
Determinants Lecture

Sign of a Permutation

Let σ ∈ Sn be given. Let c(σ) denote the number of disjoint cycles of σ. We
define the sign of σ by

sgn(σ) = (−1)n−c(σ).

In particular, if σ is a 2-cycle, then

sgn(σ) = −1.

Theorem:

(a) Let τ1, . . . , τk be 2-cycles. Then sgn(τ1 · · · τk) = (−1)k.

(b) Let σ, τ be permutations. Then sgn(στ) = sgn(σ)sgn(τ).

Proof: Observe that we have

(axby)(ab) = (ay)(bx)

and
(ax)(by)(ab) = (aybx)

where a and b are distinct elements of {1, 2, . . . , n} and x represents a se-
quence of elements from {1, 2, . . . , n}\{a, b}. These two formulas implies that
if σ has c disjoint cycles and τ = (ab) then στ has either c+ 1 disjoint cycles
or c − 1 disjoint cycles, depending on whether a and b appear in the same
cycle of σ or two different cycles of σ. Hence

sgn(στ) = −sgn(σ) = sgn(σ)sgn(τ)

when τ is a 2-cycle. This implies that

sgn(τ1 · · · τk) = (−1)k,

when τ1, . . . , τk are 2-cycles. Since every permutation can be factored into
2-cycles, this yields (a), and (b) follows from (a).
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Determinant of a Matrix

det A =
∑
σ∈Sn

sgn(σ)A(σ),

where Sn is the set of permutations of (1, 2, . . . , n) and

A(σ) = a1σ(1)a2σ(2) · · · anσ(n).

In particular, det I = 1.

Theorem: det AT = det A.

Proof:

det AT =
∑
σ∈Sn

sgn(σ)AT (σ) =
∑
σ∈Sn

sgn(σ−1)A(σ−1) =

∑
σ∈Sn

sgn(σ)A(σ) = det A.

Matrices can be regarded as lists of columns: A = (A1, A2, . . . , An). The
next theorem says that, as a function of column lists, the determinant is
multilinear and skew-symmetric:

Theorem:

(1) det(∗, A+B, ∗) = det(∗, A, ∗)+det(∗, B, ∗) and det(∗, λA, ∗) = λ det(∗, A, ∗).
(2) If Ai = Aj for some i 6= j then det(A1, . . . , An) = 0.

(3) det(∗, A, ∗, B, ∗) = −det (∗, B, ∗, A, ∗).
Proof: Property (1) is proved by a direct calculation.

To prove (2), let S be the set of all permutations with σ(i) > σ(j) and let
T be the set of all permutations with τ(i) < τ(j). There is a one-to-one
correspondence between S and T via σ 7→ σ(i, j). When Ai = Aj we have
A(σ) = A(τ). Hence the terms in the determinant expansion can be grouped
into pairs with opposite signs and they all cancel out.

To prove (3), we use (1) and (2):

det(∗, A, ∗, B, ∗) + det(∗, B, ∗, A, ∗) =

det(∗, A, ∗, A, ∗) + det(∗, A, ∗, B, ∗) + det(∗, B, ∗, A, ∗, ) + det(∗, B, ∗, B, ∗) =
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det(∗, A+B, ∗, A+B, ∗) = 0.

Corollary: If the columns (A1, . . . , An) are linearly dependent then

det(A1, . . . , An) = 0.

Proof: Let’s say that column Ai is a linear combination of the other columns:

Ai =
∑
p6=i

αpAp.

By multilinearity we have

det(A1, . . . , An) =
∑
p6=i

αp det(A1, . . . , Ap, . . . , An).

Since the terms determinants in the sum operate on lists with a repeated
column, the sum is zero.

Theorem: For any pair of n×nmatricesA andB, det(AB) = det(A) det(B).

Proof: Let A = (aij) and B = (bij) be given. Then AB has columns
(C1, . . . , Cn), where

Ci = b1iA1 + b2iA2 · · ·+ bniAn.

Using the multilinearity of the determinant, we have

det(AB) = det(
∑
i

b1iAi,
∑
i

b2iAi, . . . ,
∑
i

bniAi) =

∑
i1,i2,...,in

b1i1b2i2 · · · bnin det(Ai1 , Ai2 , . . . , Ain).

Instances of repeated columns among the (Ai1 , Ai2 , . . . , Ain) contribute zero
to the sum, so we can assume that we are only dealing with the lists (Aσ(1), . . . , Aσ(n))
for permutations σ ∈ Sn, in which case

det(Aσ(1), . . . , Aσ(n)) = sgn(σ) det(A1, . . . , An) = sgn(σ)det A.
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Hence

det(AB) = detA
∑
σ∈Sn

sgn(σ)b1σ(1) · · · bnσ(n) = det(A) det(B).

Theorem: A matrix A is invertible if and only if det A 6= 0.

Proof: If A is not invertible then then its columns are linearly dependent,
and the corollary yields det(A1, . . . , An) = 0. If A is invertible, then AB =
I is possible. Therefore det(A) det(B) = det(I) = 1, which implies that
det(A) 6= 0.

Cramer’s Rule: Consider the matrix equation Ax = b where A is a square
invertible matrix. The unique solution to this equation is x = A−1b. Let the
coordinates of x be x1, x2, . . . , xn. We can express each of these numbers in
terms of determinants as follow:

Let the columns of A be A1, . . . , An. Then b = x1A1 + · · ·+ xnAn. Consider
the matrix A(i) which results after replacing column Ai by b. Then

detA(i) = det(A1, . . . , b, . . . , An) = det(A1, . . . , x1A1 + · · ·+xnAn, . . . , An) =

x1 det(A1, . . . , A1, . . . , An) + x2 det(A1, . . . , A2, . . . , An) + · · ·

+xn det(A1, . . . , An, . . . , An).

The only surviving terms is

xi det(A1, . . . , Ai, . . . , An) = xi detA.

Therefore

xi =
detA(i)

detA
.

Row-Expansion of a Determinant

Let A be a matrix. Let Aij denote the matrix obtained by deleting row i and
column j. For any p,

detA =
n∑
q=1

(−1)p−qapq det(Apq).
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Proof: The determinant of A is∑
σ

sgn(σ)a1σ(1) · · · anσ(n) =
n∑
q=1

∑
σ

σ(p)=q

sgn(σ)a1σ(1) · · · anσ(n).

Let τ be the permutation that exchanges p and q and leaves the other indices
fixed. Set bij = aiτ(j) for all i and j. Then we have aiσ(i) = biτσ(i) and we can
write ∑

σ
σ(p)=q

sgn(σ)a1σ(1) · · · anσ(n) =
∑
σ

σ(p)=q

sgn(σ)b1τσ(1) · · · bnτσ(n) =

sgn(τ)bpp
∑
σ

σ(p)=q

sgn(τσ)b1τσ(1) · · · b̂pp · · · bnτσ(n) =

sgn(τ)apq
∑
γ

γ(p)=p

sgn(γ)b1γ(1) · · · b̂pp · · · bnγ(n) =

sgn(τ)apq det(B[n]\{p}).

If p = q then B[n]\{p} = App, and if p 6= q then B[n]\{p} can be obtained from
Apq by making a series of |p− q| − 1 swaps in its columns. In either case we
have

sgn(τ)apq det(B[n]\{p}) = (−1)p−qapq det(Apq).

Theorem: Let A be an invertible matrix. Let

bij =
(−1)i+jdet Aji

det A

for each i and j. Then A−1 = (bij).

Proof: The pq element of AB is∑
i

apibiq =
1

det A

∑
i

api(−1)i+qdet Aqi.

This is equal to 1

det A
times the row-q expansion of the determinant of the

matrix A′ obtained from A by replacing row q by row p. If p 6= q then A′
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has a repeated row, hence det A′ = 0. But when p = q we have A′ = A and
det A′ = det A. Therefore the pq element of AB is 0 if it is not on the main
diagonal, 1 if it is on the main diagonal. Hence AB = I.

Change of Basis Matrix

Let S, T ∈ L(v) be given. Suppose that A = M(T ) with respect to the basis
(v1, . . . , vn) and that B = M(T ) with respect to the basis (w1, . . . , wn). How
are the matrices A and B related? Let R : V → V be the linear operator
defined by R(vi) = wi for i ≤ n. Let C = M(R) with respect to the basis
(v1, . . . , vn). Since R is invertible, so is C. We have

Twi =
∑
p

bpiwp.

Therefore
TRvi =

∑
p

bpiwp.

Therefore
R−1TRvi =

∑
p

bpivp.

Therefore B represents R−1TR with respect to the basis (v1, . . . , vn). On the
other hand, so does C−1AC. Therefore we have

C−1AC = B.

A more suggestive notation is

Mv(w, v)M(T, v)Mv(v, w) = M(T,w)

where M(T, v) = A, M(T,w) = B, Mv(v, w) = C, Mv(w, v) = C−1.

Determinant of an endomorphism: Let V be a finite-dimensional vector
space and let f : V → V be an endomorphism. We proved above that if
A is a matrix representing f with respect to one basis and B is a matrix
representing f with respect to a second basis, then C−1AC = B for some
matrix invertible matrix C. This implies that det A = det B. Hence there is
an unambiguous number we can attach to f which we can call det f , namely
the common value of all its matrix representations.
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Determinant of T ∈ L(F n) where F ∈ R,C: Let T = S
√
T ∗T be the

singular-value decomposition of T . Since S∗S = I, | det(S)| = 1. Therefore
| det(T )| = | det(

√
T ∗T )| = det(

√
T ∗T ).

Trace of a square matrix: Let A = (aij) be an n × n matrix. Then the
trace of A is

trace(A) = a11 + a22 + · · ·+ ann.

Trace of T ∈ L(V ): It is easy to verify that trace(AB) = trace(BA)
for any pair of n × n matrices A and B. In particular, for any invertible
matrix C, trace(C−1AC) = trace(AC−1C) = trace(A). Hence every matrix
representation of T with respect a basis for V has the same trace, and we
call this the trace of T .

Volume: A product of intervals Ω = [a1, b1]× · · · × [an, bn] ⊆ Rn is called a
rectangular solid. We define the volume of Ω to be vol(Ω) =

∏n
i=1 (bi − ai).

We will also define

vol(Ω1 ∪ · · ·Ωk) = vol(Ω1) + · · ·+ vol(Ωk)

whenever Ω1 ∪ · · ·Ωk is a disjoint union. Given a subset X of Rn, we will
define v(X) to be the supremum of all vol(Ω1∪· · ·Ωk) where Ω1∪· · ·Ωk ⊆ X
is a disjoint union of rectangular solids in X, and we will define V (X) to be
the infimum of all vol(Ω1 ∪ · · ·Ωk) where Ω1 ∪ · · ·Ωk ⊇ is disjoint union of
rectangular solids containing X. If v(X) = V (X) = v then v must be a real
number we define vol(X) = v.

Computing vol(T (X)) where T ∈ L(V ) and V ∈ {R2,R3}:
1. If T is a positive linear operator with diagonal matrix representation

diag(r11, . . . , rnn)

with respect to the standard basis {e1, . . . , en} then

vol(T (Ω)) = r11 · · · rnnvol(Ω) = det(T )vol(Ω)

since all T does is scale up the dimensions of Ω by its diagonal entries. This
implies that

vol(T (X)) = det(T )vol(X)

using the definition of vol(X) and properties of the infimum and supremum.
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2. If S : Rn → Rn is an isometry then, since it preserves lengths of vectors
and angles between vectors,

vol(S(Ω)) = vol(Ω).

This implies
vol(S(X)) = vol(X)

for any X whose volume can be measured, using the definition of v(X) and
properties of the infimum and supremum.

3. If T is a positive linear operator then

vol(T (X)) = det(T )vol(X).

Proof: Say that T has diagonal matrix representation

diag(r11, . . . , rnn)

with respect to an orthonormal basis {f1, . . . , fn}. Let S be the isometry that
maps ei to fi for each i, where e1, . . . , en is the standard basis. Then S−1TS
has the same matrix representation with respect to the standard basis. It is
easy to verify that S−1TS is a positive linear operator. By #1 above,

vol(S−1TS(X)) = det(S−1TS)vol(X) = det(T )vol(X).

On the other hand, by #2 above we also have

vol(S−1TS(X)) = vol(TS(X)).

Taken together,
vol(TS(X)) = det(T )vol(X)

for any X. Therefore

vol(T (X)) = det(T )vol(S−1(X)) = det(T )vol(X).

4. If T is an arbitrary linear operator then

vol(T (X)) = | det(T )|vol(X).
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Proof: Write T = S
√
T ∗T where S is an isometry. Then

vol(T (X)) = vol(
√
T ∗T (X)) = det(

√
T ∗T )vol(X) = | det(T )|vol(X).

Example: Area of the ellipse E = {(x, y) : x2

a2
+ y2

b2
≤ 1}.

The ellipse is the image of the unit disk D = {(x, y) : x2 + y2 = 1} under
the mapping T : R2 → R2 defined by T (x, y) = (ax, by) where a, b > 0.
Therefore

vol(E) = vol(T (C)) = det(T )vol(D) = abπ.

Change of variables formula: The volume integral of a continuous func-
tion f : R3 → R over a region X ⊆ R3 can be expressed as the limit in some
sense of all expressions of the form∑

f(ai, bi, ci)vol(Xi)

where X1∪· · ·Xk ⊆ X is a disjoint union of small regions and (ai, bi, ci) ∈ Xi

for each i. Now suppose there is a differentiable injective mapping from Y
onto X via φ. We can express the integral as the limit of expressions of the
form ∑

f(φ(ai, bi, ci))vol(φ(Ωi))

where Ω1 ∪ · · ·Ωk ⊆ Y is a disjoint union of small regions and (ai, bi, ci) ∈ Ωi

for each i. For Ω with small dimensions, the region φ(Ω) is approximated by

the region
(
∂φi(ai,bi,ci)

∂xj

)
(Ω), evaluated at some (ai, bi, ci) ∈ Ωi, yielding the

approximation∑
f(φ(ai, bi, ci))

∣∣∣∣det

(
∂φi(ai, bi, ci)

∂xj

)∣∣∣∣ vol(Ωi).

Hence we obtain∫ ∫ ∫
X

f(x, y, z) dV =

∫ ∫ ∫
Y

f(φ(x, y, z))

∣∣∣∣det

(
∂φi
∂xj

)∣∣∣∣ dV .
If Y has has a simple shape then the latter can be evaluated by an iterated
integral.
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For example, if X is the upper-half of the unit sphere and Y = [0, 1]×[0, 2π]×
[0, π

2
] then φ : Y → X defined by φ(x, y, z) = (x sin z cos y, x sin z sin y, x cos z)

maps Y onto X. We have
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