
Math 375

Selected Solutions to Homework 2 Problems

Section 1.4

3g. In order to prove that a graph is not planar it suffices to show that it has
a subgraph which is not planar. So we don’t need to find a Hamilton circuit
through all the vertices, just through a nonplanar subgraph. Let’s ignore the
vertex a. Consider the cycle

b− e− h− c− d− i− f − g − b.

To find a K33 configuration we just need to find one (possibly interrupted)
chord inside the cycle, forcing another (possibly interrupted) chord outside
the cycle, preventing the drawing of any other (possibly interrupted) chord
either inside or outside the cycle. I can see that if you draw the chord e− d
inside then you must draw h − i outside, and now there is no way to draw
the edge from c to g without crossing one or the other chord. So the graph
is not planar. The vertices of K33 are the six vertices in question, namely
e, d, h, i, c, g, and the other two vertices (b and f) count as interrupting ver-
tices.

3l. Use the same idea as in 3g.

7d. A connected planar graph must satisfy e ≤ 3v − 6. This condition is
violated by e = 14 and v = 6.

7i. Suppose there is a connected graph of this description. Since every region
has 4 boundary edges, there are 4r dots in a dot-counting argument, and since
this is equal to 2e, we must have e = 2r. Since e− v + 2 = r, we must have
2r − 12 + 2 = r or r = 10. So now we know that e = 20. We can get
this configuration by placing a square within a square within a square and
connecting corresponding vertices.

9. To form the line graph of a graph G, place a new vertex in the middle
of every edge and connect two of these middle vertices whenever they lie
on edges that meet at a vertex. Now erase the original vertices and edges,
retaining the middle vertices and the edges that join them. Consider the
line graph of K5. There are 10 edges, and each edge meets 6 other edges.
This implies that the line graph has 10 vertices and that each vertex in the
line graph has an edge to 6 other vertices in the line graph. So every vertex
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degree in the line graph is equal to 6. But I proved in class that every planar
graph must have a vertex of degree ≤ 5, so L(K5) cannot be planar. To
answer part (b), consider the graph G = (V,E) where

V = {1, 2, 3, 4, 5, 6}

and
E = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}}.

This is a planar graph. Since there are 5 edges, the line graph has 5 vertices.
Since every edge meets every other edge, the line graph must be K5. K5 is
nonplanar.

19. Let G be a connected planar graph. Suppose all vertex degrees are 5 or
greater. Then the edge-counting theorem yields 2e ≥ 5v or e ≥ 2.5v. On the
other hand, e ≤ 3v − 6. Therefore

2.5v ≤ e ≤ 3v − 6

2.5v ≤ 3v − 6

6 ≤ 0.5v

12 ≤ v

hence G must have at least 12 vertices. So if G has fewer than 12 vertices,
then it cannot have all vertex degrees 5 or greater, so at least one vertex has
degree ≤ 4. In short, all large degrees implies at least 12 vertices, so fewer
than 12 vertices implies at least one small degree.

24. See class notes. For part (d), we must count the number of integer
solutions to (d1 − 2)(d2 − 2) < 4. How many non-negative integer solutions
to AB < 4 are there? A = 1 implies B = 1, 2, 3. A = 2 implies B = 1.
A = 3 implies B = 1. So there are 5 solutions.

25. The figure forms a planar graph. The number of vertices is 2l + p. The
p vertices representing line intersections have degree 4 each. The 2l vertices
on the circle have degree 3 each. So the total vertex degree sum is 6l + 4p
and the number of edges is 3l + 2p. So

r = e− v + 2 = (3l + 2p)− (2l + p) + 2 = l + p + 2.

Therefore the number of interior regions is l + p + 1.
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