Work must be shown to receive credit.

1. Let $f(x)=20 x^{3}-3 x^{5}$. (a) Make a sign chart for $f(x)$. (b) Find all local maximum and minimum values of $f(x)$. (c) Find all points of inflection on the curve $y=f(x)$.
2. A rectangular storage container with an open top is to have a volume of $12 \mathrm{ft}^{3}$. The length of its base is three times the width of its base. Material for the base costs $\$ 10$ per square foot. Material for the sides costs $\$ 5$ per square foot. (a) Find the dimensions of the cheapest container. (b) Find the cost of the cheapest container, rounded off to the nearest cent.
3. Let $f(x)=x \sin x-x$. Find the minimum value of $f(x)$ on the interval $\left[0, \frac{\pi}{2}\right]$. Use Newton's Method with $x_{0}=0$ to find the critical value of the function, accurate to 2 decimal places.
4. A car traveling 100 feet per second brakes with constant deceleration of $10 \mathrm{ft} / \mathrm{sec}^{2}$ and skids to a stop in 10 seconds. How far does the car skid?
5. Approximate the definite integral $\int_{0}^{\pi} \sin x d x$ using a Riemann Sum with $N=4$ equally spaced subintervals and the left-hand rule to generate x_{1}^{*} through x_{4}^{*}. Round your answer to two decimal places.
6. Find the exact value of $\int_{0}^{1} \sqrt{x}(1+x) d x$.
7. Bacteria grow at a rate of $100 t^{3}$ organisms/hour at time t hours. What is the net increase in the bacteria population between hour 5 and hour 6 ?
8. Evaluate the definite integral $\int_{0}^{1} x^{3}\left(1+x^{4}\right)^{100} d x$ using u substitution.
