
Derivation of Jordan Normal Form

n× n Jordan block: Jλ(n). A block matrix of these: Jλ(n1, n2, . . . , nk).

Property of a linear transformation with matrix representation J0(n): If basis
is

{v1, v2, . . . , vn}

then we have

f(vn) = vn−1, f
2(vn) = vn−2, . . . , f

n−1(vn) = v1, f
n(vn) = 0.

So the basis can be expressed in the form

{fn−1(u1), f
n−2(u2), . . . , f

0(u1)}

where u1 = vn. More generally, a linear transformation with matrix repre-
sentation J0(n1, n2, . . . , nk) has a basis of the form

{fn1−1(u1), . . . , f
0(u1), f

n2−1(u2), . . . , f
0(u2), . . . , f

nk−1(uk), . . . , f
0(uk)}

where
fn1(u1) = fn2(u2) = · · · = fnk(uk) = 0.

Clearly the transformation is nilpotent.

Lemma: If f : V → V is nilpotent linear map of a finite-dimensional vector
space then V has a basis of the form

{fn1−1(u1), . . . , f
0(u1), f

n2−1(u2), . . . , f
0(u2), . . . , f

nk−1(uk), . . . , f
0(uk)}

where
fn1(u1) = fn2(u2) = · · · = fnk(uk) = 0.

Hence f has a matrix representation in the form J0(n1, n2, . . . , nk).

Proof: By induction on the dimension of V . Trivial in dimension 1. Assume
true for dimension ≤ n. Consider dimension n+1. Let W = f(V ). Since f is
nilpotent, W 6= V . If W = 0 then the zero-matrix represents f . Otherwise,
W has dimension smaller than the dimension of V and f : W → W is
nilpotent. By the induction hypothesis, W has a basis of the form

{fn1−1(v1), . . . , f
0(v1), f

n2−1(v2), . . . , f
0(v2), . . . , f

nk−1(vk), . . . , f
0(vk)}
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where
fn1(v1) = fn2(v2) = · · · = fnk(vk) = 0.

Find ui so that f(ui) = vi for each i ≤ k. Expand the vectors fn1−1(v1), . . . , f
nk−1(vk),

which belong to the kernel of f , to a basis fn1−1(v1), . . . , f
nk−1(vk), uk+1, . . . , up.

We claim that the desired basis for V is

fn1(u1), . . . , f
0(u1), f

nk(uk), . . . , f
0(uk+1), . . . , f

0(up).

We must show that these vectors are linearly independent and that there are
the right number of them.

They are linearly independent: Suppose

k∑
i=1

ni∑
j=0

αijf
j(ui) +

p∑
i=k+1

βif
0(ui) = 0V .

Applying f we obtain
k∑
i=1

ni∑
j=0

αijf
j(vi) = 0V .

Therefore the αij = 0 for i < ni. This implies

k∑
i=1

αini
fni(ui) +

p∑
i=k+1

βif
0(ui) = 0V .

In other words,

k∑
i=1

αini
fni−1(vi) +

p∑
i=k+1

βif
0(ui) = 0V .

By linear independence, the remaining coefficients are equal to zero.

There are the right number of them: The dimension of W is n1 + · · · + nk.
Hence the rank of f is n1 + · · ·+ nk. We also have that the nullity of f is p.
By the Rank-Nullity theorem, the dimension of V is n1 + · · ·+ nk + p. This
is the number of linearly independent vectors we have produced.
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Theorem: Every linear transformation f : V → V of a finite-dimensional
vector space V over the complex numbers has a block-diagonal matrix rep-
resentation where each diagonal block is of the form Jλ(n1, . . . , nk).

Proof:

First, get matrix into triangular form with eigenvalues along diagonals.

Second, change basis so that the matrix is in block diagonal form with con-
stant diagonals.

Third, show each block A can be placed in Jordan Normal Form.

Proof of third step: Suppose the eigenvalue corresponding to A is λ. Then
A − λI is the matrix representation of a nilpotent transformation. So the
restriction of f−λe to the corresponding subspace is nilpotent. Hence f−λe
has a matrix representation of the form J0(n1, . . . , nk), and this implies that
f has a matrix representation of the form Jλ(n1, . . . , nk).
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