Exam 3 Solutions Math 447/547 Spring 2013

Due Thursday, April 11

Show all work. Be thorough!

Review of Inner-Product Spaces:

Let V be a vector space over $F=\mathbb{R}$ or $F=\mathbb{C}$, finite or infinite-dimensional. An inner product on V is a function $\langle\bullet, \bullet\rangle: V \times V \rightarrow F$ which satisfies the following axioms:

1. Positive-Definiteness: $\langle v, v\rangle \geq 0$ for all $v \in V$, and $\langle v, v\rangle=0$ if and only if $v=0_{V}$.
2. Multilinearity: $\left\langle v+v^{\prime}, w\right\rangle=\langle v, w\rangle+\left\langle v^{\prime}, w\right\rangle$ and $\langle a v, w\rangle=a\langle v, w\rangle$ for all $v, v^{\prime}, w \in V$ and $a \in W$.
3. Conjugate Symmetry: $\langle w, v\rangle=\overline{\langle v, w\rangle}$ for all $v, w \in V$.

Inner-Product Space: A real or complex vector space V equipped with an inner-product.

Exam Questions:

1. (30 points) Let $V=F$ where F where $F \in\{\mathbb{R}, \mathbb{C}\}$. Then V is a onedimensional vector space over F. Let $\langle\bullet \bullet \bullet\rangle$ be an inner product on V. True or false: $\langle 1,1\rangle=1$. If true, prove it carefully using the three axioms of inner products: Positive-Definiteness, Multilinearity, Conjugate Symmetry. If false, let

$$
X=\{c \in F: \text { there exists an inner product on } V \text { with }\langle 1,1\rangle=c\}
$$

and carefully identify all the elements of X. Note that to prove $c \in X$ you must construct an inner product satisfying $\langle 1,1\rangle=c$ and prove that your inner product satisfies the three axioms.

Solution: False. In fact, $X=(0, \infty)$. Reason: Conjugate symmetry requires $\langle 1,1\rangle \in \mathbb{R}$. Positive-definiteness rules out $\langle 1,1\rangle \leq 0$. Therefore $X \subseteq$ $(0, \infty)$. Now let $c \in(0, \infty)$. Define $\langle x, y\rangle=c x \bar{y}$. Then $\langle x, x\rangle=c|x|^{2} \geq 0$, and this equals 0 if and only if $x=0$. Hence positive-definiteness is met. Also, $\langle x+y, z\rangle=c(x+y) \bar{z}=c x \bar{z}+c y \bar{z}=\langle x, z\rangle+\langle y, z\rangle$ and $\langle a x, y\rangle=c a x \bar{y}=a c x \bar{y}=$ $a\langle x, y\rangle$, hence multilineary is met. Finally, $\langle y, x\rangle=c y \bar{x}=\overline{c x \bar{y}}=\overline{\langle x, y\rangle}$, hence
conjugate symmetry is met. Hence $c \in X$. Therefore $(0, \infty) \subseteq X$. Therefore $X=(0, \infty)$.
2. (30 points) Let V be a real vector space with inner product $\langle\bullet, \bullet\rangle: V \times V \rightarrow$ \mathbb{R}. Let $W=V \times V$ with vector addition defined by

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right),
$$

scalar multiplication defined by

$$
(a+b i)(v, w)=(a v-b w, a w+b v)
$$

and inner product $\langle\bullet, \bullet\rangle^{\prime}: W \times W \rightarrow \mathbb{C}$ defined by

$$
\left\langle\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right\rangle^{\prime}=\left(\left\langle v_{1}, v_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle\right)+i\left(-\left\langle v_{1}, w_{2}\right\rangle+\left\langle w_{1}, v_{2}\right\rangle\right) .
$$

(a) Prove that W satisfies the axioms of a complex vector space.
(b) Prove that W has dimension n over \mathbb{C}, assuming that V has dimension n over \mathbb{R}.
(c) Prove that the inner product defined on W satisfies the three axioms of inner products over \mathbb{C} (Positive-Definiteness, Multilinearity, Conjugate Symmetry), assuming that the inner product on V does over \mathbb{R}.

Solution: (a) One can check that W is an abelian group with additive identity $0_{W}=\left(0_{V}, 0_{V}\right)$ and additive inverse $-(v, w)=(-v,-w)$. We must also check $(r s) \cdot v=r \cdot(s \cdot v), 1 \cdot v=v, r \cdot(v+w)=(r \cdot v)+(s \cdot v)$ for all $r, s \in \mathbb{C}$ and $v, w \in W$. Write $r=r_{1}+r_{2} i, s=s_{1}+s_{2} i, v=\left(v_{1}, v_{2}\right)$, $w=\left(w_{1}, w_{2}\right)$.
$(r s) \cdot v=r \cdot(s \cdot v)$:

$$
\begin{gathered}
(r s) \cdot v=\left(\left(r_{1} s_{1}-r_{2} s_{2}\right)+\left(r_{1} s_{2}+r_{2} s_{1}\right) i\right)\left(v_{1}, v_{2}\right)= \\
\left.\left(\left(r_{1} s_{1}-r_{2} s_{2}\right) v_{1}-\left(r_{1} s_{2}+r_{2} s_{1}\right) v_{2}\right),\left(r_{1} s_{1}-r_{2} s_{2}\right) v_{2}+\left(r_{1} s_{2}+r_{2} s_{1}\right) v_{1}\right) \\
r \cdot(s \cdot v)=\left(r_{1}+r_{2} i\right)\left(s_{1} v_{1}-s_{2} v_{2}, s_{1} v_{2}+s_{2} v_{1}\right)= \\
\left(r_{1}\left(s_{1} v_{1}-s_{2} v_{2}\right)-r_{2}\left(s_{1} v_{2}+s_{2} v_{1}\right), r_{1}\left(s_{1} v_{2}+s_{2} v_{1}\right)+r_{2}\left(s_{1} v_{1}-s_{2} v_{2}\right)\right.
\end{gathered}
$$

These two expressions are the same.
$1 \cdot v=v:$

$$
1 \cdot v=(1+0 i)\left(v_{1}, v_{2}\right)=\left(1 v_{1}-0 v_{2}, 1 v_{2}+0 v_{1}\right)=\left(v_{1}, v_{2}\right)=v
$$

$r \cdot(v+w)=(r \cdot v)+(s \cdot v):$

$$
\begin{gathered}
\left(r_{1}+r_{2} i\right)\left(v_{1}+w_{1}, v_{2}+w_{2}\right)=\left(r_{1}\left(v_{1}+w_{1}\right)-r_{2}\left(v_{2}+w_{i}\right), r_{1}\left(v_{2}+w_{2}\right)+r_{2}\left(v_{1}+w_{1}\right)\right)= \\
\left(r_{1} v_{1}-r_{2} v_{2}, r_{1} v_{2}+r_{2} v_{1}\right)+\left(r_{1} w_{1}-r_{2} w_{2}, r_{1} w_{2}+r_{2} w_{1}\right)= \\
\left(r_{1}+r_{2} i\right)\left(v_{1}, v_{2}\right)+\left(r_{1}+r_{2} i\right)\left(w_{1}, w_{2}\right)
\end{gathered}
$$

(b) Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. We claim that $\left\{\left(v_{1}, 0\right), \ldots,\left(v_{n}, 0\right)\right\}$ is a basis for W. We must verify that these vectors span W over \mathbb{C} and are linearly independent over \mathbb{C}.

Span: Let $(v, w) \in W$ be given Write $v=\sum_{k=1}^{n} a_{k} v_{k}$ and $w=\sum_{k=1}^{n} b_{k} v_{k}$ where $a_{k}, b_{k} \in \mathbb{R}$ for each k. Then

$$
(v, 0)=\left(\sum_{k=1}^{n} a_{k} v_{k}, 0\right)=\sum_{k=1}^{n} a_{k}\left(v_{k}, 0\right)
$$

and

$$
(w, 0)=\left(\sum_{k=1}^{n} b_{k} v_{k}, 0\right)=\sum_{k=1}^{n} b_{k}\left(v_{k}, 0\right)
$$

therefore

$$
\begin{aligned}
(v, w)=(v, 0)+(0, w) & =(v, 0)+i(w, 0)= \\
\sum_{k=1}^{n} a_{k}\left(v_{k}, 0\right)+i \sum_{k=1}^{n} b_{k}\left(v_{k}, 0\right) & =\sum_{k=1}^{n}\left(a_{k}+b_{k} i\right)\left(v_{k}, 0\right)
\end{aligned}
$$

Linear independence: Suppose

$$
\sum_{k=1}^{n}\left(a_{k}+b_{k} i\right)\left(v_{k}, 0\right)=(0,0)
$$

Using the formula we derived in the previous paragraph, we then have

$$
\left(\sum_{k=1}^{n} a_{k} v_{k}, \sum_{k=1}^{n} b_{k} v_{k}\right)=(0,0)
$$

Therefore

$$
\sum_{k=1}^{n} a_{k} v_{k}=\sum_{k=1}^{n} b_{k} v_{k}=0
$$

By linear independence of v_{1}, \ldots, v_{n} we have

$$
a_{1}=\cdots=a_{n}=b_{1}=\cdots=b_{n}=0
$$

Therefore

$$
a_{1}+b_{1} i=\cdots=a_{n}+b_{n} i=0 .
$$

(c) Positive-definiteness: We have

$$
\langle(v, w),(v, w)\rangle=(\langle v, v\rangle+\langle w, w\rangle)+i(-\langle v, w\rangle+\langle w, v\rangle)=\langle v, v\rangle+\langle w, w\rangle \geq 0 .
$$

Suppose $\langle(v, w),(v, w)\rangle=0$. Then

$$
\langle v, v\rangle+\langle w, w\rangle=0 .
$$

Since $\langle v, v\rangle \geq 0$ and $\langle w, w\rangle \geq 0$, we must have

$$
\langle v, v\rangle=\langle w, w\rangle=0
$$

This implies $v=w=0_{V}$. Therefore

$$
(v, w)=\left(0_{V}, 0_{V}\right)=0_{W}
$$

Multilinearity: Let $x=(v, w), x^{\prime}=\left(v^{\prime}, w^{\prime}\right), y=\left(v^{\prime \prime}, w^{\prime \prime}\right), a=r_{1}+r_{2} i$. Then

$$
\begin{gathered}
\left\langle x+x^{\prime}, y\right\rangle=\left\langle\left(v+v^{\prime}, w+w^{\prime}\right),\left(v^{\prime \prime}, w^{\prime \prime}\right)\right\rangle= \\
\left(\left\langle v+v^{\prime}, v^{\prime \prime}\right\rangle+\left\langle w+w^{\prime}, w^{\prime \prime}\right\rangle\right)+i\left(-\left\langle v+v^{\prime}, w^{\prime \prime}\right\rangle+\left\langle w+w^{\prime}, v^{\prime \prime}\right\rangle\right)= \\
\left(\left\langle v, v^{\prime \prime}\right\rangle+\left\langle v^{\prime}, v^{\prime \prime}\right\rangle+\left\langle w, w^{\prime \prime}\right\rangle+\left\langle w^{\prime}, w^{\prime \prime}\right\rangle\right)+i\left(-\left\langle v, w^{\prime \prime}\right\rangle-\left\langle v^{\prime}, w^{\prime \prime}\right\rangle+\left\langle w, v^{\prime \prime}\right\rangle+\left\langle w^{\prime}, v^{\prime \prime}\right\rangle\right)=
\end{gathered}
$$

$$
\begin{gathered}
{\left[\left(\left\langle v, v^{\prime \prime}\right\rangle+\left\langle w, w^{\prime \prime}\right\rangle\right)+i\left(-\left\langle v, w^{\prime \prime}\right\rangle+\left\langle w, v^{\prime \prime}\right\rangle\right)\right]+} \\
{\left[\left(\left\langle v^{\prime}, v^{\prime \prime}\right\rangle+\left\langle w^{\prime}, w^{\prime \prime}\right\rangle\right)+i\left(-\left\langle v^{\prime}, w^{\prime \prime}\right\rangle+\left\langle w^{\prime}, v^{\prime \prime}\right\rangle\right)\right]=} \\
\left\langle(v, w),\left(v^{\prime \prime}, w^{\prime \prime}\right)\right\rangle+\left\langle\left(v^{\prime}, w^{\prime}\right),\left(v^{\prime \prime}, w^{\prime \prime}\right)\right\rangle=\langle x, y\rangle+\left\langle x^{\prime}, y^{\prime}\right\rangle .
\end{gathered}
$$

Conjugate symmetry: Let $x=\left(v_{1}, w_{1}\right), y=\left(v_{2}, w_{2}\right)$. Then

$$
\begin{gathered}
\langle x, y\rangle=\left(\left\langle v_{1}, v_{2}\right\rangle+\left\langle w_{1}, w_{2}\right\rangle\right)+i\left(-\left\langle v_{1}, w_{2}\right\rangle+\left\langle v_{2}, w_{1}\right\rangle\right)= \\
\left(\left\langle v_{2}, v_{1}\right\rangle+\left\langle w_{2}, w_{1}\right\rangle\right)+i\left(-\left\langle w_{2}, v_{1}\right\rangle+\left\langle w_{1}, v_{2}\right\rangle\right)= \\
\left(\left\langle v_{2}, v_{1}\right\rangle+\left\langle w_{2}, w_{1}\right\rangle\right)-i\left(-\left\langle w_{1}, v_{2}\right\rangle+\left\langle w_{2}, v_{1}\right\rangle\right)= \\
\overline{\left(\left\langle v_{2}, v_{1}\right\rangle+\left\langle w_{2}, w_{1}\right\rangle\right)+i\left(-\left\langle w_{1}, v_{2}\right\rangle+\left\langle w_{2}, v_{1}\right\rangle\right)}= \\
\overline{\langle y, x\rangle} .
\end{gathered}
$$

3. (40 points) Suppose a lake is stocked with 1000 fish and the population of fish is observed to be 2000 after 1 year, 4200 after 2 years, and 8300 after 3 years. You are asked to make a prediction of the fish population after 5 years. One approach is to assume an exponential model of population growth, $P(t)=A e^{k t}$ where t is years and $P(t)$ is population after t years. For example, you could choose $A=1000$ and $k=\ln 2$, but this does not fit the data exactly, and no choice of A and k will. Your task is to choose A and k appropriately to find the best fit in some well-defined sense, then compute $P(5)$. Using properties of inner-product spaces and orthogonal projection, provide a reasonable criterion for choosing A and k, then compute $P(5)$. The following elements must appear in your solution: (a) define a vector space V, (b) define the inner product on V, (c) define a subspace U in terms of the data provided, (d) express your criterion for choosing A and k in terms of orthogonal projection onto U, (e) cite the appropriate theorem that guarantees that your criterion is met, (f) compute A, k, and $P(5)$. It would be interesting to plot the data and the curve $y=A e^{k t}$ on the same coordinate system, but this is not required.
Hint: $y=A e^{k t}$ if and only if $\ln y=\ln A+k t$.
Solution: Let

$$
\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=(0,1,2,3)
$$

and

$$
\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=(\ln 1000, \ln 2000, \ln 4200, \ln 8300)
$$

We want to choose A and k to minimize

$$
\sqrt{\sum_{i=1}^{4}\left(L_{i}-\ln A-k t_{i}\right)^{2}}
$$

In other words, setting

$$
\begin{gathered}
L=\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=(6.90776,7.6009,8.34284,9.02401), \\
v_{1}=(1,1,1,1), \\
v_{2}=\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=(0,1,2,3),
\end{gathered}
$$

we wish to find minimize

$$
\left\|L-\left(\ln A \cdot v_{1}+k \cdot v_{2}\right)\right\| .
$$

Setting $V=\mathbb{R}^{4}$, using the dot product as the inner product, and setting $U=\operatorname{span}\left(v_{1}, v_{2}\right)$, we know that the unique vector in U which minimizes $\|L-u\|$ is $u=P L$ where $P: V \rightarrow U$ is orthogonal projection onto U. So we must find an orthonormal basis $\left\{u_{1}, u_{2}\right\}$ for U, set $u=\left\langle L, u_{1}\right\rangle u_{1}+\left\langle L, u_{2}\right\rangle u_{2}$, then solve the equation

$$
u=\ln A \cdot v_{1}+k \cdot v_{2}
$$

for A and k. Mathematica yields

$$
\begin{gathered}
u_{1}=(0.5,0.5,0.5,0.5) \\
u_{2}=(-0.67082,-0.223607,0.223607,0.67082) \\
u=(6.90527,7.61434,8.32341,9.03248) \\
\ln A=6.90527 \\
k=0.70907
\end{gathered}
$$

hence

$$
\begin{gathered}
P(t)=e^{6.90527} e^{0.70907 t}=997.519 e^{0.7907 t}, \\
P(5)=34565.8
\end{gathered}
$$

So we predict that there will be 34566 fish in the lake in year 5 . See the Mathematica notebook online.

