.

Base Case: n = 1. Let {u1} be a basis for U . Then { u1
||u1||} is

an orthonormal basis for U .

Induction Hypothesis: If U has dimension n then it has an
orthonormal basis {u1, . . . , un}.
Inductive Step: Let U be a subspace of dimension n+ 1. Let
{v1, . . . , vn+1} be a basis for U . Write Un = span(v1, . . . , vn). By
the induction hypothesis, Un has an orthonormal basis {u1, . . . , un}.
Let P be orthonormal projection onto Un. Then the vectors
u1, . . . , un, vn+1−Pvn+1 are mutually orthogonal and form a ba-
sis for U . Setting

un+1 =
vn+1 − Pvn+1

||vn+1 − Pvn+1||
,

the vectors u1, . . . , un+1 form an orthonormal basis for U .

Remark: The proof of this last theorem provides an algorithm
(Gram-Schmidt) for producing an orthonormal basis for a finite-
dimensional subspace U : Start with any basis {v1, . . . , vn}. Set
u1 = v1

||v1|| . This is an orthonormal basis for span(v1). Having

found an orthonormal basis {u1, . . . , uk} for span(v1, . . . , vk), one
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can produce an orthonormal basis for span(v1, . . . , vk+1) by ap-
pending the vector

uk+1 =
vk+1 − Pvk+1

||vk+1 − Pvk+1||
,

where P is orthonormal projection onto u1, . . . , uk.

A Minimization Problem: Consider the problem of finding
the best polynomial approximation p(x) ∈ P5([−π, π]) of sin x,
where by best we mean that∫ π

−π
(sinx− p(x))2 dx

is a small as possible. To place this in an inner-product set-
ting, we consider P5([−π, π]) to be a subspace of C([−π, π]),
where the latter is the vector space of continuous functions from
[−π, π] to R. Then C([−π, π]) has inner product defined by
〈f, g〉 =

∫ π
−π f(x)g(x) dx. We are trying to minimize || sinx −

p(x)||2. However, we know how to minimize || sinx − p(x)||:
p(x) = P (sinx) where P is orthogonal projection onto the finite-
dimensional subspace P5([−π, π]). The latter has basis

{1, x, x2, x3, x4, x5},

and Gram-Schmidt can be applied to produce an orthonormal
basis

{u0(x), u1(x), u2(x), u3(x), u4(x), u5(x)}.
Therefore the best polynomial approximation is

∑
αiui(x) where

αi = 〈sinx, ui(x)〉 =

∫ π

−π
sinx · ui(x) dx.

The approximation to sinx given in the book on page 115 is

x

1.01229
− x3

6.44035
+

x3

177.207
,
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in contrast to the Taylor Polynomial

x

1
− x3

6
+

x5

120
.

Cauchy-Schwarz Inequality: |〈u, v〉| ≤ ||u|| · ||v||.
Proof: We have equality when u and v are linearly dependent.
Now suppose u and v are linearly independent. Let {e1, e2} be
an orthonormal basis for span(u, v) and write u = a1e1+a2e2 and
v = b1e1 + b2e2. Then |〈u, v〉| = |a1b1 + a2b2| and ||u|| · ||v|| =√
a1a1 + a2a2

√
b1b1 + b2b2, and we are reduced to proving the

complex inequality

|a1b1 + a2b2| ≤
√
a1a1 + a2a2

√
b1b1 + b2b2.

Squaring both sides, this is equivalent to

(a1b1 + a2b2)(a1b1 + a2b2) ≤ (a1a1 + a2a2)(b1b1 + b2b2),

which is equivalent to

a1b1a2b2 + a2b2a1b1 ≤ a1a1b2b2 + a2a2b1b1,

which is equivalent to

a1a1b2b2 + a2a2b1b1 − a1b1a2b2 − a2b2a1b1 ≥ 0,

which is equivalent to

(a1b2 − a2b1)(a1b2 − a2b1) ≥ 0,

which is equivalent to

|a1b2 − a2b1|2 ≥ 0,

5



which is true.

Triangle Inequality: ||u+ v|| ≤ ||u||+ ||v||.
Proof: Square both sides and subtract the left-hand side from
the right-hand side. The result is

2||u||·||v||−〈u, v〉−〈v, u〉 = 2||u||·||v||−2Re 〈u, v〉 ≥ 2||u||·||v||−2|〈u, v〉| ≥ 0

by Cauchy-Schwarz.

The Orthogonal Complement of a Subspace: Let V be a
finite-dimensional inner-product space and let U be a subspace.
We define

U⊥ = {v ∈ V : 〈v, u〉 = 0 for all u ∈ U}.

We can construct U⊥ explicitly as follows: Let {u1, . . . , uk} be
an orthonormal basis for U . Expand to an orthonormal ba-
sis {u1, . . . , un} for V using Gram-Schmidt. The vectors in
span(uk+1, . . . , un) are orthogonal to the vectors in U . More-
over, for any v ∈ U⊥, the coefficients of v in terms of the
orthonormal basis are the inner product of v with each basis
vector, which places v ∈ span(uk+1, . . . , un). Therefore U⊥ =
span(uk+1, . . . , un). This immediately implies that (U⊥)⊥ =
span(u1, . . . , uk) = U . Note also that V = U

⊕
U⊥. To de-

compose a vector in V into something in U plus something in
U⊥ we can use v = Pv + (v − Pv).

Linear Functionals and Adjoints: If V is a finite-dimensional
inner-product space with orthonormal basis {e1, . . . , en} and if
φ : V → F is a linear map then a simple calculation shows
that φ(v) can be realized as inner-product with a fixed vector
v0 =

∑
i φ(ei)ei:

φ(v) = φ(
∑
〈v, ei〉ei) =

∑
〈v, ei〉φ(ei) =

∑
〈v, φ(ei)ei〉 = 〈v, v0〉.
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In particular, if W is a finite-dimensional inner-product space
and T : V → W is a linear map and w ∈ W , then the linear
functional φw : V → F defined by φw(v) = 〈Tv, w〉 satisfies

φw(v) =
∑
〈v, φw(ei)ei〉 = 〈v,

∑
i

〈Tei, w〉ei〉

= 〈v,
∑
i

〈w, Tei〉ei〉.

This defines a linear map T ∗ : W → V via T ∗(w) =
∑

i 〈w, Tei〉ei.
In other words,

〈Tv, w〉 = 〈v, T ∗w〉.
This gives rise to the properties listed on pp. 119–120.

The matrix representations of T and T ∗ with respect to or-
thonormal bases {ei} and {fi} are conjugate transposes of each
other: Assume that M(T ) = (tij) and M(T ∗) = (t∗ij). Then

〈Tei, fj〉 = 〈ei, T ∗fj〉 = 〈T ∗fj, ei〉

implies
tij = t∗ji

implies
t∗ij = tji.
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