
Cayley-Hamilton Theorem: Let A be an n × n matrix with entries in
a commutative ring R. Then A is the root of monic polynomial in R[x] of
degree n.

Proof: We will eventually prove that p(A) = 0 where p(X) = det(XI −A).
This requires expanding the determinant expression, evaluating at A, and
showing that each of the entries in the resulting matrix polynomial combine
to zero. We will give a combinatorial description of these cancellations. We
first consider some concepts from graph theory.

A directed graph is a collection of vertices and directed edges. We will regard
the numbers 1, 2, . . . , n as vertices. An (i, j)-walk of length k is a series of
transitions from a boxed vertex i to a boxed vertex j through k directed
edges. For example,

w = 2 → 3→ 3→ 1→ 5

is a (2, 5)-walk of length 4 from vertex 2 to vertex 5. There are no (i, j)-walks
of length 0 when i 6= j, and an (i, i)-walk of length 0 consists of the boxed
vertex i . The set Wi,j(k) contains all (i, j)-walks of length k.

A k-cycle (k ≥ 1) is a circular arrangement of k vertices and directed edges.
For example,

c = 2→ 1→ 3→ 2

is a 3-cycle and
c = 2→ 2

is a 1-cycle. It doesn’t matter which vertex the cycle begins with, so a k-cycle
has k equivalent representations.

A compound k-cycle is a set of vertex-disjoint cycles with a total of k edges.
For example,

cc = {1→ 2→ 1, 3→ 7→ 4→ 3, 5→ 5}

is a compound 6-cycle. We will regard a collection of vertices with no edges
as a compound 0-cycle. The set CC(k) contains all compound k-cycles.

Next, some concepts from algebraic combinatorics. Assume that the matrix
A has entries aij. The weight of a walk is the product of the matrix entries
corresponding to its edges:

weight( 2 → 3→ 3→ 1→ 5 ) = a23a33a31a15.
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The weight of an (i, i)-walk of length 0 is 1:

weight( i ) = 1.

The weight of a cycle is minus one times the product of the matrix entries
corresponding to its edges:

weight(2→ 1→ 3→ 2) = −a21a13a32,

weight(2→ 2) = −a22.

The weight of a compound cycle is the product of the weights of its cycles:

weight({1→ 2→ 1, 3→ 7→ 4→ 3, 5→ 5}) = (−1)3a12a21a37a74a43a55.

The weight of the compound 0-cycle is 1.

Lemma 1: The i, j-entry of Ak is∑
w∈Wi,j(k)

weight(w).

Proof: For k ≥ 1, the (i, j)-entry of Ak is∑
i1,i2,...,ik−1

aii1ai1i2 · · · aik−1j =

∑
i1,i2,...,ik−1

weight( i → i1 → i2 → · · · → ik−1 → j ) =

∑
w∈Wi,j(k)

weight(w).

For k = 0 the (i, j)-entry of A0 = I is 0 or 1 depending on whether i 6= j or
i = j. This is consistent with ∑

w∈Wi,j(0)

weight(w)

if we interpret the sum of weights over an empty set to be zero (when i 6= j).
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Definition 2: For each k, 0 ≤ k ≤ n, we define

pk =
∑

cc∈CC(k)

weight(cc).

Example 3: CC(0) contains only the empty compound cycle, therefore
p0 = 1.

Example 4: CC(1) contains only compound cycles of the form {i → i},
therefore p1 = −

∑n
i=1 aii.

Example 5: CC(2) contains compound cycles of the form {i → i, j → j}
and {i→ j → i} where i < j. Therefore

p2 =
∑
i<j

(aiiajj − aijaji).

Theorem 6: With notation as above,

n∑
k=0

pn−kA
k = 0.

Therefore A is a root of the monic degree-n polynomial

p(x) =
n∑
k=0

pn−kx
k.

Example 7: Let A be a 2× 2 matrix. Then

p2I = (a11a22 − a12a21)
[
1 0
0 1

]
=

[
a11a22 − a12a21 0

0 a11a22 − a12a21

]

p1A = −(a11 + a22)

[
a11 a12
a21 a22

]
=

[
−a211 − a11a22 −a11a12 − a12a22
−a11a21 − a21a22 −a11a22 − a222

]

p0A
2 =

[
a211 + a12a21 a11a12 + a12a22
a21a11 + a22a21 a21a12 + a222

]

p2I + p1A+ p0A
2 =

[
0 0
0 0

]
.

3



Example 8: Let P (Z5) denote the set of polynomial functions from Z5 to Z5.
Since x5 = x, a spanning set for P (Z5) is {1, x, x2, x3, x4}. These functions
are linearly indepenent over Z5: Suppose a0 + a1x+ a2x

2 + a3x
3 + a4x

4 = 0.
Evaluating at 0 through 4 mod 5 we obtain a system of equations which in
matrix form is 

1 0 0 0 0
1 1 1 1 1
1 2 4 3 1
1 3 4 2 1
1 4 1 4 1



a0
a1
a2
a3
a4

 =


0
0
0
0
0

 .
Since the determinant of the coefficient matrix is 3, a0 = a1 = a2 = a3 =
a4 = 0. Now consider the linear operator T : P (Z5) → P (Z5) defined by
T (f(x)) = xf(x). The matrix representation of T with respect to the basis
{1, x, x2, x3, x4} is

A =


0 0 0 0 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .
A directed graph representing non-zero edge weights based on the information
in A is

2

5

4

3

1

.

The only non-trivial compound cycle through the vertex set {1, 2, 3, 4, 5} that
contributes a non-zero weight is

5→ 4→ 3→ 2→ 5,

which implies that the only non-zero coefficients of p(x) are p0 = 1 and
p4 = −1. Hence p(x) = x5 − x.

Proof of Theorem 6: We will make an argument that each of the n2 entries
of
∑n

k=0 pn−kA
k is equal to 0. By Lemma 1 and Definition 2, the (i, j)-entry
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of this expression is

n∑
k=0

 ∑
cc∈CC(n−k)

weight(cc)
∑

w∈Wi,j(k)

weight(w)

.
Let D(i, j) be the set of all ordered pairs of the form (cc, w), where cc is an
arbitrary compound cycle and w is an (i, j)-walk and the total number of
edges contributed by cc and w is equal to n. The sum above can be more
simply expressed as ∑

(cc,w)∈D(i,j)

weight(cc)weight(w).

We will argue that the terms in this expression can be paired off in such a
way that each pair has a sum equal to zero. This will imply that the entire
sum is equal to zero.

We will partition D(i, j) into De(i, j) and Do(i, j), where De(i, j) is the set of
all (cc, w) ∈ D(i, j) where cc contains an even number of cycles and Do(i, j)
is the set of all (cc, w) ∈ D(i, j) where cc has contains an odd number of
cycles. We will then produce a one-to-one correspondence between De(i, j)
and Do(i, j) such that if

(cc, w)↔ (cc′, w′)

then
weight(cc′)weight(w′) = −weight(cc)weight(w).

This accomplishes the task described in the previous paragraph.

Example 9: Assume n = 12, i = 10, j = 4,

cc = {2→ 3→ 2, 5→ 10→ 9→ 5, 1→ 1}

w = 10 → 6→ 5→ 11→ 5→ 5→ 4 .

We will remove the cycle 5→ 10→ 9→ 5 from cc to create cc′ and add this
cycle to w to create w′. The result is

cc′ = {2→ 3→ 2, 1→ 1}

w′ = 10 → 6→ 5→ 10→ 9→ 5→ 11→ 5→ 5→ 4 .
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Since (cc, w) and (cc′, w′) have exactly the same collection of edges, and since
cc′ has one less cycle in it than cc does,

weight(cc′, w′) = −weight(cc, w).

Example 10: Assume n = 12, i = 10, j = 4,

cc = {5→ 7→ 5, 11→ 9→ 8→ 1→ 11}

w = 10 → 2→ 3→ 4→ 2→ 5→ 4 .

We will remove the cycle 2 → 3 → 4 → 2 from w to create w′ and add this
cycle to cc to create cc′. The result is

cc′ = {5→ 7→ 5, 11→ 9→ 8→ 1→ 11, 2→ 3→ 4→ 2}

w′ = 10 → 2→ 5→ 4 .

Since (cc, w) and (cc′, w′) have exactly the same collection of edges, and since
cc′ has one more cycle in it than cc does,

weight(cc′, w′) = −weight(cc, w).

To resume the proof of Theorem 6, we are going to establish the correspon-
dence between De(i, j) and Do(i, j) as follows: given a pair (cc, w), we are
going to exchange a cycle between cc and w to create (cc′, w′). This guar-
antees weight(cc′)weight(w′) = −weight(cc)weight(w). Examples 10 and 11
illustrate the difficulties to overcome using this approach: How do you decide
whether to take a cycle from cc and add it to w or vice versa? Which cycle
do you choose? When you take a cycle from w and add it to cc, you must
be careful not to create overlapping cycles in cc′. Finally, how do you know
that this cycle-transfer technique creates a one-to-one correspondence?

The construction we will describe is based on the following two observations:

Observation 1. Given (cc, w) with a total of n edges, if none of the vertices
in w appear more than once then w and cc share a vertex. Reason: If cc
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and w have no vertex in common, then if cc has k edges and w has n − k
edges then cc has k vertices and w has n− k+ 1 vertices, giving rise to n+ 1
distinct vertices. This is not possible, given that there are only n vertices.

Observation 2. Given any (cc, w) with n edges, examine each vertex x in
w in the order it appears along the path. Label it with C if it appears in cc
and label it with D if it doesn’t appear in cc. Label it with F it is appearing
for the first time in w and label it with G if it is not appearing for the first
time in w. Then every vertex receives one of the four compound labels CF ,
DF , CG, DG. By Observation 1, the labels cannot all be DF . Let x be the
first vertex along w that receives a label in {CF,CG,DG}. Then x cannot
have the label CG because it is not being encountered for the first time in w.
So in fact x receives a label in {CF,DG}, and the labels along W through x
form one of two sequences: DF,DF, . . . , DF,CF or DF,DF, . . . , DF,DG.

Now letDCF (i, j) be the set of those (cc, w) where x receives the label CF and
let DDG(i, j) be the set of those (cc, w) where x receives the label DG. These
two sets form a partition of D(i, j). Given (cc, w) ∈ DCF (i, j), we remove
the cycle in cc containing x and insert it into w to create (cc′, w′) ∈ DDG(i, j)
as in Example 10. Given (cc, w) ∈ DDG(i, j), we remove the cycle in w in
which x is visited for the first and second time and add it to cc to create
(cc′, w′) ∈ DCF (i, j) as in Example 11. So we define f : D(i, j)→ D(i, j) by
f(cc, w) = (cc′, w′), where we apply the appropriate cycle transfer between
cc and w according to whether (cc, w) ∈ DCF (i, j) or (cc, w) ∈ DDG(i, j).
Examples 10 and 11 were generated using this rule. It is not difficult to verify
that f ◦ f is the identity map. Therefore f is both injective and surjective
and establishes a one-to-one correspondence between De(i, j) and Do(i, j).
It also has the desired sign-reversing property. (In algebraic combinatorics
we call f a sign-reversing involution.) This completes the proof of Theorem
6, hence of the Cayley-Hamilton Theorem.

Theorem 11: Let A be an n × n matrix with entries aij. For each k,
0 ≤ k ≤ n, let CC(k) be the set of k compound cycles on the vertex set
{1, 2, . . . , n} and define

pk =
∑

cc∈CC(k)

weight(cc).

Then

det(xI − A) =
n∑
k=0

pn−kx
k.
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Proof: For each permutation σ we define the sets D(σ) and F (σ) via

D(σ) = {i : σ(i) 6= i}

and
F (σ) = {i ∈ σ(i) : σ(i) = i}.

Then
det(xI − A) =

∑
σ

sgn(σ)
∏

i∈D(σ)

(−aiσ(i))
∏

i∈F (σ)

(x− aii).

Given that the sign of a k-cycle is (−1)k−1, for any permutation σ we have
sgn(σ) = (−1)|D(σ)|+c(σ) where c(σ) is the number of non-trivial cycles in σ.
Therefore

det(xI − A) =
∑
σ

(−1)c(σ)
∏

i∈D(σ)

aiσ(i)
∏

i∈F (σ)

(x− aii).

For any subset S of [n], we have∏
i∈S

(x− aii) =
∑
I⊆S

x|I|
∏
i∈S\I

(−aii).

With this substitution we have

det(xI − A) =
∑
σ

(−1)c(σ)
∏

i∈D(σ)

aiσ(i)
∑

I⊆F (σ)

x|I|
∏

i∈F (σ)\I

(−aii).

Therefore the coefficient of xk in det(xI − A) is∑
σ

∑
I⊆F (σ)
|I|=k

(−1)c(σ)
∏

i∈D(σ)

aiσ(i)
∏

i∈F (σ)\I

(−aii).

Note that
(−1)c(σ)

∏
i∈D(σ)

aiσ(i)
∏

i∈F (σ)\I

(−aii)

is the weight of the compound cycle with edge set

{i→ σ(i) : i ∈ Ic}.
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Let’s give this compound cycle the name cc(σ, I). As I ranges through all
subsets of F (σ) of size k, cc(σ, I) ranges through all compound cycles in
CC(n − k) whose non-trivial cycles are the same as those in σ. Letting σ
vary we produce all compound cycles in CC(n−k). Therefore the coefficient
of xk in det(xI − A) is∑

σ

∑
I⊆F (σ)
|I|=k

weight(cc(σ, I)) =
∑

cc∈C(n−k)

weight(cc) = pn−k.

Comment 12: The interested reader can prove for himself that for k > 0
we have

pk =
∑
I⊆[n]
|I|=k

det(−AI)

where −AI denotes the submatrix of −A obtained by using entries from rows
and columns in I. Hence A satisfies the polynomial

p(x) = xn +
∑
∅6=I⊆[n]

det(−AI)xn−|I|.
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