Determinants Lecture

Sign of a Permutation

Let $\sigma \in S_n$ be given. Let $c(\sigma)$ denote the number of disjoint cycles of σ . We define the sign of σ by

$$\operatorname{sgn}(\sigma) = (-1)^{n-c(\sigma)}.$$

In particular, if σ is a 2-cycle, then

$$\operatorname{sgn}(\sigma) = -1.$$

Theorem:

- (a) Let τ_1, \ldots, τ_k be 2-cycles. Then $\operatorname{sgn}(\tau_1 \cdots \tau_k) = (-1)^k$.
- (b) Let σ, τ be permutations. Then $\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$.

Proof: Observe that we have

$$(axby)(ab) = (ay)(bx)$$

and

$$(ax)(by)(ab) = (aybx)$$

where a and b are distinct elements of $\{1, 2, ..., n\}$ and x represents a sequence of elements from $\{1, 2, ..., n\} \setminus \{a, b\}$. These two formulas implies that if σ has c disjoint cycles and $\tau = (ab)$ then $\sigma\tau$ has either c+1 disjoint cycles or c-1 disjoint cycles, depending on whether a and b appear in the same cycle of σ or two different cycles of σ . Hence

$$\operatorname{sgn}(\sigma\tau) = -\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$$

when τ is a 2-cycle. This implies that

$$\operatorname{sgn}(\tau_1\cdots\tau_k)=(-1)^k,$$

when τ_1, \ldots, τ_k are 2-cycles. Since every permutation can be factored into 2-cycles, this yields (a), and (b) follows from (a).

Determinant of a Matrix

det
$$A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A(\sigma),$$

where S_n is the set of permutations of (1, 2, ..., n) and

$$A(\sigma) = a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}.$$

In particular, det I = 1.

Theorem: det $A^T = \det A$.

Proof:

det
$$A^T = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A^T(\sigma) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma^{-1}) A(\sigma^{-1}) =$$
$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A(\sigma) = \det A.$$

Matrices can be regarded as lists of columns: $A = (A_1, A_2, \ldots, A_n)$. The next theorem says that, as a function of column lists, the determinant is multilinear and skew-symmetric:

Theorem:

- (1) det(*, A+B, *) = det(*, A, *)+det(*, B, *) and det(*, λA , *) = λ det(*, A, *). (2) If $A_i = A_j$ for some $i \neq j$ then det(A_1, \dots, A_n) = 0.
- (3) det(*, A, *, B, *) = -det(*, B, *, A, *).

Proof: Property (1) is proved by a direct calculation.

To prove (2), let S be the set of all permutations with $\sigma(i) > \sigma(j)$ and let T be the set of all permutations with $\tau(i) < \tau(j)$. There is a one-to-one correspondence between S and T via $\sigma \mapsto \sigma(i, j)$. When $A_i = A_j$ we have $A(\sigma) = A(\tau)$. Hence the terms in the determinant expansion can be grouped into pairs with opposite signs and they all cancel out.

To prove (3), we use (1) and (2):

$$\det(*, A, *, B, *) + \det(*, B, *, A, *) =$$

det(*, A, *, A, *) + det(*, A, *, B, *) + det(*, B, *, A, *,) + det(*, B, *, B, *) =

$$\det(*, A + B, *, A + B, *) = 0.$$

Corollary: If the columns (A_1, \ldots, A_n) are linearly dependent then

$$\det(A_1,\ldots,A_n)=0.$$

Proof: Let's say that column A_i is a linear combination of the other columns:

$$A_i = \sum_{p \neq i} \alpha_p A_p$$

By multilinearity we have

$$\det(A_1,\ldots,A_n) = \sum_{p \neq i} \alpha_p \det(A_1,\ldots,A_p,\ldots,A_n).$$

Since the terms determinants in the sum operate on lists with a repeated column, the sum is zero.

Theorem: For any pair of $n \times n$ matrices A and B, det(AB) = det(A) det(B).

Proof: Let $A = (a_{ij})$ and $B = (b_{ij})$ be given. Then AB has columns (C_1, \ldots, C_n) , where

$$C_i = b_{1i}A_1 + b_{2i}A_2 \cdots + b_{ni}A_n.$$

Using the multilinearity of the determinant, we have

$$\det(AB) = \det(\sum_{i} b_{1i}A_{i}, \sum_{i} b_{2i}A_{i}, \dots, \sum_{i} b_{ni}A_{i}) = \sum_{i_{1},i_{2},\dots,i_{n}} b_{1i_{1}}b_{2i_{2}}\cdots b_{ni_{n}}\det(A_{i_{1}}, A_{i_{2}},\dots, A_{i_{n}}).$$

Instances of repeated columns among the $(A_{i_1}, A_{i_2}, \ldots, A_{i_n})$ contribute zero to the sum, so we can assume that we are only dealing with the lists $(A_{\sigma(1)}, \ldots, A_{\sigma(n)})$ for permutations $\sigma \in S_n$, in which case

$$\det(A_{\sigma(1)},\ldots,A_{\sigma(n)}) = \operatorname{sgn}(\sigma)\det(A_1,\ldots,A_n) = \operatorname{sgn}(\sigma)\det A.$$

Hence

$$\det(AB) = \det A \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1\sigma(1)} \cdots b_{n\sigma(n)} = \det(A) \det(B).$$

Theorem: A matrix A is invertible if and only if det $A \neq 0$.

Proof: If A is not invertible then then its columns are linearly dependent, and the corollary yields $det(A_1, \ldots, A_n) = 0$. If A is invertible, then AB = I is possible. Therefore det(A) det(B) = det(I) = 1, which implies that $det(A) \neq 0$.

Cramer's Rule: Consider the matrix equation Ax = b where A is a square invertible matrix. The unique solution to this equation is $x = A^{-1}b$. Let the coordinates of x be x_1, x_2, \ldots, x_n . We can express each of these numbers in terms of determinants as follow:

Let the columns of A be A_1, \ldots, A_n . Then $b = x_1A_1 + \cdots + x_nA_n$. Consider the matrix $A^{(i)}$ which results after replacing column A_i by b. Then

$$\det A^{(i)} = \det(A_1, \dots, b, \dots, A_n) = \det(A_1, \dots, x_1A_1 + \dots + x_nA_n, \dots, A_n) =$$
$$x_1 \det(A_1, \dots, A_1, \dots, A_n) + x_2 \det(A_1, \dots, A_2, \dots, A_n) + \dots + x_n \det(A_1, \dots, A_n, \dots, A_n).$$

The only surviving terms is

$$x_i \det(A_1, \ldots, A_i, \ldots, A_n) = x_i \det A.$$

Therefore

$$x_i = \frac{\det A^{(i)}}{\det A}.$$

Row-Expansion of a Determinant

Let A be a matrix. Let A_{ij} denote the matrix obtained by deleting row i and column j. For any p,

$$\det A = \sum_{q=1}^{n} (-1)^{p-q} a_{pq} \det(A_{pq}).$$

Proof: The determinant of A is

$$\sum_{\sigma} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)} = \sum_{q=1}^{n} \sum_{\sigma \atop \sigma(p)=q} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}.$$

Let τ be the permutation that exchanges p and q and leaves the other indices fixed. Set $b_{ij} = a_{i\tau(j)}$ for all i and j. Then we have $a_{i\sigma(i)} = b_{i\tau\sigma(i)}$ and we can write

$$\sum_{\substack{\sigma \\ \sigma(p)=q}} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)} = \sum_{\substack{\sigma \\ \sigma(p)=q}} \operatorname{sgn}(\sigma) b_{1\tau\sigma(1)} \cdots b_{n\tau\sigma(n)} = \operatorname{sgn}(\tau) b_{pp} \sum_{\substack{\sigma \\ \sigma(p)=q}} \operatorname{sgn}(\tau\sigma) b_{1\tau\sigma(1)} \cdots \widehat{b_{pp}} \cdots b_{n\tau\sigma(n)} = \operatorname{sgn}(\tau) a_{pq} \sum_{\substack{\gamma \\ \gamma(p)=p}} \operatorname{sgn}(\gamma) b_{1\gamma(1)} \cdots \widehat{b_{pp}} \cdots b_{n\gamma(n)} = \operatorname{sgn}(\tau) a_{pq} \det(B_{[n] \setminus \{p\}}).$$

If p = q then $B_{[n] \setminus \{p\}} = A_{pp}$, and if $p \neq q$ then $B_{[n] \setminus \{p\}}$ can be obtained from A_{pq} by making a series of |p - q| - 1 swaps in its columns. In either case we have

$$\operatorname{sgn}(\tau)a_{pq}\det(B_{[n]\setminus\{p\}}) = (-1)^{p-q}a_{pq}\det(A_{pq}).$$

Theorem: Let A be an invertible matrix. Let

$$b_{ij} = \frac{(-1)^{i+j} \det A_{ji}}{\det A}$$

for each *i* and *j*. Then $A^{-1} = (b_{ij})$.

Proof: The pq element of AB is

$$\sum_{i} a_{pi} b_{iq} = \frac{1}{\det A} \sum_{i} a_{pi} (-1)^{i+q} \det A_{qi}.$$

This is equal to $\frac{1}{\det A}$ times the row-q expansion of the determinant of the matrix A' obtained from A by replacing row q by row p. If $p \neq q$ then A'

has a repeated row, hence det A' = 0. But when p = q we have A' = A and det $A' = \det A$. Therefore the pq element of AB is 0 if it is not on the main diagonal, 1 if it is on the main diagonal. Hence AB = I.

Change of Basis Matrix

Let $S, T \in \mathcal{L}(v)$ be given. Suppose that A = M(T) with respect to the basis (v_1, \ldots, v_n) and that B = M(T) with respect to the basis (w_1, \ldots, w_n) . How are the matrices A and B related? Let $R : V \to V$ be the linear operator defined by $R(v_i) = w_i$ for $i \leq n$. Let C = M(R) with respect to the basis (v_1, \ldots, v_n) . Since R is invertible, so is C. We have

$$Tw_i = \sum_p b_{pi} w_p.$$

Therefore

$$TRv_i = \sum_p b_{pi} w_p.$$

Therefore

$$R^{-1}TRv_i = \sum_p b_{pi}v_p.$$

Therefore B represents $R^{-1}TR$ with respect to the basis (v_1, \ldots, v_n) . On the other hand, so does $C^{-1}AC$. Therefore we have

$$C^{-1}AC = B.$$

A more suggestive notation is

$$M_v(w,v)M(T,v)M_v(v,w) = M(T,w)$$

where M(T, v) = A, M(T, w) = B, $M_v(v, w) = C$, $M_v(w, v) = C^{-1}$.

Determinant of an endomorphism: Let V be a finite-dimensional vector space and let $f: V \to V$ be an endomorphism. We proved above that if A is a matrix representing f with respect to one basis and B is a matrix representing f with respect to a second basis, then $C^{-1}AC = B$ for some matrix invertible matrix C. This implies that det $A = \det B$. Hence there is an unambiguous number we can attach to f which we can call det f, namely the common value of all its matrix representations. **Determinant of** $T \in \mathcal{L}(F^n)$ where $F \in \mathbb{R}, \mathbb{C}$: Let $T = S\sqrt{T^*T}$ be the singular-value decomposition of T. Since $S^*S = I$, $|\det(S)| = 1$. Therefore $|\det(T)| = |\det(\sqrt{T^*T})| = \det(\sqrt{T^*T})$.

Trace of a square matrix: Let $A = (a_{ij})$ be an $n \times n$ matrix. Then the trace of A is

$$\operatorname{trace}(A) = a_{11} + a_{22} + \dots + a_{nn}.$$

Trace of $T \in \mathcal{L}(V)$: It is easy to verify that trace(AB) = trace(BA) for any pair of $n \times n$ matrices A and B. In particular, for any invertible matrix C, trace $(C^{-1}AC) = \text{trace}(AC^{-1}C) = \text{trace}(A)$. Hence every matrix representation of T with respect a basis for V has the same trace, and we call this the trace of T.

Volume: A product of intervals $\Omega = [a_1, b_1] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$ is called a rectangular solid. We define the volume of Ω to be $\operatorname{vol}(\Omega) = \prod_{i=1}^n (b_i - a_i)$. We will also define

$$\operatorname{vol}(\Omega_1 \cup \cdots \cap \Omega_k) = \operatorname{vol}(\Omega_1) + \cdots + \operatorname{vol}(\Omega_k)$$

whenever $\Omega_1 \cup \cdots \Omega_k$ is a disjoint union. Given a subset X of \mathbb{R}^n , we will define v(X) to be the supremum of all $\operatorname{vol}(\Omega_1 \cup \cdots \Omega_k)$ where $\Omega_1 \cup \cdots \Omega_k \subseteq X$ is a disjoint union of rectangular solids in X, and we will define V(X) to be the infimum of all $\operatorname{vol}(\Omega_1 \cup \cdots \Omega_k)$ where $\Omega_1 \cup \cdots \Omega_k \supseteq$ is disjoint union of rectangular solids containing X. If v(X) = V(X) = v then v must be a real number we define $\operatorname{vol}(X) = v$.

Computing vol(T(X)) where $T \in \mathcal{L}(V)$ and $V \in \{\mathbb{R}^2, \mathbb{R}^3\}$:

1. If T is a positive linear operator with diagonal matrix representation

$$\operatorname{diag}(r_{11},\ldots,r_{nn})$$

with respect to the standard basis $\{e_1, \ldots, e_n\}$ then

$$\operatorname{vol}(T(\Omega)) = r_{11} \cdots r_{nn} \operatorname{vol}(\Omega) = \det(T) \operatorname{vol}(\Omega)$$

since all T does is scale up the dimensions of Ω by its diagonal entries. This implies that

$$\operatorname{vol}(T(X)) = \det(T)\operatorname{vol}(X)$$

using the definition of vol(X) and properties of the infimum and supremum.

2. If $S : \mathbb{R}^n \to \mathbb{R}^n$ is an isometry then, since it preserves lengths of vectors and angles between vectors,

$$\operatorname{vol}(S(\Omega)) = \operatorname{vol}(\Omega).$$

This implies

$$\operatorname{vol}(S(X)) = \operatorname{vol}(X)$$

for any X whose volume can be measured, using the definition of v(X) and properties of the infimum and supremum.

3. If T is a positive linear operator then

$$\operatorname{vol}(T(X)) = \det(T)\operatorname{vol}(X).$$

Proof: Say that T has diagonal matrix representation

$$\operatorname{diag}(r_{11},\ldots,r_{nn})$$

with respect to an orthonormal basis $\{f_1, \ldots, f_n\}$. Let S be the isometry that maps e_i to f_i for each *i*, where e_1, \ldots, e_n is the standard basis. Then $S^{-1}TS$ has the same matrix representation with respect to the standard basis. It is easy to verify that $S^{-1}TS$ is a positive linear operator. By #1 above,

$$\operatorname{vol}(S^{-1}TS(X)) = \det(S^{-1}TS)\operatorname{vol}(X) = \det(T)\operatorname{vol}(X).$$

On the other hand, by #2 above we also have

$$\operatorname{vol}(S^{-1}TS(X)) = \operatorname{vol}(TS(X)).$$

Taken together,

$$\operatorname{vol}(TS(X)) = \det(T)\operatorname{vol}(X)$$

for any X. Therefore

$$\operatorname{vol}(T(X)) = \det(T)\operatorname{vol}(S^{-1}(X)) = \det(T)\operatorname{vol}(X).$$

4. If T is an arbitrary linear operator then

$$\operatorname{vol}(T(X)) = |\det(T)| \operatorname{vol}(X).$$

Proof: Write $T = S\sqrt{T^*T}$ where S is an isometry. Then

$$\operatorname{vol}(T(X)) = \operatorname{vol}(\sqrt{T^*T}(X)) = \det(\sqrt{T^*T})\operatorname{vol}(X) = |\det(T)|\operatorname{vol}(X).$$

Example: Area of the ellipse $E = \{(x, y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}.$

The ellipse is the image of the unit disk $D = \{(x, y) : x^2 + y^2 = 1\}$ under the mapping $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (ax, by) where a, b > 0. Therefore

$$\operatorname{vol}(E) = \operatorname{vol}(T(C)) = \det(T)\operatorname{vol}(D) = ab\pi.$$

Change of variables formula: The volume integral of a continuous function $f : \mathbb{R}^3 \to \mathbb{R}$ over a region $X \subseteq \mathbb{R}^3$ can be expressed as the limit in some sense of all expressions of the form

$$\sum f(a_i, b_i, c_i) \operatorname{vol}(X_i)$$

where $X_1 \cup \cdots X_k \subseteq X$ is a disjoint union of small regions and $(a_i, b_i, c_i) \in X_i$ for each *i*. Now suppose there is a differentiable injective mapping from *Y* onto *X* via ϕ . We can express the integral as the limit of expressions of the form

$$\sum f(\phi(a_i, b_i, c_i)) \mathrm{vol}(\phi(\Omega_i))$$

where $\Omega_1 \cup \cdots \Omega_k \subseteq Y$ is a disjoint union of small regions and $(a_i, b_i, c_i) \in \Omega_i$ for each *i*. For Ω with small dimensions, the region $\phi(\Omega)$ is approximated by the region $\left(\frac{\partial \phi_i(a_i, b_i, c_i)}{\partial x_j}\right)(\Omega)$, evaluated at some $(a_i, b_i, c_i) \in \Omega_i$, yielding the approximation

$$\sum f(\phi(a_i, b_i, c_i)) \left| \det \left(\frac{\partial \phi_i(a_i, b_i, c_i)}{\partial x_j} \right) \right| \operatorname{vol}(\Omega_i).$$

Hence we obtain

$$\int \int \int_X f(x, y, z) \, dV = \int \int \int_Y f(\phi(x, y, z)) \left| \det \left(\frac{\partial \phi_i}{\partial x_j} \right) \right| \, dV.$$

If Y has has a simple shape then the latter can be evaluated by an iterated integral.

For example, if X is the upper-half of the unit sphere and $Y = [0, 1] \times [0, 2\pi] \times [0, \frac{\pi}{2}]$ then $\phi : Y \to X$ defined by $\phi(x, y, z) = (x \sin z \cos y, x \sin z \sin y, x \cos z)$ maps Y onto X. We have