
Finite-Dimensional Vector Spaces Lecture

Terminology: Linear combination, span, finite-dimensional, infinite-dimensional,
linearly independent, linearly dependent, basis.

Lemma: Every finite-dimensional vector space has a basis.

Proof: Keep discarding dependent vectors without changing the span until
no longer possible

Lemma: Let V be spanned by n vectors over F . Then any m > n vectors
in V are linearly dependent.

Proof: By induction on n. For n = 1, if V is spanned by {v1} then any av1
and bv1 are linearly dependent using the coefficients b,−a or 1, 1. Assume
whenever V is spanned by n vectors then any m > n are linearly dependent.
Now suppose V is spanned by {v1, . . . , vn+1}. Let u1, . . . , um be arbitrary
where m > n + 1. Let W be the span of {v1, . . . , vn}. If each ui ∈ W then
u1, . . . , um are linearly dependent by the induction hypothesis. Otherwise,
there is one of them, wlog um, that has a non-zero coefficient of vn+1. We can
find coefficients a1, . . . , am−1 such that for each i < m, ui−aium lies in W , and
hence u1−a1um, . . . , um−1−am−1um are linearly dependent by the induction
hypothesis since m− 1 > n. Examining the dependency relationship we see
that u1 through um are dependent.

Corollary: Every two bases for a finite-dimensional vector space have the
same size.

Proof: If there were two different size bases, the smaller one would make
the larger one dependent.

Definition: The dimension of a finite-dimensional vector space is the size
of any basis.

Theorem: Let V be a finitely generated vector space over a field F and let
X be an arbitrary set of linearly independent vectors in V . Then there is a
basis for V which contains X as a subset.

Proof: If there is a vector outside the span of X, add it as an additional
linearly independent vector. Keep on going. Process must halt at a basis
since there are at most n linearly independent vectors.

Theorem: Let V be an n-dimensional vector space. Then any n linearly
independent vectors form a basis.
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Proof: There is a basis of size n that contains this set, so this set is already
a basis.

Theorem: Let V be an n-dimensional vector space. Then any spanning set
of size n must be a basis.

Proof: Any spanning set of size n must contain a basis of n vectors, so the
spanning set is already a basis.

Dimension of W < V : Expand basis of W to basis of V .

Theorem: If V is finite-dimensional and V = U1

⊕
· · ·

⊕
Un then dimV =

dimU1 + · · ·+ dimUn.

Proof: A basis for V is the union of bases for each Ui.

Theorem: If V is finite-dimensional, V = U1 + · · · + Un, and
∑

i dimUi =
dimV then V =

∑
i

⊕
Ui.

Proof: The union of the Ui bases spans V and has size less than or equal to
the dimension of V , hence contains a basis for V which must be the entire
union. This implies that the union is linearly independent and that sums are
unique.

Dimension of U1 + U2: First find basis for U1 ∩ U2: {xi}. Let basis for
U1 be {xi, yj} and let basis for U2 be {xi, zk}. Then {xi, yj, zk} is basis for
U1 + U2: must show span and linear independence.

Notation: The typical vector in the span of {v1, . . . , vn} is V . Now we can
say that X + Y = 0 implies X = Y = 0 and X + Z = 0 implies X = Z = 0.

Span: The typical vector is u1+u2 = (X1+Y )+(X2+Z) = (X1+X2)+Y +Z.

Independence: Suppose X + Y + Z = 0. Then Z = −X − Y ∈ U1 ∩ U2.
This implies Z = X ′. Therefore X + X ′ + Y = 0, which forces Y = 0.
So now we have X + Z = 0, therefore X = Z = 0. Hence U1 + U2 =
span(xi)

⊕
span(yj)

⊕
span(zk), which implies the dimension result.
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