Derivation of Jordan Normal Form

$n \times n$ Jordan block: $J_{\lambda}(n)$. A block matrix of these: $J_{\lambda}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.
Property of a linear transformation with matrix representation $J_{0}(n)$: If basis is

$$
\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

then we have

$$
f\left(v_{n}\right)=v_{n-1}, f^{2}\left(v_{n}\right)=v_{n-2}, \ldots, f^{n-1}\left(v_{n}\right)=v_{1}, f^{n}\left(v_{n}\right)=0 .
$$

So the basis can be expressed in the form

$$
\left\{f^{n-1}\left(u_{1}\right), f^{n-2}\left(u_{2}\right), \ldots, f^{0}\left(u_{1}\right)\right\}
$$

where $u_{1}=v_{n}$. More generally, a linear transformation with matrix representation $J_{0}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ has a basis of the form

$$
\left\{f^{n_{1}-1}\left(u_{1}\right), \ldots, f^{0}\left(u_{1}\right), f^{n_{2}-1}\left(u_{2}\right), \ldots, f^{0}\left(u_{2}\right), \ldots, f^{n_{k}-1}\left(u_{k}\right), \ldots, f^{0}\left(u_{k}\right)\right\}
$$

where

$$
f^{n_{1}}\left(u_{1}\right)=f^{n_{2}}\left(u_{2}\right)=\cdots=f^{n_{k}}\left(u_{k}\right)=0 .
$$

Clearly the transformation is nilpotent.
Lemma: If $f: V \rightarrow V$ is nilpotent linear map of a finite-dimensional vector space then V has a basis of the form

$$
\left\{f^{n_{1}-1}\left(u_{1}\right), \ldots, f^{0}\left(u_{1}\right), f^{n_{2}-1}\left(u_{2}\right), \ldots, f^{0}\left(u_{2}\right), \ldots, f^{n_{k}-1}\left(u_{k}\right), \ldots, f^{0}\left(u_{k}\right)\right\}
$$

where

$$
f^{n_{1}}\left(u_{1}\right)=f^{n_{2}}\left(u_{2}\right)=\cdots=f^{n_{k}}\left(u_{k}\right)=0
$$

Hence f has a matrix representation in the form $J_{0}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.
Proof: By induction on the dimension of V. Trivial in dimension 1. Assume true for dimension $\leq n$. Consider dimension $n+1$. Let $W=f(V)$. Since f is nilpotent, $W \neq V$. If $W=0$ then the zero-matrix represents f. Otherwise, W has dimension smaller than the dimension of V and $f: W \rightarrow W$ is nilpotent. By the induction hypothesis, W has a basis of the form

$$
\left\{f^{n_{1}-1}\left(v_{1}\right), \ldots, f^{0}\left(v_{1}\right), f^{n_{2}-1}\left(v_{2}\right), \ldots, f^{0}\left(v_{2}\right), \ldots, f^{n_{k}-1}\left(v_{k}\right), \ldots, f^{0}\left(v_{k}\right)\right\}
$$

where

$$
f^{n_{1}}\left(v_{1}\right)=f^{n_{2}}\left(v_{2}\right)=\cdots=f^{n_{k}}\left(v_{k}\right)=0 .
$$

Find u_{i} so that $f\left(u_{i}\right)=v_{i}$ for each $i \leq k$. Expand the vectors $f^{n_{1}-1}\left(v_{1}\right), \ldots, f^{n_{k}-1}\left(v_{k}\right)$, which belong to the kernel of f, to a basis $f^{n_{1}-1}\left(v_{1}\right), \ldots, f^{n_{k}-1}\left(v_{k}\right), u_{k+1}, \ldots, u_{p}$. We claim that the desired basis for V is

$$
f^{n_{1}}\left(u_{1}\right), \ldots, f^{0}\left(u_{1}\right), f^{n_{k}}\left(u_{k}\right), \ldots, f^{0}\left(u_{k+1}\right), \ldots, f^{0}\left(u_{p}\right) .
$$

We must show that these vectors are linearly independent and that there are the right number of them.
They are linearly independent: Suppose

$$
\sum_{i=1}^{k} \sum_{j=0}^{n_{i}} \alpha_{i j} f^{j}\left(u_{i}\right)+\sum_{i=k+1}^{p} \beta_{i} f^{0}\left(u_{i}\right)=0_{V}
$$

Applying f we obtain

$$
\sum_{i=1}^{k} \sum_{j=0}^{n_{i}} \alpha_{i j} f^{j}\left(v_{i}\right)=0_{V}
$$

Therefore the $\alpha_{i j}=0$ for $i<n_{i}$. This implies

$$
\sum_{i=1}^{k} \alpha_{i n_{i}} f^{n_{i}}\left(u_{i}\right)+\sum_{i=k+1}^{p} \beta_{i} f^{0}\left(u_{i}\right)=0_{V}
$$

In other words,

$$
\sum_{i=1}^{k} \alpha_{i n_{i}} f^{n_{i}-1}\left(v_{i}\right)+\sum_{i=k+1}^{p} \beta_{i} f^{0}\left(u_{i}\right)=0_{V}
$$

By linear independence, the remaining coefficients are equal to zero.
There are the right number of them: The dimension of W is $n_{1}+\cdots+n_{k}$. Hence the rank of f is $n_{1}+\cdots+n_{k}$. We also have that the nullity of f is p. By the Rank-Nullity theorem, the dimension of V is $n_{1}+\cdots+n_{k}+p$. This is the number of linearly independent vectors we have produced.

Theorem: Every linear transformation $f: V \rightarrow V$ of a finite-dimensional vector space V over the complex numbers has a block-diagonal matrix representation where each diagonal block is of the form $J_{\lambda}\left(n_{1}, \ldots, n_{k}\right)$.

Proof:

First, get matrix into triangular form with eigenvalues along diagonals.
Second, change basis so that the matrix is in block diagonal form with constant diagonals.
Third, show each block A can be placed in Jordan Normal Form.
Proof of third step: Suppose the eigenvalue corresponding to A is λ. Then $A-\lambda I$ is the matrix representation of a nilpotent transformation. So the restriction of $f-\lambda e$ to the corresponding subspace is nilpotent. Hence $f-\lambda e$ has a matrix representation of the form $J_{0}\left(n_{1}, \ldots, n_{k}\right)$, and this implies that f has a matrix representation of the form $J_{\lambda}\left(n_{1}, \ldots, n_{k}\right)$.

