Exam 2 Solutions Math 447/547 Spring 2013

Due Thursday, March 7

Show all work. Be thorough!

1. Let $V=P_{2}(\mathbb{R}), W=P_{3}(\mathbb{R})$, and let $h: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $h(x)=$ $3 x+1$. Define $T \in \mathcal{L}(V, W)$ via $T(f)=h f$ (product of functions). Since T is injective and W is finite-dimensional, by Problem 14 of Chapter 3 we know that there exists $S \in \mathcal{L}(W, V)$ such that $S T=I$. Let

$$
X=\{S \in \mathcal{L}(W, V): S T=\lambda I \text { for some } \lambda \in \mathbb{R}\} .
$$

(a) Prove that X is a subspace of $\mathcal{L}(W, V)$ and (b) compute its dimension.

Hint: Represent all linear maps by suitable matrix representations. You should be able to derive a system of equations for the 12 entries of S. Solve this system, use the solutions to find a basis for $\{M(S): S \in X\}$, and use this to compute the dimension of X.

Solution: (a) Let $S_{1}, S_{2} \in X$ and $a_{1}, a_{2} \in \mathbb{R}$. Then there exist real numbers λ_{1}, λ_{2} such that $S_{1} T=\lambda_{1} I$ and $S_{2} T=\lambda_{2} I$, therefore $\left(a_{1} S_{1}+a_{2} S_{2}\right) T=$ $a_{1} S_{1} T+a_{2} S_{2} T=a_{1} \lambda_{1} I+a_{2} \lambda_{2} I=\left(a_{1} \lambda_{1}+a_{2} \lambda_{2}\right) I$, therefore $a_{1} S_{1}+a_{2} S_{2} \in X$. Hence X is a subspace of $\mathcal{L}(W, V)$.
(b) We will predict the dimension of X first, given our understanding of how S is formed: Expand the linearly independent vectors $T 1, T x, T x^{2}$ to a basis $T_{1}, T x, T x^{2}, w$ for W, then define S on this basis via $S(T 1)=1, S(T x)=x$, $S\left(T x^{2}\right)=x^{2}, S(w)=v$ where $v \in V$ is arbitrary. Given that the two choices w and v have to be made, I predict that $\operatorname{dim} X=1+3=4$. Let's do this carefully however.
To compute $\operatorname{dim} X$, observe that $T 1=3 x+1, T x=3 x^{2}+x$, and $T x^{2}=$ $3 x^{3}+x^{2}$, therefore the matrix representation of T with respect to the basis $\left\{1, x, x^{2}\right\}$ for V and the basis $\left\{1, x, x^{2}, x^{3}\right\}$ for W is

$$
M(T)=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

Let $S \in X$. Its matrix representation with respect to these two bases must be of the form

$$
M(S)=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
$$

Assuming $S T=\lambda I$, the matrix representation of λI with respect to the basis for V is

$$
M(\lambda I)=\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]
$$

Hence

$$
M(S) M(T)-M(\lambda I)=M(S T-\lambda I)=M(0)=0
$$

This yields

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

This matrix equation implies a system of 9 equations satisfied by the 13 variables $a_{11}, \ldots, a_{34}, \lambda$. Writing these out and then expressing the result in matrix form yields

$$
\left[\begin{array}{ccccccccccccc}
1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & -1
\end{array}\right]\left[\begin{array}{c}
a_{11} \\
a_{12} \\
a_{13} \\
a_{14} \\
a_{21} \\
a_{22} \\
a_{23} \\
a_{24} \\
a_{31} \\
a_{32} \\
a_{33} \\
a_{34} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

The system of equations this implies can be represented by the augmented matrix

$$
\left[\begin{array}{ccccccccccccc:c}
1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & -1 & 0
\end{array}\right] .
$$

Since this matrix is already in row-reduced form, and there are 9 leading 1 s and 4 slack variables ($a_{14}, a_{24}, a_{34}, \lambda$), in principle each of the other variables can be expressed in terms of these, which leads to another prediction that the dimension is 4 . But we need to find a basis in order to accurately compute the dimension.
Solving the system

$$
\left[\begin{array}{ccccc:c}
1 & 3 & 0 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0
\end{array}\right]
$$

for the variables $a_{11}, a_{12}, a_{13}, a_{14}, \lambda$ yields

$$
\left(a_{11}, a_{12}, a_{13}\right)=\left(-27 a_{14}+\lambda, 9 a_{14},-3 a_{14}\right) .
$$

Solving the system

$$
\left[\begin{array}{ccccc|c}
1 & 3 & 0 & 0 & 0 & 0 \\
0 & 1 & 3 & 0 & -1 & 0 \\
0 & 0 & 1 & 3 & 0 & 0
\end{array}\right]
$$

for the variables $a_{21}, a_{22}, a_{23}, a_{24}, \lambda$ yields

$$
\left(a_{21}, a_{22}, a_{23}\right)=\left(-27 a_{24}-3 \lambda, 9 a_{24}+\lambda,-3 a_{24}\right)
$$

Solving the system

$$
\left[\begin{array}{ccccc|c}
1 & 3 & 0 & 0 & 0 & 0 \\
0 & 1 & 3 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & -1 & 0
\end{array}\right]
$$

for the variables $a_{31}, a_{32}, a_{33}, a_{34}, \lambda$ yields

$$
\left(a_{31}, a_{32}, a_{33}\right)=\left(-27 a_{34}+9 \lambda, 9 a_{34}-3 \lambda,-3 a_{34}+\lambda\right) .
$$

So we can write

$$
\begin{gathered}
M(S)=\left[\begin{array}{cccc}
-27 a_{14}+\lambda & 9 a_{14} & -3 a_{14} & a_{14} \\
-27 a_{24}-3 \lambda & 9 a_{24}+\lambda & -3 a_{24} & a_{24} \\
-27 a_{34}+9 \lambda & 9 a_{34}-3 \lambda & -3 a_{34}+\lambda & a_{34}
\end{array}\right]= \\
a_{14} A+a_{24} B+a_{34} C+\lambda D
\end{gathered}
$$

where

$$
\begin{array}{ll}
A=\left[\begin{array}{cccc}
-27 & 9 & -3 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], & B=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-27 & 9 & -3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \\
C=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-27 & 9 & -3 & 1
\end{array}\right], & D=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 1 & 0 & 0 \\
9 & -3 & 1 & 0
\end{array}\right] .
\end{array}
$$

The values of $a_{14}, a_{24}, a_{34}, \lambda$ can be chosen arbitrarily. Hence

$$
\{M(S): S \in X\}=\operatorname{span}\{A, B, C, D\}
$$

Since A, B, C, D can easily be seen to be linearly independent matrices,

$$
\operatorname{dim}\{M(S): S \in X\}=4
$$

By the vector space isomorphism between $\mathcal{L}(W, V)$ and $M_{3,4}(\mathbb{R}), \operatorname{dim}(X)=4$.
Note that A, B, and C represent linear operators N such that $N T=0$, and D represents a linear operator S_{0} such that $S_{0} T=I$. Hence the typical solution to $S T=\lambda I$ is $S=N+\lambda S_{0}$ where $N=p A+q B+r C$ for some $p, q, r \in \mathbb{R}$.
2. Let $V=P\left(\mathbb{Z}_{5}\right)$ and let $h: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ be defined by $h(x)=3 x+1$. Define $T \in \mathcal{L}(V)$ via $T(f)=f \circ h$ (composition of functions). (a) Find an uppertriangular matrix representation for T, (b) use it to identify the eigenvalues of λ, then (c) find a basis for each eigenspace $E_{\lambda}=\{v \in V: T v=\lambda v\}$. Do not use determinants.
Hint: We proved in class that $P\left(\mathbb{Z}_{5}\right)$ has basis $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$.
Solution: (a) We have $T 1=1, T x=3 x+1, T x^{2}=(3 x+1)^{2}=4 x^{2}+x+1$, $T x^{3}=(3 x+1)^{3}=2 x^{3}+2 x^{2}+4 x+1, T x^{4}=(3 x+1)^{4}=x^{4}+3 x^{3}+4 x^{2}+2 x+1$,
therefore with respect to the basis $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ we have

$$
M(T)=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 3 & 1 & 4 & 2 \\
0 & 0 & 4 & 2 & 4 \\
0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(b) The eigenvalues appear on the diagonal of $M(T)$. They are 1, 2, 3, 4 .
(c) Let $v \in E_{\lambda}$. Then $M(T) M(v)=M(\lambda v)$, therefore $M(T-\lambda I) M(v)=0$. We can use this relationship to compute $M(v)$, then express v in terms of the basis.
E_{1} basis: $\left\{1, x^{4}+2 x^{3}+4 x^{2}+3 x\right\}=\left\{1,(x+3)^{4}-1\right\}$
E_{2} basis: $\left\{x^{3}+4 x^{2}+2 x+2\right\}=\left\{(x+3)^{3}\right\}$
E_{3} basis: $\{x+3\}$
E_{4} basis: $\left\{x^{2}+x+4\right\}=\left\{(x+3)^{2}\right\}$
Note that, with with respect to the basis $\left\{1, x+3,(x+3)^{2},(x+3)^{3},(x+3)^{4}\right\}$, T has matrix representation

$$
M(T)=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

In other words,

$$
M(T)=\left[\begin{array}{ccccc}
3^{0} & 0 & 0 & 0 & 0 \\
0 & 3^{1} & 0 & 0 & 0 \\
0 & 0 & 3^{2} & 0 & 0 \\
0 & 0 & 0 & 3^{3} & 0 \\
0 & 0 & 0 & 0 & 3^{4}
\end{array}\right] .
$$

