## Determinants Lecture

## Sign of a Permutation

Let $\sigma \in S_{n}$ be given. Let $c(\sigma)$ denote the number of disjoint cycles of $\sigma$. We define the sign of $\sigma$ by

$$
\operatorname{sgn}(\sigma)=(-1)^{n-c(\sigma)}
$$

In particular, if $\sigma$ is a 2-cycle, then

$$
\operatorname{sgn}(\sigma)=-1
$$

## Theorem:

(a) Let $\tau_{1}, \ldots, \tau_{k}$ be 2 -cycles. Then $\operatorname{sgn}\left(\tau_{1} \cdots \tau_{k}\right)=(-1)^{k}$.
(b) Let $\sigma, \tau$ be permutations. Then $\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$.

Proof: Observe that we have

$$
(a x b y)(a b)=(a y)(b x)
$$

and

$$
(a x)(b y)(a b)=(a y b x)
$$

where $a$ and $b$ are distinct elements of $\{1,2, \ldots, n\}$ and $x$ represents a sequence of elements from $\{1,2, \ldots, n\} \backslash\{a, b\}$. These two formulas implies that if $\sigma$ has $c$ disjoint cycles and $\tau=(a b)$ then $\sigma \tau$ has either $c+1$ disjoint cycles or $c-1$ disjoint cycles, depending on whether $a$ and $b$ appear in the same cycle of $\sigma$ or two different cycles of $\sigma$. Hence

$$
\operatorname{sgn}(\sigma \tau)=-\operatorname{sgn}(\sigma)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)
$$

when $\tau$ is a 2 -cycle. This implies that

$$
\operatorname{sgn}\left(\tau_{1} \cdots \tau_{k}\right)=(-1)^{k}
$$

when $\tau_{1}, \ldots, \tau_{k}$ are 2-cycles. Since every permutation can be factored into 2-cycles, this yields (a), and (b) follows from (a).

## Determinant of a Matrix

$$
\operatorname{det} A=\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn}(\sigma) A(\sigma),
$$

where $\mathcal{S}_{n}$ is the set of permutations of $(1,2, \ldots, n)$ and

$$
A(\sigma)=a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)} .
$$

In particular, $\operatorname{det} I=1$.
Theorem: $\operatorname{det} A^{T}=\operatorname{det} A$.

## Proof:

$$
\begin{gathered}
\operatorname{det} A^{T}=\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn}(\sigma) A^{T}(\sigma)=\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn}\left(\sigma^{-1}\right) A\left(\sigma^{-1}\right)= \\
\sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn}(\sigma) A(\sigma)=\operatorname{det} A .
\end{gathered}
$$

Matrices can be regarded as lists of columns: $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$. The next theorem says that, as a function of column lists, the determinant is multilinear and skew-symmetric:

## Theorem:

(1) $\operatorname{det}(*, A+B, *)=\operatorname{det}(*, A, *)+\operatorname{det}(*, B, *)$ and $\operatorname{det}(*, \lambda A, *)=\lambda \operatorname{det}(*, A, *)$.
(2) If $A_{i}=A_{j}$ for some $i \neq j$ then $\operatorname{det}\left(A_{1}, \ldots, A_{n}\right)=0$.
(3) $\operatorname{det}(*, A, *, B, *)=-\operatorname{det}(*, B, *, A, *)$.

Proof: Property (1) is proved by a direct calculation.
To prove (2), let $S$ be the set of all permutations with $\sigma(i)>\sigma(j)$ and let $T$ be the set of all permutations with $\tau(i)<\tau(j)$. There is a one-to-one correspondence between $S$ and $T$ via $\sigma \mapsto \sigma(i, j)$. When $A_{i}=A_{j}$ we have $A(\sigma)=A(\tau)$. Hence the terms in the determinant expansion can be grouped into pairs with opposite signs and they all cancel out.

To prove (3), we use (1) and (2):

$$
\begin{gathered}
\operatorname{det}(*, A, *, B, *)+\operatorname{det}(*, B, *, A, *)= \\
\operatorname{det}(*, A, *, A, *)+\operatorname{det}(*, A, *, B, *)+\operatorname{det}(*, B, *, A, *,)+\operatorname{det}(*, B, *, B, *)=
\end{gathered}
$$

$$
\operatorname{det}(*, A+B, *, A+B, *)=0
$$

Corollary: If the columns $\left(A_{1}, \ldots, A_{n}\right)$ are linearly dependent then

$$
\operatorname{det}\left(A_{1}, \ldots, A_{n}\right)=0
$$

Proof: Let's say that column $A_{i}$ is a linear combination of the other columns:

$$
A_{i}=\sum_{p \neq i} \alpha_{p} A_{p} .
$$

By multilinearity we have

$$
\operatorname{det}\left(A_{1}, \ldots, A_{n}\right)=\sum_{p \neq i} \alpha_{p} \operatorname{det}\left(A_{1}, \ldots, A_{p}, \ldots, A_{n}\right)
$$

Since the terms determinants in the sum operate on lists with a repeated column, the sum is zero.

Theorem: For any pair of $n \times n$ matrices $A$ and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Proof: Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be given. Then $A B$ has columns $\left(C_{1}, \ldots, C_{n}\right)$, where

$$
C_{i}=b_{1 i} A_{1}+b_{2 i} A_{2} \cdots+b_{n i} A_{n}
$$

Using the multilinearity of the determinant, we have

$$
\begin{gathered}
\operatorname{det}(A B)=\operatorname{det}\left(\sum_{i} b_{1 i} A_{i}, \sum_{i} b_{2 i} A_{i}, \ldots, \sum_{i} b_{n i} A_{i}\right)= \\
\sum_{i_{1}, i_{2}, \ldots, i_{n}} b_{1 i_{1}} b_{2 i_{2}} \cdots b_{n i_{n}} \operatorname{det}\left(A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{n}}\right) .
\end{gathered}
$$

Instances of repeated columns among the $\left(A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{n}}\right)$ contribute zero to the sum, so we can assume that we are only dealing with the lists $\left(A_{\sigma(1)}, \ldots, A_{\sigma(n)}\right)$ for permutations $\sigma \in \mathcal{S}_{n}$, in which case

$$
\operatorname{det}\left(A_{\sigma(1)}, \ldots, A_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) \operatorname{det}\left(A_{1}, \ldots, A_{n}\right)=\operatorname{sgn}(\sigma) \operatorname{det} A
$$

Hence

$$
\operatorname{det}(A B)=\operatorname{det} A \sum_{\sigma \in \mathcal{S}_{n}} \operatorname{sgn}(\sigma) b_{1 \sigma(1)} \cdots b_{n \sigma(n)}=\operatorname{det}(A) \operatorname{det}(B) .
$$

Theorem: A matrix $A$ is invertible if and only if $\operatorname{det} A \neq 0$.
Proof: If $A$ is not invertible then then its columns are linearly dependent, and the corollary yields $\operatorname{det}\left(A_{1}, \ldots, A_{n}\right)=0$. If $A$ is invertible, then $A B=$ $I$ is possible. Therefore $\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(I)=1$, which implies that $\operatorname{det}(A) \neq 0$.

Cramer's Rule: Consider the matrix equation $A x=b$ where $A$ is a square invertible matrix. The unique solution to this equation is $x=A^{-1} b$. Let the coordinates of $x$ be $x_{1}, x_{2}, \ldots, x_{n}$. We can express each of these numbers in terms of determinants as follow:
Let the columns of $A$ be $A_{1}, \ldots, A_{n}$. Then $b=x_{1} A_{1}+\cdots+x_{n} A_{n}$. Consider the matrix $A^{(i)}$ which results after replacing column $A_{i}$ by $b$. Then

$$
\begin{gathered}
\operatorname{det} A^{(i)}=\operatorname{det}\left(A_{1}, \ldots, b, \ldots, A_{n}\right)=\operatorname{det}\left(A_{1}, \ldots, x_{1} A_{1}+\cdots+x_{n} A_{n}, \ldots, A_{n}\right)= \\
x_{1} \operatorname{det}\left(A_{1}, \ldots, A_{1}, \ldots, A_{n}\right)+x_{2} \operatorname{det}\left(A_{1}, \ldots, A_{2}, \ldots, A_{n}\right)+\cdots \\
+x_{n} \operatorname{det}\left(A_{1}, \ldots, A_{n}, \ldots, A_{n}\right)
\end{gathered}
$$

The only surviving terms is

$$
x_{i} \operatorname{det}\left(A_{1}, \ldots, A_{i}, \ldots, A_{n}\right)=x_{i} \operatorname{det} A .
$$

Therefore

$$
x_{i}=\frac{\operatorname{det} A^{(i)}}{\operatorname{det} A} .
$$

## Row-Expansion of a Determinant

Let $A$ be a matrix. Let $A_{i j}$ denote the matrix obtained by deleting row $i$ and column $j$. For any $p$,

$$
\operatorname{det} A=\sum_{q=1}^{n}(-1)^{p-q} a_{p q} \operatorname{det}\left(A_{p q}\right)
$$

Proof: The determinant of $A$ is

$$
\sum_{\sigma} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \cdots a_{n \sigma(n)}=\sum_{q=1}^{n} \sum_{\sigma(p)=q} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \cdots a_{n \sigma(n)} .
$$

Let $\tau$ be the permutation that exchanges $p$ and $q$ and leaves the other indices fixed. Set $b_{i j}=a_{i \tau(j)}$ for all $i$ and $j$. Then we have $a_{i \sigma(i)}=b_{i \tau \sigma(i)}$ and we can write

$$
\begin{gathered}
\sum_{\sigma(p)=q} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \cdots a_{n \sigma(n)}=\sum_{\sigma(p)=q} \operatorname{sgn}(\sigma) b_{1 \tau \sigma(1)} \cdots b_{n \tau \sigma(n)}= \\
\operatorname{sgn}(\tau) b_{p p} \sum_{\substack{\sigma \\
\sigma(p)=q}} \operatorname{sgn}(\tau \sigma) b_{1 \tau \sigma(1)} \cdots \widehat{b_{p p}} \cdots b_{n \tau \sigma(n)}= \\
\operatorname{sgn}(\tau) a_{p q} \sum_{\widehat{\gamma},} \operatorname{sgn}(\gamma) b_{1 \gamma(1)} \cdots \widehat{b_{p p}} \cdots b_{n \gamma(n)}= \\
\operatorname{sgn}(\tau) a_{p q} \operatorname{det}\left(B_{[n] \backslash\{p\}}\right) .
\end{gathered}
$$

If $p=q$ then $B_{[n] \backslash\{p\}}=A_{p p}$, and if $p \neq q$ then $B_{[n \backslash \backslash\{p\}}$ can be obtained from $A_{p q}$ by making a series of $|p-q|-1$ swaps in its columns. In either case we have

$$
\operatorname{sgn}(\tau) a_{p q} \operatorname{det}\left(B_{[n] \backslash\{p\}}\right)=(-1)^{p-q} a_{p q} \operatorname{det}\left(A_{p q}\right) .
$$

Theorem: Let $A$ be an invertible matrix. Let

$$
b_{i j}=\frac{(-1)^{i+j} \operatorname{det} A_{j i}}{\operatorname{det} A}
$$

for each $i$ and $j$. Then $A^{-1}=\left(b_{i j}\right)$.
Proof: The $p q$ element of $A B$ is

$$
\sum_{i} a_{p i} b_{i q}=\frac{1}{\operatorname{det} A} \sum_{i} a_{p i}(-1)^{i+q} \operatorname{det} A_{q i} .
$$

This is equal to $\frac{1}{\operatorname{det} A}$ times the row- $q$ expansion of the determinant of the matrix $A^{\prime}$ obtained from $A$ by replacing row $q$ by row $p$. If $p \neq q$ then $A^{\prime}$
has a repeated row, hence det $A^{\prime}=0$. But when $p=q$ we have $A^{\prime}=A$ and $\operatorname{det} A^{\prime}=\operatorname{det} A$. Therefore the $p q$ element of $A B$ is 0 if it is not on the main diagonal, 1 if it is on the main diagonal. Hence $A B=I$.

## Change of Basis Matrix

Let $S, T \in \mathcal{L}(v)$ be given. Suppose that $A=M(T)$ with respect to the basis $\left(v_{1}, \ldots, v_{n}\right)$ and that $B=M(T)$ with respect to the basis $\left(w_{1}, \ldots, w_{n}\right)$. How are the matrices $A$ and $B$ related? Let $R: V \rightarrow V$ be the linear operator defined by $R\left(v_{i}\right)=w_{i}$ for $i \leq n$. Let $C=M(R)$ with respect to the basis $\left(v_{1}, \ldots, v_{n}\right)$. Since $R$ is invertible, so is $C$. We have

$$
T w_{i}=\sum_{p} b_{p i} w_{p} .
$$

Therefore

$$
T R v_{i}=\sum_{p} b_{p i} w_{p} .
$$

Therefore

$$
R^{-1} T R v_{i}=\sum_{p} b_{p i} v_{p} .
$$

Therefore $B$ represents $R^{-1} T R$ with respect to the basis $\left(v_{1}, \ldots, v_{n}\right)$. On the other hand, so does $C^{-1} A C$. Therefore we have

$$
C^{-1} A C=B
$$

A more suggestive notation is

$$
M_{v}(w, v) M(T, v) M_{v}(v, w)=M(T, w)
$$

where $M(T, v)=A, M(T, w)=B, M_{v}(v, w)=C, M_{v}(w, v)=C^{-1}$.
Determinant of an endomorphism: Let $V$ be a finite-dimensional vector space and let $f: V \rightarrow V$ be an endomorphism. We proved above that if $A$ is a matrix representing $f$ with respect to one basis and $B$ is a matrix representing $f$ with respect to a second basis, then $C^{-1} A C=B$ for some matrix invertible matrix $C$. This implies that $\operatorname{det} A=\operatorname{det} \mathrm{B}$. Hence there is an unambiguous number we can attach to $f$ which we can call det $f$, namely the common value of all its matrix representations.

Determinant of $T \in \mathcal{L}\left(F^{n}\right)$ where $F \in \mathbb{R}, \mathbb{C}$ : Let $T=S \sqrt{T^{*} T}$ be the singular-value decomposition of $T$. Since $S^{*} S=I,|\operatorname{det}(S)|=1$. Therefore $|\operatorname{det}(T)|=\left|\operatorname{det}\left(\sqrt{T^{*} T}\right)\right|=\operatorname{det}\left(\sqrt{T^{*} T}\right)$.
Trace of a square matrix: Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. Then the trace of $A$ is

$$
\operatorname{trace}(A)=a_{11}+a_{22}+\cdots+a_{n n}
$$

Trace of $T \in \mathcal{L}(V)$ : It is easy to verify that $\operatorname{trace}(A B)=\operatorname{trace}(B A)$ for any pair of $n \times n$ matrices $A$ and $B$. In particular, for any invertible matrix $C$, $\operatorname{trace}\left(C^{-1} A C\right)=\operatorname{trace}\left(A C^{-1} C\right)=\operatorname{trace}(A)$. Hence every matrix representation of $T$ with respect a basis for $V$ has the same trace, and we call this the trace of $T$.
Volume: A product of intervals $\Omega=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subseteq \mathbb{R}^{n}$ is called a rectangular solid. We define the volume of $\Omega$ to be $\operatorname{vol}(\Omega)=\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)$. We will also define

$$
\operatorname{vol}\left(\Omega_{1} \cup \cdots \Omega_{k}\right)=\operatorname{vol}\left(\Omega_{1}\right)+\cdots+\operatorname{vol}\left(\Omega_{k}\right)
$$

whenever $\Omega_{1} \cup \cdots \Omega_{k}$ is a disjoint union. Given a subset $X$ of $\mathbb{R}^{n}$, we will define $v(X)$ to be the supremum of all $\operatorname{vol}\left(\Omega_{1} \cup \cdots \Omega_{k}\right)$ where $\Omega_{1} \cup \cdots \Omega_{k} \subseteq X$ is a disjoint union of rectangular solids in $X$, and we will define $V(X)$ to be the infimum of all $\operatorname{vol}\left(\Omega_{1} \cup \cdots \Omega_{k}\right)$ where $\Omega_{1} \cup \cdots \Omega_{k} \supseteq$ is disjoint union of rectangular solids containing $X$. If $v(X)=V(X)=v$ then $v$ must be a real number we define $\operatorname{vol}(X)=v$.
Computing vol $(T(X))$ where $T \in \mathcal{L}(V)$ and $V \in\left\{\mathbb{R}^{2}, \mathbb{R}^{3}\right\}$ :

1. If $T$ is a positive linear operator with diagonal matrix representation

$$
\operatorname{diag}\left(r_{11}, \ldots, r_{n n}\right)
$$

with respect to the standard basis $\left\{e_{1}, \ldots, e_{n}\right\}$ then

$$
\operatorname{vol}(T(\Omega))=r_{11} \cdots r_{n n} \operatorname{vol}(\Omega)=\operatorname{det}(T) \operatorname{vol}(\Omega)
$$

since all $T$ does is scale up the dimensions of $\Omega$ by its diagonal entries. This implies that

$$
\operatorname{vol}(T(X))=\operatorname{det}(T) \operatorname{vol}(X)
$$

using the definition of $\operatorname{vol}(X)$ and properties of the infimum and supremum.
2. If $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry then, since it preserves lengths of vectors and angles between vectors,

$$
\operatorname{vol}(S(\Omega))=\operatorname{vol}(\Omega)
$$

This implies

$$
\operatorname{vol}(S(X))=\operatorname{vol}(X)
$$

for any $X$ whose volume can be measured, using the definition of $v(X)$ and properties of the infimum and supremum.
3. If $T$ is a positive linear operator then

$$
\operatorname{vol}(T(X))=\operatorname{det}(T) \operatorname{vol}(X)
$$

Proof: Say that $T$ has diagonal matrix representation

$$
\operatorname{diag}\left(r_{11}, \ldots, r_{n n}\right)
$$

with respect to an orthonormal basis $\left\{f_{1}, \ldots, f_{n}\right\}$. Let $S$ be the isometry that maps $e_{i}$ to $f_{i}$ for each $i$, where $e_{1}, \ldots, e_{n}$ is the standard basis. Then $S^{-1} T S$ has the same matrix representation with respect to the standard basis. It is easy to verify that $S^{-1} T S$ is a positive linear operator. By \#1 above,

$$
\operatorname{vol}\left(S^{-1} T S(X)\right)=\operatorname{det}\left(S^{-1} T S\right) \operatorname{vol}(X)=\operatorname{det}(T) \operatorname{vol}(X)
$$

On the other hand, by $\# 2$ above we also have

$$
\operatorname{vol}\left(S^{-1} T S(X)\right)=\operatorname{vol}(T S(X))
$$

Taken together,

$$
\operatorname{vol}(T S(X))=\operatorname{det}(T) \operatorname{vol}(X)
$$

for any $X$. Therefore

$$
\operatorname{vol}(T(X))=\operatorname{det}(T) \operatorname{vol}\left(S^{-1}(X)\right)=\operatorname{det}(T) \operatorname{vol}(X)
$$

4. If $T$ is an arbitrary linear operator then

$$
\operatorname{vol}(T(X))=|\operatorname{det}(T)| \operatorname{vol}(X)
$$

Proof: Write $T=S \sqrt{T^{*} T}$ where $S$ is an isometry. Then

$$
\operatorname{vol}(T(X))=\operatorname{vol}\left(\sqrt{T^{*} T}(X)\right)=\operatorname{det}\left(\sqrt{T^{*} T}\right) \operatorname{vol}(X)=|\operatorname{det}(T)| \operatorname{vol}(X)
$$

Example: Area of the ellipse $E=\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}$.
The ellipse is the image of the unit disk $D=\left\{(x, y): x^{2}+y^{2}=1\right\}$ under the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(a x, b y)$ where $a, b>0$. Therefore

$$
\operatorname{vol}(E)=\operatorname{vol}(T(C))=\operatorname{det}(T) \operatorname{vol}(D)=a b \pi
$$

Change of variables formula: The volume integral of a continuous function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ over a region $X \subseteq \mathbb{R}^{3}$ can be expressed as the limit in some sense of all expressions of the form

$$
\sum f\left(a_{i}, b_{i}, c_{i}\right) \operatorname{vol}\left(X_{i}\right)
$$

where $X_{1} \cup \cdots X_{k} \subseteq X$ is a disjoint union of small regions and $\left(a_{i}, b_{i}, c_{i}\right) \in X_{i}$ for each $i$. Now suppose there is a differentiable injective mapping from $Y$ onto $X$ via $\phi$. We can express the integral as the limit of expressions of the form

$$
\sum f\left(\phi\left(a_{i}, b_{i}, c_{i}\right)\right) \operatorname{vol}\left(\phi\left(\Omega_{i}\right)\right)
$$

where $\Omega_{1} \cup \cdots \Omega_{k} \subseteq Y$ is a disjoint union of small regions and $\left(a_{i}, b_{i}, c_{i}\right) \in \Omega_{i}$ for each $i$. For $\Omega$ with small dimensions, the region $\phi(\Omega)$ is approximated by the region $\left(\frac{\partial \phi_{i}\left(a_{i}, b_{i}, c_{i}\right)}{\partial x_{j}}\right)(\Omega)$, evaluated at some $\left(a_{i}, b_{i}, c_{i}\right) \in \Omega_{i}$, yielding the approximation

$$
\sum f\left(\phi\left(a_{i}, b_{i}, c_{i}\right)\right)\left|\operatorname{det}\left(\frac{\partial \phi_{i}\left(a_{i}, b_{i}, c_{i}\right)}{\partial x_{j}}\right)\right| \operatorname{vol}\left(\Omega_{i}\right) .
$$

Hence we obtain

$$
\iiint_{X} f(x, y, z) d V=\iiint_{Y} f(\phi(x, y, z))\left|\operatorname{det}\left(\frac{\partial \phi_{i}}{\partial x_{j}}\right)\right| d V .
$$

If $Y$ has has a simple shape then the latter can be evaluated by an iterated integral.

For example, if $X$ is the upper-half of the unit sphere and $Y=[0,1] \times[0,2 \pi] \times$ $\left[0, \frac{\pi}{2}\right]$ then $\phi: Y \rightarrow X$ defined by $\phi(x, y, z)=(x \sin z \cos y, x \sin z \sin y, x \cos z)$ maps $Y$ onto $X$. We have

