Show all work

1. Compute the derivative of $f(x)=x^{3}$ using the definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Solution:

$$
\begin{gathered}
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}-x^{3}}{h}= \\
\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=3 x^{2}+3 x h+h^{2} \rightarrow 3 x^{2}
\end{gathered}
$$

as $h \rightarrow 0$.
2. Compute the derivative of $\frac{\cos x}{1+\sin x}$ using the quotient rule.

Solution:

$$
\begin{gathered}
\frac{-\sin x \cdot(1+\sin x)-\cos x \cdot(0+\cos x)}{(1+\sin x)^{2}}=\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}}= \\
\frac{-\sin x-1}{(1+\sin x)^{2}}=\frac{-1}{1+\sin x} .
\end{gathered}
$$

3. Compute the derivative of $\sqrt[4]{x^{2}+5 x}$ using the chain rule.

Solution: $\sqrt[4]{x^{2}+5 x}=f(g(x))$ where $f(x)=x^{\frac{1}{4}}, g(x)=x^{2}+5 x$. Given that $f^{\prime}(x)=\frac{1}{4} x^{-3 / 4}$ and $g^{\prime}(x)=2 x+5$, the derivative is

$$
f^{\prime}(g(x)) g^{\prime}(x)=\frac{1}{4}\left(x^{2}+5 x\right)^{-3 / 4}(2 x+5) .
$$

4. Let C be the curve defined by $x y^{2}+y x^{2}=2$.
(a) Using implicit differentiation, find a formula for $\frac{d y}{d x}$.
(b) Find the equation of the line tangent to the curve C at the point $(1,1)$.

Solution: (a) Differentiating the equation of the curve with respect to x, we obtain

$$
\left(1 \cdot y^{2}+x \cdot 2 y \frac{d y}{d x}\right)+\left(\frac{d y}{d x} \cdot x^{2}+y \cdot 2 x\right)=0 .
$$

Rearranging,

$$
\frac{d y}{d x}\left(2 x y+x^{2}\right)=-y^{2}-2 y x
$$

Dividing, we obtain

$$
\frac{d y}{d x}=\frac{-y^{2}-2 y x}{2 x y+x^{2}}
$$

(b) At $(1,1), \frac{d y}{d x}=\frac{-3}{3}=-1$. Hence the tangent slope is -1 . Point-slope formula for tangent line yields

$$
y-1=-1(x-1)
$$

or

$$
y=-x+2 .
$$

5. Consider a spherical balloon filled with helium gas, floating up and growing larger over time as the atmosphere thins. We can measure both pressure P in the balloon (in units of psi) and the volume V of the balloon (in units of cubic inches) over time t (in units of minutes). Boyle's Law predicts that P and V are related by the equation $P V=200$. If the pressure in the balloon is changing at a rate of $-5 \mathrm{psi} / \mathrm{min}$ at the exact moment that the volume of the balloon is $100 \mathrm{in}^{3}$, find how fast the volume is increasing in units of $\mathrm{in}^{3} / \mathrm{min}$ at this time.

Solution: Differentiating $P V=200$ with respect to t we obtain

$$
\frac{d P}{d t} V+P \frac{d V}{d t}=0
$$

Substituting $\frac{d P}{d t}=-5$ and $V=100$, we obtain

$$
-500+P \frac{d V}{d t}=0
$$

Give that $P V=200$ and $V=100$, we must have $P=2$ at this moment. Hence

$$
-500+2 \frac{d V}{d t}=0
$$

Therefore

$$
\frac{d V}{d t}=250
$$

