Determinants Lecture

Sign of a Permutation

Let o € S, be given. Let ¢(o) denote the number of disjoint cycles of o. We
define the sign of o by

sgn(o) = (~1)".

In particular, if ¢ is a 2-cycle, then

sgn(o) = —1.

Theorem:
(a) Let 7,..., 7 be 2-cycles. Then sgn(7;---7) = (—1)*.
(b) Let 0,7 be permutations. Then sgn(o7) = sgn(o)sgn(7).

Proof: Observe that we have

(axby)(ab) = (ay)(bx)

and
(az)(by) (ab) = (ayba)

where a and b are distinct elements of {1,2,...,n} and z represents a se-
quence of elements from {1,2,...,n}\{a,b}. These two formulas implies that
if o has ¢ disjoint cycles and 7 = (ab) then o7 has either ¢+ 1 disjoint cycles
or ¢ — 1 disjoint cycles, depending on whether a and b appear in the same
cycle of o or two different cycles of . Hence

sgn(or) = —sgn(o) = sgn(o)sgn(7)
when 7 is a 2-cycle. This implies that
sgn(ry - 1) = (—=1)F,

when 7q,...,7, are 2-cycles. Since every permutation can be factored into
2-cycles, this yields (a), and (b) follows from (a).



Determinant of a Matrix

det A= Z sgn(o)A(o),

O'ESn

where S, is the set of permutations of (1,2,...,n) and

A(0) = a151)020(2) * * * Ano(n)-
In particular, det I = 1.
Theorem: det AT = det A.
Proof:
det A" = " sgn(0)A"(0) = ) sgn(c HA(e™!) =

O’ESn O'ESn

Z sgn(o)A(o) = det A.

O'ESn

Matrices can be regarded as lists of columns: A = (A;, As,..., A,). The
next theorem says that, as a function of column lists, the determinant is
multilinear and skew-symmetric:

Theorem:

(1) det(x, A+ B, %) = det(*, A, x)+det(x, B, *) and det(x, AA, x) = Adet(x, A, ).
(2) If A; = A; for some i # j then det(A;,...,A,) =0.

(3) det(x, A, %, B,*) = —det (*, B, *, A, %).

Proof: Property (1) is proved by a direct calculation.

To prove (2), let S be the set of all permutations with o(i) > o(7) and let
T be the set of all permutations with 7(i) < 7(j). There is a one-to-one
correspondence between S and T" via ¢ — o(7,7). When A; = A; we have
A(o) = A(1). Hence the terms in the determinant expansion can be grouped
into pairs with opposite signs and they all cancel out.

To prove (3), we use (1) and (2):
det(x, A, *, B, x) + det(x, B, *, A, %) =

det(*7 A? *’ A? *) + det(*7 A7 *7 B? *) + det(*7 B? *’ A? *7 ) _l_ det(*’ B? *7 B? *) =
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det(x, A+ B,*, A+ B,*) = 0.

Corollary: If the columns (A, ..., A,) are linearly dependent then

det(Al, c. 7An) = 0.

Proof: Let’s say that column A; is a linear combination of the other columns:
A= A,
p#i
By multilinearity we have
det(Ay,..., Ay) = apdet(Ar, ... Ay .. Ay).
p#i

Since the terms determinants in the sum operate on lists with a repeated
column, the sum is zero.

Theorem: For any pair of nxn matrices A and B, det(AB) = det(A) det(B).
Proof: Let A = (a;;) and B = (b;;) be given. Then AB has columns
(Cy,...,Cy), where

Ci = b1iAr + by A -+ + bpi Ay

Using the multilinearity of the determinant, we have

D biiboiy - bug, det(Ayy, Asy, o As).

11,62, 00n

Instances of repeated columns among the (A;,, A;,, ..., A;,) contribute zero
to the sum, so we can assume that we are only dealing with the lists (Ag(1), . .., Aon))
for permutations o € §,,, in which case

det(Ag(ry, - -, Aomy) = sgn(o) det(Ay, ..., A,) = sgn(o)det A.



Hence

det(AB) = det A >~ sgn(0)bio(1) - - bua(n) = det(A) det(B).

O—GSTL

Theorem: A matrix A is invertible if and only if det A # 0.

Proof: If A is not invertible then then its columns are linearly dependent,
and the corollary yields det(Ay, ..., A,) = 0. If A is invertible, then AB =
I is possible. Therefore det(A)det(B) = det(I) = 1, which implies that
det(A) # 0.

Cramer’s Rule: Consider the matrix equation Az = b where A is a square
invertible matrix. The unique solution to this equation is z = A~'b. Let the
coordinates of x be x1, s, ..., x,. We can express each of these numbers in
terms of determinants as follow:

Let the columns of A be Ay,...,A,. Thenb=x,A,+ -+ z,A,. Consider
the matrix A® which results after replacing column A; by b. Then

det AD =det(Ay,...,b,..., A)) =det(Ay, ..., 21 A 4+ 2, A,, ..., Ay) =
xldet(Al,...,Al,...,An) +£L'2det(A1,...,A2,...,An)—|—"'
+az,det(Ag, .., Apy o Ap).
The only surviving terms is

xidet(Al,...,Ai,...,An) = xzdetA

Therefore 4
_ det A

i det A

Row-Expansion of a Determinant

Let A be a matrix. Let A;; denote the matrix obtained by deleting row ¢ and
column 5. For any p,

det A = Z (—1)P"%a,, det(A,,).
q=1
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Proof: The determinant of A is

Z Sgn(a)ala(l) *Qpo(n) = Z Sgn(a)alo’(l) *Qno(n)-
_1 o

7 9= o(p)=q

Let 7 be the permutation that exchanges p and ¢ and leaves the other indices
fixed. Set bj; = air(;) for all i and j. Then we have a;,(;) = biro(;) and we can
write

Z Sgn(a)ala(l) *Qpo(n) = Z Sgn(a)blra(l) toe bnTJ(n) =

a(p)=q a(p)=q

sgn(7) byp Z sg(T0)b1ro(1) -+ bpp  + * bro(n) =
0(5:q
SE1(T) g Z sg(Y)b1y(1) * Opp -+ by(n) =
w(pA;:p
5gn(7) apq det( By (p))-

If p = g then By (py = App, and if p # ¢ then By, ) can be obtained from
A,, by making a series of |p — ¢| — 1 swaps in its columns. In either case we
have

Sg0(T)apg det (Bl (py) = (—1)P Yapg det(Ayyg).

Theorem: Let A be an invertible matrix. Let
(—1)i+jdet Aji
det A

bij —

for each i and j. Then A~! = (b;;).
Proof: The pg element of AB is

1 .
E — E i+
i Apj biq = det A i p; (— 1) 9det Aqi .

This is equal to ﬁ times the row-¢g expansion of the determinant of the
matrix A’ obtained from A by replacing row ¢ by row p. If p # ¢ then A’
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has a repeated row, hence det A’ = 0. But when p = ¢ we have A’ = A and
det A’ = det A. Therefore the pq element of AB is 0 if it is not on the main
diagonal, 1 if it is on the main diagonal. Hence AB = I.

Change of Basis Matrix

Let S, T € L(v) be given. Suppose that A = M(T) with respect to the basis
(v1,...,v,) and that B = M(T) with respect to the basis (wy,...,w,). How
are the matrices A and B related? Let R : V — V be the linear operator
defined by R(v;) = w; for ¢ < n. Let C = M(R) with respect to the basis
(v1,...,v,). Since R is invertible, so is C'. We have

Tw,- = Z bpiwp.
p

Therefore

TRUi == Z bpiwp.
p

Therefore
R™'TRv; =) by,
p

Therefore B represents R™'T R with respect to the basis (v1,...,v,). On the
other hand, so does C~1AC'. Therefore we have

C~'AC = B.
A more suggestive notation is
M, (w,v)M(T,v)M,(v,w) = M(T,w)

where M (T,v) = A, M(T,w) = B, M,(v,w) = C, M,(w,v) =C""

Determinant of an endomorphism: Let V be a finite-dimensional vector
space and let f : V — V be an endomorphism. We proved above that if
A is a matrix representing f with respect to one basis and B is a matrix
representing f with respect to a second basis, then C~1AC = B for some
matrix invertible matrix C'. This implies that det A = det B. Hence there is
an unambiguous number we can attach to f which we can call det f, namely
the common value of all its matrix representations.



Determinant of 7' € L(F") where F € R,C: Let T = SVT*T be the
singular-value decomposition of T'. Since S*S = I, | det(S)| = 1. Therefore

| det(T)| = | det(vT*T)| = det(vT*T).

Trace of a square matrix: Let A = (a;;) be an n x n matrix. Then the
trace of A is
trace(A) = a1y + age + -+ - + A

Trace of T" € L(V): It is easy to verify that trace(AB) = trace(BA)
for any pair of n x n matrices A and B. In particular, for any invertible
matrix C, trace(C~'AC) = trace(AC'C') = trace(A). Hence every matrix
representation of 1" with respect a basis for V' has the same trace, and we
call this the trace of T'.

Volume: A product of intervals Q = [ay, b;] X - -+ X [an, b,] C R™ is called a
rectangular solid. We define the volume of © to be vol(Q?) =[], (b — a;).
We will also define

vol(£21 U -+ - Q) = vol(€2y) + - - - + vol(€2)

whenever 2y U ---€); is a disjoint union. Given a subset X of R", we will
define v(X) to be the supremum of all vol(2;U- - - Q) where Q;U--- Q) C X
is a disjoint union of rectangular solids in X, and we will define V(X)) to be
the infimum of all vol(2; U --- Q) where Q; U --- Q. D is disjoint union of
rectangular solids containing X. If v(X) = V(X) = v then v must be a real
number we define vol(X) = v.

Computing vol(T(X)) where T € £L(V) and V € {R? R3}:
1. If T is a positive linear operator with diagonal matrix representation
diag(r11, .-, Tan)
with respect to the standard basis {ey,...,e,} then
vol(T'(Q2)) = 711 -+ - T vol(Q) = det(T")vol(2)

since all T" does is scale up the dimensions of €2 by its diagonal entries. This
implies that
vol(T(X)) = det(T)vol(X)

using the definition of vol(X) and properties of the infimum and supremum.
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2. It §: R* — R" is an isometry then, since it preserves lengths of vectors
and angles between vectors,

vol(S(Q2)) = vol(£2).

This implies
vol(S(X)) = vol(X)

for any X whose volume can be measured, using the definition of v(X) and
properties of the infimum and supremum.

3. If T' is a positive linear operator then

vol(T'(X)) = det(T)vol(X).

Proof: Say that 7" has diagonal matrix representation

diag(r11, .- Tan)

with respect to an orthonormal basis { f1, ..., f,}. Let S be the isometry that
maps e; to f; for each i, where e, ..., e, is the standard basis. Then S~'T'S
has the same matrix representation with respect to the standard basis. It is
easy to verify that S™1T'S is a positive linear operator. By #1 above,

vol(ST'TS(X)) = det(S™'T'S)vol(X) = det(T)vol(X).
On the other hand, by #2 above we also have
vol(ST'TS(X)) = vol(T'S(X)).

Taken together,
vol(T'S(X)) = det(T)vol(X)

for any X. Therefore

vol(T(X)) = det(T)vol(S™1(X)) = det(T)vol(X).

4. If T is an arbitrary linear operator then

vol(T(X)) = | det(T)|[vol(X).

8



Proof: Write T'= SvT*T where S is an isometry. Then
vol(T(X)) = vol(VT*T(X)) = det(VT*T)vol(X) = | det(T")|vol(X).

Example: Area of the ellipse E = {(z,y) : & + % < 1}.
2

The ellipse is the image of the unit disk D = {(x,y
the mapping T : R* — R? defined by T'(z,y) = (a
Therefore

2? +y? = 1} under
x,b ) where a,b > 0.

vol(E) = vol(T'(C)) = det(T)vol(D) = abr.

Change of variables formula: The volume integral of a continuous func-
tion f : R3 — R over a region X C R3 can be expressed as the limit in some
sense of all expressions of the form

Z f(a;, b, ¢;)vol(X;)

where X;U- -+ X}, C X is a disjoint union of small regions and (a;, b;, ¢;) € X;
for each 7. Now suppose there is a differentiable injective mapping from Y
onto X via ¢. We can express the integral as the limit of expressions of the
form

Z f a’la bZ7 CZ V01(¢<Ql))
where Q; U---Q C Y is a disjoint union of small regions and (a;, b;, ¢;) € €;
for each . For {2 with small dimensions, the region ¢(£2) is approximated by

—ad’i(“i’bi’ci)) (), evaluated at some (a;,b;, ;) € €;, yielding the

the region ( 9s;

approximation

Zf a’l7b’b7c’b

vol(€2;).
Hence we obtain

///Xf(:c,y,z) dV:///Yf(gb(:c,y,z)) det (gf;)’ av.

If Y has has a simple shape then the latter can be evaluated by an iterated
integral.

det <a¢z(ala b’i7 Cz))
83:j




For example, if X is the upper-half of the unit sphere and Y = [0, 1] x [0, 27] x
[0, 7] then ¢ : Y — X defined by ¢(z,y, 2) = (rsin z cosy, rsin zsiny, x cos z)
maps Y onto X. We have
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