Finite-Dimensional Vector Spaces Lecture

Terminology: Linear combination, span, finite-dimensional, infinite-dimensional, linearly independent, linearly dependent, basis.

Lemma: Every finite-dimensional vector space has a basis.
Proof: Keep discarding dependent vectors without changing the span until no longer possible
Lemma: Let V be spanned by n vectors over F. Then any $m>n$ vectors in V are linearly dependent.
Proof: By induction on n. For $n=1$, if V is spanned by $\left\{v_{1}\right\}$ then any $a v_{1}$ and $b v_{1}$ are linearly dependent using the coefficients $b,-a$ or 1,1 . Assume whenever V is spanned by n vectors then any $m>n$ are linearly dependent. Now suppose V is spanned by $\left\{v_{1}, \ldots, v_{n+1}\right\}$. Let u_{1}, \ldots, u_{m} be arbitrary where $m>n+1$. Let W be the span of $\left\{v_{1}, \ldots, v_{n}\right\}$. If each $u_{i} \in W$ then u_{1}, \ldots, u_{m} are linearly dependent by the induction hypothesis. Otherwise, there is one of them, wlog u_{m}, that has a non-zero coefficient of v_{n+1}. We can find coefficients a_{1}, \ldots, a_{m-1} such that for each $i<m, u_{i}-a_{i} u_{m}$ lies in W, and hence $u_{1}-a_{1} u_{m}, \ldots, u_{m-1}-a_{m-1} u_{m}$ are linearly dependent by the induction hypothesis since $m-1>n$. Examining the dependency relationship we see that u_{1} through u_{m} are dependent.
Corollary: Every two bases for a finite-dimensional vector space have the same size.

Proof: If there were two different size bases, the smaller one would make the larger one dependent.
Definition: The dimension of a finite-dimensional vector space is the size of any basis.
Theorem: Let V be a finitely generated vector space over a field \mathbb{F} and let X be an arbitrary set of linearly independent vectors in V. Then there is a basis for V which contains X as a subset.

Proof: If there is a vector outside the span of X, add it as an additional linearly independent vector. Keep on going. Process must halt at a basis since there are at most n linearly independent vectors.
Theorem: Let V be an n-dimensional vector space. Then any n linearly independent vectors form a basis.

Proof: There is a basis of size n that contains this set, so this set is already a basis.

Theorem: Let V be an n-dimensional vector space. Then any spanning set of size n must be a basis.

Proof: Any spanning set of size n must contain a basis of n vectors, so the spanning set is already a basis.
Dimension of $W<V$: Expand basis of W to basis of V.
Theorem: If V is finite-dimensional and $V=U_{1} \bigoplus \cdots \bigoplus U_{n}$ then $\operatorname{dim} V=$ $\operatorname{dim} U_{1}+\cdots+\operatorname{dim} U_{n}$.

Proof: A basis for V is the union of bases for each U_{i}.
Theorem: If V is finite-dimensional, $V=U_{1}+\cdots+U_{n}$, and $\sum_{i} \operatorname{dim} U_{i}=$ $\operatorname{dim} V$ then $V=\sum_{i} \bigoplus U_{i}$.
Proof: The union of the U_{i} bases spans V and has size less than or equal to the dimension of V, hence contains a basis for V which must be the entire union. This implies that the union is linearly independent and that sums are unique.

Dimension of $U_{1}+U_{2}$: First find basis for $U_{1} \cap U_{2}:\left\{x_{i}\right\}$. Let basis for U_{1} be $\left\{x_{i}, y_{j}\right\}$ and let basis for U_{2} be $\left\{x_{i}, z_{k}\right\}$. Then $\left\{x_{i}, y_{j}, z_{k}\right\}$ is basis for $U_{1}+U_{2}$: must show span and linear independence.
Notation: The typical vector in the span of $\left\{v_{1}, \ldots, v_{n}\right\}$ is V. Now we can say that $X+Y=0$ implies $X=Y=0$ and $X+Z=0$ implies $X=Z=0$.
Span: The typical vector is $u_{1}+u_{2}=\left(X_{1}+Y\right)+\left(X_{2}+Z\right)=\left(X_{1}+X_{2}\right)+Y+Z$.
Independence: Suppose $X+Y+Z=0$. Then $Z=-X-Y \in U_{1} \cap U_{2}$. This implies $Z=X^{\prime}$. Therefore $X+X^{\prime}+Y=0$, which forces $Y=0$. So now we have $X+Z=0$, therefore $X=Z=0$. Hence $U_{1}+U_{2}=$ $\operatorname{span}\left(x_{i}\right) \bigoplus \operatorname{span}\left(y_{j}\right) \bigoplus \operatorname{span}\left(z_{k}\right)$, which implies the dimension result.

