Effective procedure for computing the Jordan Normal Form of nilpotent matrix

Given an $n \times n$ nilpotent matrix A, define the linear transformation

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

by

f(x) = Ax.

Then A represents f with respect to the standard basis. Define the subspaces

$$V_0 = \mathbb{R}^n, \ V_1 = cs(A), \ V_2 = cs(A^2), \ \dots, \ V_n = cs(A^n).$$

Note that f maps V_k into V_k for each k: This is clear when k = 0. For $k \ge 1$, let $x \in V_k$ be given. Then we have $x = A^k y$ for some $y \in \mathbb{R}^n$, hence

$$f(x) = Ax = A^{k+1}y = A^k(Ay) \in cs(A^k) = V_k.$$

For each k define

 $f_k: V_k \to V_k$

by

$$f_k(x) = Ax$$

Then each f_k is a nilpotent transformation. We will find a Jordan normal basis for each V_k , working backwards from the largest value of k such that $A^k \neq 0$.

Find the largest value of k such that $A^k \neq 0$. We must have $A^{k+1} = 0$. We also have $V_k = cs(A^k) \neq \{0\}$ and $f_k(x) = f_k(A^k y) = A^{k+1}y = 0$ for all $x \in V_k$. Hence f_k is represented by the zero matrix with respect to any basis for V_k . The size of this basis is determined by the dimension of V_k . Since the zero matrix is Jordan normal of type $J_0(1, 1, \ldots)$, we have found a Jordan normal basis for V_k .

Induction Hypothesis: we have found a Jordan normal basis for V_j where $j \ge 1$. Assume it has the form

$$\{A^{n_1-1}v_1, \dots, A^0v_1, A^{n_2-1}v_2, \dots, A^0v_2, \dots, A^{n_p-1}v_k, \dots, A^0v_k\}$$

where

$$A^{n_1}(v_1) = A^{n_2}v_2 = \dots = A^{n_k}v_k = 0$$

Now we find a Jordan normal basis for V_{j-1} . Find u_i so that $A(u_i) = v_i$ for each $i \leq k$. Expand the vectors $A^{n_1-1}(v_1), \ldots, A^{n_k-1}(v_k)$, which belong to the kernel of f_{j-1} , to a basis $A^{n_1-1}(v_1), \ldots, A^{n_k-1}(v_k), v_{k+1}, \ldots, v_p$ for ker (f_j) . Then by a previous theorem,

$$A^{n_1}u_1, \dots, A^0u_1, A^{n_k}u_k, \dots, A^0u_k, A^0v_{k+1}, \dots, A^0v_p$$

is a Jordan normal basis for V_{j-1} .

Example:

A Jordan normal basis for V_2 is

$$\left\{ \begin{bmatrix} 11\\-7\\1\\0\\0\\0 \end{bmatrix} \right\}.$$

This belongs to the kernel of f_1 . We must find other vectors we can add to this to create a basis for the kernel of f_1 . In order to do this efficiently we must first find a matrix representation of f_1 .

A basis for V_1 is

The matrix representation of f_1 with respect to this basis is

$$\begin{bmatrix} 0 & 0 & -8 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The kernel of this matrix is

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}.$$

This implies that a basis for the kernel of f_1 is

$$\left\{ \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 19\\-7\\1\\0\\0\\0\\0\\0\\0\end{bmatrix} \right\}.$$

We must find a vector v such that

$$\left\{ \begin{bmatrix} 11\\ -7\\ 1\\ 0\\ 0\\ 0 \end{bmatrix}, v \right\}$$

have the same span as

$$\left\{ \begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 19\\-7\\1\\0\\0\\0\\0\\0 \end{bmatrix} \right\}.$$
$$v = \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}.$$

We can choose

We must also find
$$u$$
 so that

$$Au = \begin{bmatrix} 11 \\ -7 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

We choose

$$u = \begin{bmatrix} 54\\ -29\\ 3\\ 1\\ 0\\ 0 \end{bmatrix}.$$

The Jordan normal basis we have found for V_1 is now

$$\{Au, u, v\} = \left\{ \begin{bmatrix} 11\\ -7\\ 1\\ 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 54\\ -29\\ 3\\ 1\\ 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} \right\}.$$

The vectors Au and v belong to the kernel of f_0 . We will fill these out to a basis for the kernel of f_0 . We already have a matrix representation of f_0 : it is the matrix A with respect to the standard basis. The kernel of A has basis

$$\left\{ \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 98 & 0 \\ 0 & 0 & 14 \\ 0 & -19 & 14 \\ 0 & 6 & 6 \\ 0 & -1 & -1 \end{array} \right\}.$$

These vectors have the same span as the vectors

$$\left\{ \begin{bmatrix} 11\\ -7\\ 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 14\\ -19\\ 6\\ -1 \end{bmatrix} \right\}.$$

So set

$$w = \begin{bmatrix} 0 \\ 0 \\ 14 \\ -19 \\ 6 \\ -1 \end{bmatrix}.$$

We must find also find vectors p and q so that Ap = u and Aq = v. We can use $p = e_5$ and $q = e_2$. So a Jordan normal basis for V_0 should be

One can check that the matrix representation of f with respect to this basis is

Therefore

[11]	54	0	1	0	0	$ ^{-1}$	11	54	0	1	0	0]	
-7	-29	0	0	1	0		-7	-29	0	0	1	0	
1	3	0	0	0	14		1	3	0	0	0	14	-I(2,2,1)
0	1	0	0	0	-19	A	0	1	0	0	0	-19	$= J_0(3, 2, 1).$
0	0	1	0	0	6		0	0	1	0	0	6	
0	0	0	0	0	-1		0	0	0	0	0	-1	

As a corollary, we get

[11]	54	0	1	0	0	$ ^{-1}$	$\lceil \lambda \rceil$	1	7	19	54	61	[11]	54	0	1	0	0	
-7	-29	0	0	1	0		0	λ	0	-7	-29	-41	-7	-29	0	0	1	0	
1	3	0	0	0	14		0	0	λ	1	3	-1	1	3	0	0	0	14	
0	1	0	0	0	-19		0	0	0	λ	1	6	0	1	0	0	0	-19	=
0	0	1	0	0	6		0	0	0	0	λ	0	0	0	1	0	0	6	
0	0	0	0	0	-1		0	0	0	0	0	λ	0	0	0	0	0	-1	

 $J_{\lambda}(3,2,1).$