
Exam 4 Solutions Math 447/547 Spring 2013

Due Thursday, May 9, noon

Be thorough!

Review of trace: Let V be an n-dimensional vector space, let T ∈ L(V ),
and let A = (aij) be any matrix representation of T . Then

trace(T ) = a11 + a22 + · · ·+ ann.

Review of determinant: Let V be an n-dimensional vector space, let
T ∈ L(V ), and let A = (aij) be any matrix representation of T . Then

det(T ) =
∑
n∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n)

where for each permutation σ ∈ Sn,

sgn(σ) = (−1)n−c(σ)

and c(σ) is the number of disjoint cycles in the cycle-decomposition of σ.

Notation: Let F be a field. The standard basis for Mn,n(F ) is

{Eij : 1 ≤ i, j ≤ n},
where Eij is the matrix with 1 in row i, column j and zeros elsewhere.

Exam Problems:

1. Let S, T ∈ L(V ) be linear maps on an n-dimensional space V . In class we
proved that trace(ST ) = trace(TS). Now consider T1, T2, . . . , Tk ∈ L(V ).

(a) (16 points) Prove

trace(T1T2 · · ·Tk) = trace(T2T3 · · ·TkT1) = trace(T3T4 · · ·TkT1T2) = · · · .

(b) (16 points) Show that trace(T1T2T3) 6= trace(T2T1T3) using an appropri-
ate example.

Solutions:

(a) Write X = T1 and Y = T2 · · ·Tk. Then trace(XY ) = trace(Y X), which
implies the first equality. The remaining equalities are all implied by the first
one.
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(b) Fix an arbitrary basis B for V and let T1 = X12, T2 = X23, T3 = X31.
Then the matrix representation for T1T2T3 is E12E23E33 = E11 and the matrix
representation for T2T1T3 is E23E12E11 = 0. Hence trace(T1T2T3) = 1 and
trace(T2T1T3) = 0.

2. Let V be an n-dimensional inner-product space with inner-product 〈•, •〉.
An inner-product on L(V ) itself is given by

〈R,S〉′ = trace(RS∗)

for all R, S ∈ L(V ) (see Problem 18, Chapter 10). Now let T be one partic-
ular linear map in L(V ). We will define the linear map fT : L(V ) → L(V )
by fT (X) = TXT ∗ for all X ∈ L(V ). Follow the steps below to express the
singular values of fT in terms of the singular values of T .

(a) (16 points) Let FT : L(V ) → L(V ) be the linear map defined by FT (X) =
T ∗XT for all X ∈ L(V ). Prove that (fT )∗ = FT with respect to the inner-
product 〈•, •〉′.
(b) (16 points) Let B be an arbitrary orthonormal basis for V and let Xij ∈
L(V ) have matrix representation Eij for each 1 ≤ i, j ≤ n with respect to B.
Prove that the set

XB = {Xij : 1 ≤ i, j ≤ n}
forms an orthonormal basis for L(V ) with respect to 〈•, •〉′.
(c) (16 points) Assuming that the n singular values of T are s1, . . . , sn, find
the n2 singular values of fT . Hint: You will find the Spectral Theorem useful
for finding an orthonormal basis of eigenvectors for V with respect to T ∗T
and 〈•, •〉, and you will find the set XB useful for finding an orthonormal
basis of L(V ) with respect to (fT )∗fT and 〈•, •〉′ and a suitable choice of B.

Solutions:

(a) 〈fT (X), Y 〉′ = 〈TXT ∗, Y 〉′ = trace(TXT ∗Y ∗) = trace(XT ∗Y ∗T ) =
trace(X(T ∗Y T )∗) = 〈X, T ∗Y T 〉′ = 〈X, FT (Y )〉′ for all X, Y ∈ L(V ). The
unique linear operator FT with this property is (fT )∗.

(b) It is easy to verify that EijEab = δjaEib and trace(Eij) = δij and E∗
ij =

Eji, therefore

〈Xij, Xab〉′ = trace(XijX
∗
ab) = trace(EijEba) = trace(δjbEia) = δjbδia.
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Hence the inner product of XijXab is equal to 1 if Xij = Xab and is equal
to 0 if Xij 6= Xab. This implies that the collection of Xij is orthonormal in
L(V ).

(c) We need only find the eigenvalues of the associated positive linear oper-
ator, then produce the positive square root of each. We have

(fT )∗fT X = (fT )∗(TXT ∗) = (T ∗T )X(T ∗T ).

Since T ∗T is a positive linear operator, V has an orthonormal basis of eigen-
vectors B with respect to which T ∗T has matrix representation diag(s2

1, . . . , s
2
n).

Denoting by A the matrix representation of X with respect to the same basis,
an eigenvector of f ∗T fT will have matrix representation A such that

diag(s2
1, s

2
2, . . . , s

2
n) · A · diag(s2

1, s
2
2, . . . , s

2
n)A = λA

for some λ ∈ F . Note that

diag(s2
1, s

2
2, . . . , s

2
n) · Eij · diag(s2

1, s
2
2, . . . , s

2
n) = s2

i s
2
jEij

for each i and j. This implies

(T ∗T )Xij(T
∗T ) = s2

i s
2
jXij

for each i and j, i.e.
(fT )∗fT Xij = s2

i s
2
jXij.

Hence XB forms an orthonormal basis of eigenvectors for L(V ), which implies
that the eigenvalues of f ∗T fT are s2

i s
2
j for 1 ≤ i, j ≤ n, which implies that the

singular values of fT are sisj for 1 ≤ i, j ≤ n.

3. (20 points) Let A = (aij) be an n × n matrix whose entries all satisfy
aij ≥ 0 and whose diagonal entries are all positive. Let D = (V,E) be the
directed graph with vertex set

V = {1, 2, . . . , n}

and with edge set
E = {i → j : aij > 0}.

In other words, there is a directed edge from vertex i to vertex j if and only
if aij > 0, and the edge i → i belongs to E for 1 ≤ i ≤ n. Prove that if
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D has no directed cycles of even length then det A > 0. Hint: Let σ ∈ Sn.
Prove that sgn(σ)a1σ(1) · · · anσ(n) 6= 0 if and only if σ factors into disjoint odd
cycles and prove that every odd cycle has even sign.

Solution: Let σ be a permutation and suppose

a1σ(1) · · · anσ(n) 6= 0.

Let σ1, . . . , σk be the cycles in the disjoint cycle-decomposition of σ. Let
γ = σi be the ith cycle and suppose γ = (γ1, γ2, . . . , γj). Then

aγ1,γ2aγ2,γ3 · · · aγj−1γj
aγjγ1

is a divisor of
a1σ(1) · · · anσ(n),

therefore
aγ1,γ2aγ2,γ3 · · · aγj−1γj

aγjγ1 6= 0.

This implies

aγ1,γ2 6= 0, aγ2,γ3 6= 0, . . . , aγj−1γj
6= 0, aγjγ1 6= 0.

This implies

γ1 → γ2 ∈ E, γ2 → γ3 ∈ E, . . . , γj−1 → γj ∈ E, γj → γ1 ∈ E.

This implies
γ1 → γ2 → · · · → γj → γ1

is a cycle in D. Since D has no even cycles in it, j must be an odd number.
Therefore γ is an odd cycle. We have just shown that σ factors into odd
cycles. Since a j-cycle can be factored into j − 1 2-cycles, the sign of a j-
cycle is (−1)j−1. In particular, the sign of an odd cycle is 1. Therefore σ
factors into cycles each with sign equal to 1, which implies that the sign of σ
is equal to one. To summarize, whenever σ is a permutation and contributes
a non-zero term to the determinant, that term is a positive number since
both the sign and the matrix entries in that term are all positive. Hence
the determinant must be a sum of positive and zero contributions. Since the
identity permutation contributes the term

a11a22 · · · ann

and we are assuming that the diagonal entries are all positive, the determi-
nant has at least one non-zero contribution. Therefore the determinant is a
positive number.
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