
Exam 3 Solutions Math 447/547 Spring 2013

Due Thursday, April 11

Show all work. Be thorough!

Review of Inner-Product Spaces:

Let V be a vector space over F = R or F = C, finite or infinite-dimensional.
An inner product on V is a function 〈•, •〉 : V × V → F which satisfies the
following axioms:

1. Positive-Definiteness: 〈v, v〉 ≥ 0 for all v ∈ V , and 〈v, v〉 = 0 if and
only if v = 0V .

2. Multilinearity: 〈v + v′, w〉 = 〈v, w〉 + 〈v′, w〉 and 〈av, w〉 = a〈v, w〉 for
all v, v′, w ∈ V and a ∈ W .

3. Conjugate Symmetry: 〈w, v〉 = 〈v, w〉 for all v, w ∈ V .

Inner-Product Space: A real or complex vector space V equipped with
an inner-product.

Exam Questions:

1. (30 points) Let V = F where F where F ∈ {R,C}. Then V is a one-
dimensional vector space over F . Let 〈•, •〉 be an inner product on V . True
or false: 〈1, 1〉 = 1. If true, prove it carefully using the three axioms of
inner products: Positive-Definiteness, Multilinearity, Conjugate Symmetry.
If false, let

X = {c ∈ F : there exists an inner product on V with 〈1, 1〉 = c}

and carefully identify all the elements of X. Note that to prove c ∈ X you
must construct an inner product satisfying 〈1, 1〉 = c and prove that your
inner product satisfies the three axioms.

Solution: False. In fact, X = (0,∞). Reason: Conjugate symmetry re-
quires 〈1, 1〉 ∈ R. Positive-definiteness rules out 〈1, 1〉 ≤ 0. Therefore X ⊆
(0,∞). Now let c ∈ (0,∞). Define 〈x, y〉 = cxy. Then 〈x, x〉 = c|x|2 ≥ 0, and
this equals 0 if and only if x = 0. Hence positive-definiteness is met. Also,
〈x+y, z〉 = c(x+y)z = cxz+cyz = 〈x, z〉+〈y, z〉 and 〈ax, y〉 = caxy = acxy =
a〈x, y〉, hence multilineary is met. Finally, 〈y, x〉 = cyx = cxy = 〈x, y〉, hence
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conjugate symmetry is met. Hence c ∈ X. Therefore (0,∞) ⊆ X. Therefore
X = (0,∞).

2. (30 points) Let V be a real vector space with inner product 〈•, •〉 : V×V →
R. Let W = V × V with vector addition defined by

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2),

scalar multiplication defined by

(a + bi)(v, w) = (av − bw, aw + bv),

and inner product 〈•, •〉′ : W ×W → C defined by

〈(v1, w1), (v2, w2)〉′ = (〈v1, v2〉+ 〈w1, w2〉) + i(−〈v1, w2〉+ 〈w1, v2〉).

(a) Prove that W satisfies the axioms of a complex vector space.

(b) Prove that W has dimension n over C, assuming that V has dimension
n over R.

(c) Prove that the inner product defined on W satisfies the three axioms
of inner products over C (Positive-Definiteness, Multilinearity, Conjugate
Symmetry), assuming that the inner product on V does over R.

Solution: (a) One can check that W is an abelian group with additive
identity 0W = (0V , 0V ) and additive inverse −(v, w) = (−v,−w). We must
also check (rs) · v = r · (s · v), 1 · v = v, r · (v + w) = (r · v) + (s · v) for
all r, s ∈ C and v, w ∈ W . Write r = r1 + r2i, s = s1 + s2i, v = (v1, v2),
w = (w1, w2).

(rs) · v = r · (s · v):

(rs) · v = ((r1s1 − r2s2) + (r1s2 + r2s1)i)(v1, v2) =

((r1s1 − r2s2)v1 − (r1s2 + r2s1)v2), (r1s1 − r2s2)v2 + (r1s2 + r2s1)v1),

r · (s · v) = (r1 + r2i)(s1v1 − s2v2, s1v2 + s2v1) =

(r1(s1v1 − s2v2)− r2(s1v2 + s2v1), r1(s1v2 + s2v1) + r2(s1v1 − s2v2).

These two expressions are the same.
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1 · v = v:

1 · v = (1 + 0i)(v1, v2) = (1v1 − 0v2, 1v2 + 0v1) = (v1, v2) = v.

r · (v + w) = (r · v) + (s · v):

(r1+r2i)(v1+w1, v2+w2) = (r1(v1+w1)−r2(v2+wi), r1(v2+w2)+r2(v1+w1)) =

(r1v1 − r2v2, r1v2 + r2v1) + (r1w1 − r2w2, r1w2 + r2w1) =

(r1 + r2i)(v1, v2) + (r1 + r2i)(w1, w2).

(b) Let {v1, . . . , vn} be a basis for V . We claim that {(v1, 0), . . . , (vn, 0)} is
a basis for W . We must verify that these vectors span W over C and are
linearly independent over C.

Span: Let (v, w) ∈ W be given Write v =
∑n

k=1 akvk and w =
∑n

k=1 bkvk
where ak, bk ∈ R for each k. Then

(v, 0) = (
n∑

k=1

akvk, 0) =
n∑

k=1

ak(vk, 0)

and

(w, 0) = (
n∑

k=1

bkvk, 0) =
n∑

k=1

bk(vk, 0),

therefore
(v, w) = (v, 0) + (0, w) = (v, 0) + i(w, 0) =

n∑
k=1

ak(vk, 0) + i

n∑
k=1

bk(vk, 0) =
n∑

k=1

(ak + bki)(vk, 0).

Linear independence: Suppose

n∑
k=1

(ak + bki)(vk, 0) = (0, 0).
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Using the formula we derived in the previous paragraph, we then have

(
n∑

k=1

akvk,

n∑
k=1

bkvk) = (0, 0).

Therefore
n∑

k=1

akvk =
n∑

k=1

bkvk = 0.

By linear independence of v1, . . . , vn we have

a1 = · · · = an = b1 = · · · = bn = 0.

Therefore
a1 + b1i = · · · = an + bni = 0.

(c) Positive-definiteness: We have

〈(v, w), (v, w)〉 = (〈v, v〉+ 〈w,w〉) + i(−〈v, w〉+ 〈w, v〉) = 〈v, v〉+ 〈w,w〉 ≥ 0.

Suppose 〈(v, w), (v, w)〉 = 0. Then

〈v, v〉+ 〈w,w〉 = 0.

Since 〈v, v〉 ≥ 0 and 〈w,w〉 ≥ 0, we must have

〈v, v〉 = 〈w,w〉 = 0.

This implies v = w = 0V . Therefore

(v, w) = (0V , 0V ) = 0W .

Multilinearity: Let x = (v, w), x′ = (v′, w′), y = (v′′, w′′), a = r1 + r2i. Then

〈x + x′, y〉 = 〈(v + v′, w + w′), (v′′, w′′)〉 =

(〈v + v′, v′′〉+ 〈w + w′, w′′〉) + i(−〈v + v′, w′′〉+ 〈w + w′, v′′〉) =

(〈v, v′′〉+〈v′, v′′〉+〈w,w′′〉+〈w′, w′′〉)+i(−〈v, w′′〉−〈v′, w′′〉+〈w, v′′〉+〈w′, v′′〉) =
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[(〈v, v′′〉+ 〈w,w′′〉) + i(−〈v, w′′〉+ 〈w, v′′〉)]+

[(〈v′, v′′〉+ 〈w′, w′′〉) + i(−〈v′, w′′〉+ 〈w′, v′′〉)] =

〈(v, w), (v′′, w′′)〉+ 〈(v′, w′), (v′′, w′′)〉 = 〈x, y〉+ 〈x′, y′〉.

Conjugate symmetry: Let x = (v1, w1), y = (v2, w2). Then

〈x, y〉 = (〈v1, v2〉+ 〈w1, w2〉) + i(−〈v1, w2〉+ 〈v2, w1〉) =

(〈v2, v1〉+ 〈w2, w1〉) + i(−〈w2, v1〉+ 〈w1, v2〉) =

(〈v2, v1〉+ 〈w2, w1〉)− i(−〈w1, v2〉+ 〈w2, v1〉) =

(〈v2, v1〉+ 〈w2, w1〉) + i(−〈w1, v2〉+ 〈w2, v1〉) =

〈y, x〉.

3. (40 points) Suppose a lake is stocked with 1000 fish and the population
of fish is observed to be 2000 after 1 year, 4200 after 2 years, and 8300 after
3 years. You are asked to make a prediction of the fish population after
5 years. One approach is to assume an exponential model of population
growth, P (t) = Aekt where t is years and P (t) is population after t years.
For example, you could choose A = 1000 and k = ln 2, but this does not fit
the data exactly, and no choice of A and k will. Your task is to choose A and
k appropriately to find the best fit in some well-defined sense, then compute
P (5). Using properties of inner-product spaces and orthogonal projection,
provide a reasonable criterion for choosing A and k, then compute P (5).
The following elements must appear in your solution: (a) define a vector
space V , (b) define the inner product on V , (c) define a subspace U in terms
of the data provided, (d) express your criterion for choosing A and k in
terms of orthogonal projection onto U , (e) cite the appropriate theorem that
guarantees that your criterion is met, (f) compute A, k, and P (5). It would
be interesting to plot the data and the curve y = Aekt on the same coordinate
system, but this is not required.

Hint: y = Aekt if and only if ln y = lnA + kt.

Solution: Let
(t1, t2, t3, t4) = (0, 1, 2, 3)
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and
(L1, L2, L3, L4) = (ln 1000, ln 2000, ln 4200, ln 8300).

We want to choose A and k to minimize√√√√ 4∑
i=1

(Li − lnA− kti)2.

In other words, setting

L = (L1, L2, L3, L4) = (6.90776, 7.6009, 8.34284, 9.02401),

v1 = (1, 1, 1, 1),

v2 = (t1, t2, t3, t4) = (0, 1, 2, 3),

we wish to find minimize

||L− (lnA · v1 + k · v2)||.

Setting V = R4, using the dot product as the inner product, and setting
U = span(v1, v2), we know that the unique vector in U which minimizes
||L−u|| is u = PL where P : V → U is orthogonal projection onto U . So we
must find an orthonormal basis {u1, u2} for U , set u = 〈L, u1〉u1 + 〈L, u2〉u2,
then solve the equation

u = lnA · v1 + k · v2
for A and k. Mathematica yields

u1 = (0.5, 0.5, 0.5, 0.5)

u2 = (−0.67082,−0.223607, 0.223607, 0.67082)

u = (6.90527, 7.61434, 8.32341, 9.03248)

lnA = 6.90527

k = 0.70907

hence
P (t) = e6.90527e0.70907t = 997.519e0.7907t,

P (5) = 34565.8.

So we predict that there will be 34566 fish in the lake in year 5. See the
Mathematica notebook online.
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