Inner-Product Spaces

Let V be a vector space over $F = \mathbb{R}$ or $F = \mathbb{C}$, finite or infinitedimensional. An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \rightarrow F$ which satisfies the following axioms:

1. **Positive-Definiteness:** $\langle v, v \rangle \geq 0$ for all $v \in V$, and $\langle v, v \rangle = 0$ if and only if $v = 0_V$.

2. Multilinearity: $\langle v + v', w \rangle = \langle v, w \rangle + \langle v', w \rangle$ and $\langle av, w \rangle = a \langle v, w \rangle$ for all $v, v', w \in V$ and $a \in W$.

3. Conjugate Symmetry: $\langle w, v \rangle = \overline{\langle v, w \rangle}$ for all $v, w \in V$.

Inner-Product Space: A real or complex vector space V equipped with an inner-product.

Note that axioms 2 and 3 imply $\langle v, aw \rangle = \overline{a} \langle v, w \rangle$ and $\langle v, w + w' \rangle = \langle v, w \rangle + \langle v, w' \rangle$ for all $v, w \in V$ and $a \in F$.

Examples: The usual dot product on \mathbb{R}^n , the generalized dot product on \mathbb{C}^n , the inner-product on P([a, b]) defined by $\langle f, g \rangle = \int_a^b f(x)g(x) \, dx$.

Norm: $||v|| = \sqrt{\langle v, v \rangle}$. This satisfies $||av|| = |a| \cdot ||v||$ where $|a| = \sqrt{a\overline{a}}$ is absolute value (if real) or length (if complex).

Orthogonal vectors: u_1, \ldots, u_n are mutually orthogonal iff $\langle u_i, u_j \rangle = 0$ for all $i \neq j$.

Orthonormal vectors: u_1, \ldots, u_n are mutually orthonormal iff $\langle u_i, u_j \rangle = \delta_{i,j}$ for all i, j. In other words, they are mutually orthogonal and have length 1.

Orthonormal projection: Let u_1, \ldots, u_n be mutually orthonormal. Let $U = \text{span}(u_1, \ldots, u_n)$. The linear operator $P: V \to U$ defined by $Pv = \sum \langle v, u_i \rangle u_i$ is called orthonormal projection onto U.

Properties of orthogonal and orthonormal vectors:

1. Mutually orthogonal vectors u_1, \ldots, u_n are linearly independent.

Proof: Suppose $\sum a_i u_i = 0_V$. Taking the inner product with u_j we obtain $0 = \langle 0_V, u_j \rangle = \langle \sum a_i u_i, u_j \rangle = \sum a_i \langle u_i, u_j \rangle = a_j ||u_j||^2 = a_j$.

2. Let u_1, \ldots, u_n be mutually orthogonal. Then $||\sum u_i||^2 = \sum ||u_i||^2$. This is called the Pythagorean Theorem.

Proof: $\langle \sum u_i, \sum u_i \rangle = \sum \langle u_i, u_j \rangle = \sum \langle u_i, u_i \rangle.$

3. Let u_1, \ldots, u_n be mutually orthonormal. Then $||\sum a_i u_i|| = \sqrt{\sum |a_i|^2}$.

Proof: $\langle \sum a_i u_i, \sum a_i u_i \rangle = \sum a_i \overline{a_j} \langle u_i, u_j \rangle = \sum a_i \overline{a_i}.$

4. Let u_1, \ldots, u_n be mutually orthonormal. Let $U = \operatorname{span}(u_1, \ldots, u_n)$. Then for any $u \in U$, $u = \sum \langle u, u_i \rangle u_i$. In other words, u = Puwhere P is orthonormal projection onto U. This also implies $P^2 = P$.

Proof: Write $u = \sum a_i u_i$. Then $\langle u, u_j \rangle = \langle \sum a_i u_i, u_i \rangle = \sum a_i \langle u_i, u_j \rangle = a_j$.

Properties of orthonormal projection:

1. Let u_1, \ldots, u_n be mutually orthonormal. Let $U = \text{span}(u_1, \ldots, u_n)$. Then for any $v \in V$ and for any $u \in U$, v - Pv and u are orthogonal to each other, where P is orthonormal projection onto U.

Proof: For any j, $\langle Pv, u_j \rangle = \langle \sum \langle v, u_i \rangle u_i, u_j \rangle = \sum \langle v, u_i \rangle \langle u_i, u_j \rangle = \langle v, u_j \rangle$. Subtracting, $\langle v - Pv, u_j \rangle = 0$.

2. Let u_1, \ldots, u_n be mutually orthonormal. Let $U = \text{span}(u_1, \ldots, u_n)$. Then for any $v \in V$, the unique vector $u \in U$ that minimizes ||v - u|| is Pv. **Proof:** Let $u \in U$ be given. Then we know that v - Pv and Pv - u are orthogonal to each other. By the Pythagorean Theorem, $||v - u||^2 = ||v - Pv||^2 + ||Pv - u||^2 \ge ||v - Pv||^2$, with equality iff ||Pv - u|| = 0 iff u = Pv.

Theorem: Every finite-dimensional subspace of an inner product space has an orthonormal basis.

Proof: Let V be the inner product space. Let U be a subspace of dimension n. We prove that U has an orthonormal basis by induction on n.

Base Case: n = 1. Let $\{u_1\}$ be a basis for U. Then $\{\frac{u_1}{||u_1||}\}$ is an orthonormal basis for U.

Induction Hypothesis: If U has dimension n then it has an orthonormal basis $\{u_1, \ldots, u_n\}$.

Inductive Step: Let U be a subspace of dimension n + 1. Let $\{v_1, \ldots, v_{n+1}\}$ be a basis for U. Write $U_n = \operatorname{span}(v_1, \ldots, v_n)$. By the induction hypothesis, U_n has an orthonormal basis $\{u_1, \ldots, u_n\}$. Let P be orthonormal projection onto U_n . Then the vectors $u_1, \ldots, u_n, v_{n+1} - Pv_{n+1}$ are mutually orthogonal and form a basis for U. Setting

$$u_{n+1} = \frac{v_{n+1} - Pv_{n+1}}{||v_{n+1} - Pv_{n+1}||},$$

the vectors u_1, \ldots, u_{n+1} form an orthonormal basis for U.

Remark: The proof of this last theorem provides an algorithm (Gram-Schmidt) for producing an orthonormal basis for a finitedimensional subspace U: Start with any basis $\{v_1, \ldots, v_n\}$. Set $u_1 = \frac{v_1}{||v_1||}$. This is an orthonormal basis for $\operatorname{span}(v_1)$. Having found an orthonormal basis $\{u_1, \ldots, u_k\}$ for $\operatorname{span}(v_1, \ldots, v_k)$, one can produce an orthonormal basis for $\operatorname{span}(v_1, \ldots, v_{k+1})$ by appending the vector

$$u_{k+1} = \frac{v_{k+1} - Pv_{k+1}}{||v_{k+1} - Pv_{k+1}||},$$

where P is orthonormal projection onto u_1, \ldots, u_k .

A Minimization Problem: Consider the problem of finding the best polynomial approximation $p(x) \in P_5([-\pi, \pi])$ of $\sin x$, where by best we mean that

$$\int_{-\pi}^{\pi} (\sin x - p(x))^2 \, dx$$

is a small as possible. To place this in an inner-product setting, we consider $P_5([-\pi,\pi])$ to be a subspace of $C([-\pi,\pi])$, where the latter is the vector space of continuous functions from $[-\pi,\pi]$ to \mathbb{R} . Then $C([-\pi,\pi])$ has inner product defined by $\langle f,g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \, dx$. We are trying to minimize $||\sin x - p(x)||^2$. However, we know how to minimize $||\sin x - p(x)||^2$. $p(x) = P(\sin x)$ where P is orthogonal projection onto the finitedimensional subspace $P_5([-\pi,\pi])$. The latter has basis

$$\{1, x, x^2, x^3, x^4, x^5\},\$$

and Gram-Schmidt can be applied to produce an orthonormal basis

$$\{u_0(x), u_1(x), u_2(x), u_3(x), u_4(x), u_5(x)\}.$$

Therefore the best polynomial approximation is $\sum \alpha_i u_i(x)$ where

$$\alpha_i = \langle \sin x, u_i(x) \rangle = \int_{-\pi}^{\pi} \sin x \cdot u_i(x) \, dx.$$

The approximation to $\sin x$ given in the book on page 115 is

$$\frac{x}{1.01229} - \frac{x^3}{6.44035} + \frac{x^3}{177.207}$$

in contrast to the Taylor Polynomial

$$\frac{x}{1} - \frac{x^3}{6} + \frac{x^5}{120}.$$

Cauchy-Schwarz Inequality: $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.

Proof: We have equality when u and v are linearly dependent. Now suppose u and v are linearly independent. Let $\{e_1, e_2\}$ be an orthonormal basis for span(u, v) and write $u = a_1e_1+a_2e_2$ and $v = b_1e_1 + b_2e_2$. Then $|\langle u, v \rangle| = |a_1\overline{b_1} + a_2\overline{b_2}|$ and $||u|| \cdot ||v|| = \sqrt{a_1\overline{a_1} + a_2\overline{a_2}}\sqrt{b_1\overline{b_1} + b_2\overline{b_2}}$, and we are reduced to proving the complex inequality

$$|a_1\overline{b_1} + a_2\overline{b_2}| \le \sqrt{a_1\overline{a_1} + a_2\overline{a_2}}\sqrt{b_1\overline{b_1} + b_2\overline{b_2}}.$$

Squaring both sides, this is equivalent to

$$(a_1\overline{b_1} + a_2\overline{b_2})(\overline{a_1}b_1 + \overline{a_2}b_2) \le (a_1\overline{a_1} + a_2\overline{a_2})(b_1\overline{b_1} + b_2\overline{b_2}),$$

which is equivalent to

$$a_1\overline{b_1}\overline{a_2}b_2 + a_2\overline{b_2}\overline{a_1}b_1 \le a_1\overline{a_1}b_2\overline{b_2} + a_2\overline{a_2}b_1\overline{b_1},$$

which is equivalent to

$$a_1\overline{a_1}b_2\overline{b_2} + a_2\overline{a_2}b_1\overline{b_1} - a_1\overline{b_1}\overline{a_2}b_2 - a_2\overline{b_2}\overline{a_1}b_1 \ge 0,$$

which is equivalent to

$$(a_1b_2 - a_2b_1)(\overline{a_1}\overline{b_2} - \overline{a_2}\overline{b_1}) \ge 0,$$

which is equivalent to

$$|a_1b_2 - a_2b_1|^2 \ge 0,$$

which is true.

Triangle Inequality: $||u + v|| \le ||u|| + ||v||$.

Proof: Square both sides and subtract the left-hand side from the right-hand side. The result is

$$2||u||\cdot||v||-\langle u,v\rangle-\langle v,u\rangle=2||u||\cdot||v||-2\mathrm{Re}\ \langle u,v\rangle\geq 2||u||\cdot||v||-2|\langle u,v\rangle|\geq 0$$

by Cauchy-Schwarz.

The Orthogonal Complement of a Subspace: Let V be a finite-dimensional inner-product space and let U be a subspace. We define

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for all } u \in U \}.$$

We can construct U^{\perp} explicitly as follows: Let $\{u_1, \ldots, u_k\}$ be an orthonormal basis for U. Expand to an orthonormal basis $\{u_1, \ldots, u_n\}$ for V using Gram-Schmidt. The vectors in $\operatorname{span}(u_{k+1}, \ldots, u_n)$ are orthogonal to the vectors in U. Moreover, for any $v \in U^{\perp}$, the coefficients of v in terms of the orthonormal basis are the inner product of v with each basis vector, which places $v \in \operatorname{span}(u_{k+1}, \ldots, u_n)$. Therefore $U^{\perp} =$ $\operatorname{span}(u_{k+1}, \ldots, u_n)$. This immediately implies that $(U^{\perp})^{\perp} =$ $\operatorname{span}(u_1, \ldots, u_k) = U$. Note also that $V = U \bigoplus U^{\perp}$. To decompose a vector in V into something in U plus something in U^{\perp} we can use v = Pv + (v - Pv).

Linear Functionals and Adjoints: If V is a finite-dimensional inner-product space with orthonormal basis $\{e_1, \ldots, e_n\}$ and if $\phi : V \to F$ is a linear map then a simple calculation shows that $\phi(v)$ can be realized as inner-product with a fixed vector $v_0 = \sum_i \phi(e_i) e_i$:

$$\phi(v) = \phi(\sum \langle v, e_i \rangle e_i) = \sum \langle v, e_i \rangle \phi(e_i) = \sum \langle v, \overline{\phi(e_i)} e_i \rangle = \langle v, v_0 \rangle.$$

In particular, if W is a finite-dimensional inner-product space and $T: V \to W$ is a linear map and $w \in W$, then the linear functional $\phi_w: V \to F$ defined by $\phi_w(v) = \langle Tv, w \rangle$ satisfies

$$\phi_w(v) = \sum \langle v, \overline{\phi_w(e_i)}e_i \rangle = \langle v, \sum_i \overline{\langle Te_i, w \rangle}e_i \rangle$$
$$= \langle v, \sum_i \langle w, Te_i \rangle e_i \rangle.$$

This defines a linear map $T^*: W \to V$ via $T^*(w) = \sum_i \langle w, Te_i \rangle e_i$. In other words,

$$\langle Tv, w \rangle = \langle v, T^*w \rangle.$$

This gives rise to the properties listed on pp. 119–120.

The matrix representations of T and T^* with respect to orthonormal bases $\{e_i\}$ and $\{f_i\}$ are conjugate transposes of each other: Assume that $M(T) = (t_{ij})$ and $M(T^*) = (t^*_{ij})$. Then

$$\langle Te_i, f_j \rangle = \langle e_i, T^*f_j \rangle = \overline{\langle T^*f_j, e_i \rangle}$$

implies

$$t_{ij} = \overline{t_{ji}^*}$$

implies

$$t_{ij}^* = \overline{t_{ji}}.$$