## Exam 3 Math 121 Spring 2013

## Show all work.

1. Given that $\ln 1.0=0$, estimate the value of $\ln 0.9$ using linear approximation. Do not use a calculator.

Solution: Using $f(x) \approx f(a)+f^{\prime}(a)(x-a)$ for $x$ close to $a$, and using $f(x)=\ln x, f^{\prime}(x)=\frac{1}{x}, a=1.0, f(a)=0, f^{\prime}(a)=1$, $x=0.9$, we obtain

$$
\ln 0.9 \approx 0+1(0.9-1.0)=-0.1
$$

2. Let $f(x)=(\ln x)^{x}$. Compute $f^{\prime}(x)$. The answer is not $\ln (\ln x)(\ln x)^{x}, x(\ln x)^{x-1}$, etc.

Solution: We can write

$$
f(x)=e^{\ln f(x)}=e^{\ln \left((\ln x)^{x}\right)}=e^{x \ln (\ln x)}
$$

Therefore

$$
\begin{gathered}
f^{\prime}(x)=(x \ln (\ln x))^{\prime} e^{x \ln (\ln x)}=\left(\ln (\ln x)+x \frac{\frac{1}{x}}{\ln x}\right) e^{x \ln (\ln x)}= \\
\left(\ln (\ln x)+\frac{1}{\ln x}\right)(\ln x)^{x}
\end{gathered}
$$

3. A lake is stocked with a certain number of fish. The fish population one year later is 1750 , and two years later is 4500 . Assuming the population is growing exponentially, how many fish was the lake stocked with originally? (In other words, $f(1)=1750$, $f(2)=4500, f(0)=$ ?)

Solution: Set $f(t)=A e^{k t}$. We want to find $A$. The information provided yields $A e^{k}=1750$ and $A e^{2 k}=4500$. This yields

$$
\frac{4500}{1750}=\frac{A e^{2 k}}{A e^{k}}=e^{k} .
$$

Substituting this into $A e^{k}=1750$ yields

$$
A \frac{4500}{1750}=1750 .
$$

Therefore

$$
A=\frac{1750^{2}}{4500}=680.556
$$

So there were approximately 681 fish in the lake initially.
4. Using L'Hopital's Rule appropriately, compute

$$
\lim _{x \rightarrow 0} \frac{\ln (x+1)-x}{x^{2}} .
$$

Solution: The limit is indeterminate of form $\frac{0}{0}$. One application of L'Hopital's Rule yields

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{x+1}-1}{2 x} .
$$

This is still indeterminate of form $\frac{0}{0}$. A second application of L'Hopital's Rule yields

$$
\lim _{x \rightarrow 0} \frac{\frac{-1}{(x+1)^{2}}}{2}=\frac{-1}{2} .
$$

5. Let $f(x)=\tan x-2 x$ on the interval $\left[0, \frac{\pi}{3}\right]$.
(a) Find the critical value of $f(x)$ in the interval. Give the exact value, not a calculator approximation.
(b) Find the absolute minimum output value of $f(x)$ on the interval. Give the exact value, not a calculator approximation.

Solution: We have $f^{\prime}(x)=\sec ^{2} x-2$. This is equal to zero when $\sec ^{2} x=2, \sec x=\sqrt{2}, \cos x=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}, x=\frac{\pi}{4}$. To find the absolute minimum output value of $f(x)$ we need to compare $f(0), f\left(\frac{\pi}{4}\right), f\left(\frac{\pi}{3}\right)$. We have

$$
\begin{gathered}
f(0)=\tan 0-0=0 \\
f\left(\frac{\pi}{4}\right)=\tan \frac{\pi}{4}-\frac{\pi}{2}=1-\frac{\pi}{2} \approx-0.570796, \\
f\left(\frac{\pi}{3}\right)=\tan \frac{\pi}{3}-\frac{2 \pi}{3} \approx-0.362344 .
\end{gathered}
$$

So the absolute minimum output value is $f\left(\frac{\pi}{4}\right)=1-\frac{\pi}{2}$.

