Finite-Dimensional Vector Spaces Lecture

Terminology: Linear combination, span, finite-dimensional, infinite-dimensional,
linearly independent, linearly dependent, basis.

Lemma: Every finite-dimensional vector space has a basis.

Proof: Keep discarding dependent vectors without changing the span until
no longer possible

Lemma: Let V be spanned by n vectors over F'. Then any m > n vectors
in V' are linearly dependent.

Proof: By induction on n. For n = 1, if V' is spanned by {v;} then any av;
and bv; are linearly dependent using the coefficients b, —a or 1,1. Assume
whenever V' is spanned by n vectors then any m > n are linearly dependent.
Now suppose V' is spanned by {vi,...,v,.1}. Let uy,..., u, be arbitrary
where m > n + 1. Let W be the span of {v,...,v,}. If each u; € W then
Uy, ..., U, are linearly dependent by the induction hypothesis. Otherwise,
there is one of them, wlog u,,, that has a non-zero coefficient of v, ;. We can
find coefficients aq, . . ., a,,—1 such that for each ¢ < m, u;—a;u,, lies in W, and
hence uy; — aytp,, - . ., U1 — Apm_1Uy, are linearly dependent by the induction
hypothesis since m — 1 > n. Examining the dependency relationship we see
that u, through u,, are dependent.

Corollary: Every two bases for a finite-dimensional vector space have the
same size.

Proof: If there were two different size bases, the smaller one would make
the larger one dependent.

Definition: The dimension of a finite-dimensional vector space is the size
of any basis.

Theorem: Let V be a finitely generated vector space over a field F and let
X be an arbitrary set of linearly independent vectors in V. Then there is a
basis for V' which contains X as a subset.

Proof: If there is a vector outside the span of X, add it as an additional
linearly independent vector. Keep on going. Process must halt at a basis
since there are at most n linearly independent vectors.

Theorem: Let V be an n-dimensional vector space. Then any n linearly
independent vectors form a basis.



Proof: There is a basis of size n that contains this set, so this set is already
a basis.

Theorem: Let V' be an n-dimensional vector space. Then any spanning set
of size n must be a basis.

Proof: Any spanning set of size n must contain a basis of n vectors, so the
spanning set is already a basis.

Dimension of W < V: Expand basis of W to basis of V.

Theorem: If V is finite-dimensional and V =U, @ --- @ U,, then dimV =
dimU; + - - +dim U,,.

Proof: A basis for V is the union of bases for each Uj;.

Theorem: If V is finite-dimensional, V = U; +--- + U,, and ) . dimU; =
dimV then V=5 . P U,.

Proof: The union of the U; bases spans V' and has size less than or equal to
the dimension of V', hence contains a basis for V' which must be the entire
union. This implies that the union is linearly independent and that sums are
unique.

Dimension of U; + U,: First find basis for U; N Uy: {z;}. Let basis for
Uy be {z;,y;} and let basis for Uy be {z;, z}. Then {x;,y;, 2} is basis for
Uy + Us: must show span and linear independence.

Notation: The typical vector in the span of {vy,...,v,} is V. Now we can
say that X +Y =0 implies X =Y =0 and X + Z =0 implies X = Z = 0.

Span: The typical vector is uy+us = (X1+Y)+(Xo+2) = (X1+Xo)+Y +Z.
Independence: Suppose X +Y + 7 = 0. Then Z = —-X —Y € U; N Us.
This implies Z = X’. Therefore X + X’ + Y = 0, which forces Y = 0.

So now we have X + Z = 0, therefore X = Z = 0. Hence U; + Uy, =
span(x;) @ span(y;) @ span(zy), which implies the dimension result.



