Effective procedure for computing the Jordan Normal Form of nilpotent matrix

Given an $n \times n$ nilpotent matrix A, define the linear transformation

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

by

$$
f(x)=A x .
$$

Then A represents f with respect to the standard basis. Define the subspaces

$$
V_{0}=\mathbb{R}^{n}, V_{1}=c s(A), V_{2}=c s\left(A^{2}\right), \ldots, V_{n}=c s\left(A^{n}\right)
$$

Note that f maps V_{k} into V_{k} for each k : This is clear when $k=0$. For $k \geq 1$, let $x \in V_{k}$ be given. Then we have $x=A^{k} y$ for some $y \in \mathbb{R}^{n}$, hence

$$
f(x)=A x=A^{k+1} y=A^{k}(A y) \in c s\left(A^{k}\right)=V_{k} .
$$

For each k define

$$
f_{k}: V_{k} \rightarrow V_{k}
$$

by

$$
f_{k}(x)=A x .
$$

Then each f_{k} is a nilpotent transformation. We will find a Jordan normal basis for each V_{k}, working backwards from the largest value of k such that $A^{k} \neq 0$.

Find the largest value of k such that $A^{k} \neq 0$. We must have $A^{k+1}=0$. We also have $V_{k}=c s\left(A^{k}\right) \neq\{0\}$ and $f_{k}(x)=f_{k}\left(A^{k} y\right)=A^{k+1} y=0$ for all $x \in V_{k}$. Hence f_{k} is represented by the zero matrix with respect to any basis for V_{k}. The size of this basis is determined by the dimension of V_{k}. Since the zero matrix is Jordan normal of type $J_{0}(1,1, \ldots)$, we have found a Jordan normal basis for V_{k},

Induction Hypothesis: we have found a Jordan normal basis for V_{j} where $j \geq 1$. Assume it has the form

$$
\left\{A^{n_{1}-1} v_{1}, \ldots, A^{0} v_{1}, A^{n_{2}-1} v_{2}, \ldots, A^{0} v_{2}, \ldots, A^{n_{p}-1} v_{k}, \ldots, A^{0} v_{k}\right\}
$$

where

$$
A^{n_{1}}\left(v_{1}\right)=A^{n_{2}} v_{2}=\cdots=A^{n_{k}} v_{k}=0 .
$$

Now we find a Jordan normal basis for V_{j-1}. Find u_{i} so that $A\left(u_{i}\right)=v_{i}$ for each $i \leq k$. Expand the vectors $A^{n_{1}-1}\left(v_{1}\right), \ldots, A^{n_{k}-1}\left(v_{k}\right)$, which belong to the kernel of f_{j-1}, to a basis $A^{n_{1}-1}\left(v_{1}\right), \ldots, A^{n_{k}-1}\left(v_{k}\right), v_{k+1}, \ldots, v_{p}$ for $\operatorname{ker}\left(f_{j}\right)$. Then by a previous theorem,

$$
A^{n_{1}} u_{1}, \ldots, A^{0} u_{1}, A^{n_{k}} u_{k}, \ldots, A^{0} u_{k}, A^{0} v_{k+1}, \ldots, A^{0} v_{p}
$$

is a Jordan normal basis for V_{j-1}.

Example:

$$
\begin{aligned}
A & =\left[\begin{array}{cccccc}
0 & 1 & 7 & 19 & 54 & 61 \\
0 & 0 & 0 & -7 & -29 & -41 \\
0 & 0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
A^{2} & =\left[\begin{array}{lllllc}
0 & 0 & 0 & 0 & 11 & 66 \\
0 & 0 & 0 & 0 & -7 & -42 \\
0 & 0 & 0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
A^{3} & =\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

A Jordan normal basis for V_{2} is

$$
\left\{\left[\begin{array}{c}
11 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

This belongs to the kernel of f_{1}. We must find other vectors we can add to this to create a basis for the kernel of f_{1}. In order to do this efficiently we must first find a matrix representation of f_{1}.

A basis for V_{1} is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
19 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
54 \\
-29 \\
3 \\
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

The matrix representation of f_{1} with respect to this basis is

$$
\left[\begin{array}{ccc}
0 & 0 & -8 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

The kernel of this matrix is

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} .
$$

This implies that a basis for the kernel of f_{1} is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
19 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right\} .
$$

We must find a vector v such that

$$
\left\{\left[\begin{array}{c}
11 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right], v\right\}
$$

have the same span as

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
19 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right\} .
$$

We can choose

$$
v=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

We must also find u so that

$$
A u=\left[\begin{array}{c}
11 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

We choose

$$
u=\left[\begin{array}{c}
54 \\
-29 \\
3 \\
1 \\
0 \\
0
\end{array}\right]
$$

The Jordan normal basis we have found for V_{1} is now

$$
\{A u, u, v\}=\left\{\left[\begin{array}{c}
11 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
54 \\
-29 \\
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right\} .
$$

The vectors $A u$ and v belong to the kernel of f_{0}. We will fill these out to a basis for the kernel of f_{0}. We already have a matrix representation of f_{0} : it is the matrix A with respect to the standard basis. The kernel of A has basis

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
98 \\
0 \\
-19 \\
6 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
14 \\
-19 \\
6 \\
-1
\end{array}\right]\right\} .
$$

These vectors have the same span as the vectors

$$
\left\{\left[\begin{array}{c}
11 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
14 \\
-19 \\
6 \\
-1
\end{array}\right]\right\}
$$

So set

$$
w=\left[\begin{array}{c}
0 \\
0 \\
14 \\
-19 \\
6 \\
-1
\end{array}\right]
$$

We must find also find vectors p and q so that $A p=u$ and $A q=v$. We can use $p=e_{5}$ and $q=e_{2}$. So a Jordan normal basis for V_{0} should be

$$
\left\{A^{2} p, A p, p, A q, q, w\right\}=\left\{\left[\begin{array}{c}
11 \\
-7 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
54 \\
-29 \\
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
14 \\
-19 \\
6 \\
-1
\end{array}\right]\right\} .
$$

One can check that the matrix representation of f with respect to this basis is

$$
\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=J_{0}(3,2,1)
$$

Therefore

$$
\left[\begin{array}{cccccc}
11 & 54 & 0 & 1 & 0 & 0 \\
-7 & -29 & 0 & 0 & 1 & 0 \\
1 & 3 & 0 & 0 & 0 & 14 \\
0 & 1 & 0 & 0 & 0 & -19 \\
0 & 0 & 1 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]^{-1} A\left[\begin{array}{cccccc}
11 & 54 & 0 & 1 & 0 & 0 \\
-7 & -29 & 0 & 0 & 1 & 0 \\
1 & 3 & 0 & 0 & 0 & 14 \\
0 & 1 & 0 & 0 & 0 & -19 \\
0 & 0 & 1 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]=J_{0}(3,2,1) .
$$

As a corollary, we get

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
11 & 54 & 0 & 1 & 0 & 0 \\
-7 & -29 & 0 & 0 & 1 & 0 \\
1 & 3 & 0 & 0 & 0 & 14 \\
0 & 1 & 0 & 0 & 0 & -19 \\
0 & 0 & 1 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]^{-1}\left[\begin{array}{cccccc}
\lambda & 1 & 7 & 19 & 54 & 61 \\
0 & \lambda & 0 & -7 & -29 & -41 \\
0 & 0 & \lambda & 1 & 3 & -1 \\
0 & 0 & 0 & \lambda & 1 & 6 \\
0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{cccccc}
11 & 54 & 0 & 1 & 0 & 0 \\
-7 & -29 & 0 & 0 & 1 & 0 \\
1 & 3 & 0 & 0 & 0 & 14 \\
0 & 1 & 0 & 0 & 0 & -19 \\
0 & 0 & 1 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]=} \\
& J_{\lambda}(3,2,1) .
\end{aligned}
$$

