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Note to students: With these notes I’ve attempted to clarify the exposition
in the textbook and to fill in some of the details. Read these notes as a
companion to the textbook. Observe that many conjectures and theorems
are stated without proof. Some of the proofs are supplied later in the book.
Be mindful as you are reading about which statements require a proof and
which statements you should accept on faith. If a theorem is cited without
proof, make sure you understand the statement of the theorem and how it is
being applied to obtain new results.

Students should also understand that this book is about much more than
just counting alternating sign matrices. It covers a large swath of the branch
of mathematics known as Algebraic Combinatorics. This include such topics
as generating functions, recursive formulae, partitions, plane partitions, lat-
tice paths, determinant evaluations, and basic hypergeometric series. These
ideas were developed well before the arrival of the Alternating Sign Matrix
Conjecture, and all these ideas come into play in the proof of this conjecture.

Chapter 1: The Conjecture

Preliminary remarks

General remarks about conjectures. Definition of alternating sign matrix.

Section 1.1: How many are there?

Topics to review: Permutations, combinations, binomial coefficients, Pascal’s
triangle, combinatorial proofs of binomial coefficient identities.
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The first and last non-zero entry in any row or column of an alternat-
ing sign matrix must be 1, otherwise there is no way to produce 1 as an
alternating sum. Hence the four borders of an alternating sign matrix must
each contain a single 1 and the other entries must be 0. An,k = number of
alternating sign matrices with 1 in row 1, column k.

It turns out that if you arrange the numbers
An,k

An,k+1
into a triangle, and

express these fractions in just the right form, the triangle of numerators looks
like the sum of two Pascal’s Triangles and the triangle of denominators looks
like the sum of two other Pascal’s Triangles. This leads to the conjecture

An,k

An,k+1

=

(
n−2
k−1

)
+

(
n−k
k−1

)
(

n−2
n−k−1

)
+

(
n−1

n−k−1

) =
k(2n− k − 1)

(n− k)(n + k − 1)
.

Rearranging, we have

An,k+1 =
(n− k)(n + k − 1)

k(2n− k − 1)
An,k.

Therefore

An,2 =
(n− 1)n

1(2n− 2)
An,1

An,3 =
(n− 2)(n + 1)

2(2n− 3)
An,2 =

(n− 2)(n− 1)n(n + 1)

(1)(2)(2n− 3)(2n− 2)
An,1

An,4 =
(n− 3)(n + 2)

3(2n− 4)
An,3 =

(n− 3)(n− 2)(n− 1)n(n + 1)(n + 2)

(1)(2)(3)(2n− 4)(2n− 3)(2n− 2)
An,1

...

An,k =
(n + k − 2)!

(n− k)!

1

(k − 1)!

(2n− k − 1)!

(2n− 2)!
An,1.

This formula is valid even for k = 1. Observe that

(n + k − 2)!

(n− k)!

1

(k − 1)!

(2n− k − 1)!

(2n− 2)!
=

(n− 1)!(n− 1)!

(2n− 2)!

(
n + k − 2

n− 1

)(
2n− k − 1

n− 1

)
.
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Therefore

An =
n∑

k=1

An,k =
(n− 1)!(n− 1)!

(2n− 2)!

n∑

k=1

(
n + k − 2

n− 1

)(
2n− k − 1

n− 1

)
An,1.

With a change of variables, we can write

n∑

k=1

(
n + k − 2

n− 1

)(
2n− k − 1

n− 1

)
=

2n−1∑
j=n

(
j − 1

n− 1

)(
3n− 2− j

n− 1

)
.

The product
(

j−1
n−1

)(
3n−2−j

n−1

)
can be interpreted as the number of binary strings

of length 3n− 2 which contain 2n− 2 ones and n zeros, in which the nth one
appears in position j. After placing the nth one in position j, there are

(
j−1
n−1

)

to position the first n−1 ones in the first j−1 positions and there are
(
3n−2−j

n−1

)
ways to position the remaining n−1 ones in the remaining 3n−2−j positions.
The nth one can appear in position j ∈ {n, n+1, . . . , 2n−1}. Hence the sum
is equal to the total number of such binary strings, namely

(
3n−2
2n−1

)
. Therefore

An =
(n− 1)!(n− 1)!

(2n− 2)!

(
3n− 2

2n− 1

)
An,1 =

(n− 1)!(n− 1)!

(2n− 2)!

(
3n− 2

2n− 1

)
An−1 =

(n− 1)!(3n− 2)!

(2n− 2)!(2n− 1)!
An−1.

Now we can compute

A2 =
1!4!

2!3!
A1 =

1!4!

2!3!

A3 =
2!7!

4!5!

1!4!

2!3!
=

1!4!7!

3!4!5!

A4 =
3!10!

6!7!

1!4!7!

3!4!5!
=

1!4!7!10!

4!5!6!7!
...

An =
1!4!7! · · · (3n− 2)!

n!(n + 1)!(n + 2)! · · · (2n− 1)!
.

This is an amazing formula. Of course, its derivation depends on the original
conjecture regarding the ratios

An,k

An,k+1
, which we have not proved to be true

for all n and k.
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Exercises: Section 1.1, problems 11, 12, 13, 14

Section 1.2: Plane Partitions

Read the chronology in my notes for Section 1.3 to see the connection
between alternating sign matrices and plane partitions.

Plane Partition: see Figure 1.3, page 10. A more rigorous definition
is given on page 13: Regard the partition P as consisting of points in space
with positive integer coordinates. If (r, s, t) ∈ P and 1 ≤ r′ ≤ r, 1 ≤ s′ ≤ s,
and 1 ≤ t′ ≤ t, then (r′, s′, t′) ∈ P also.

One way to visualize these: Let P be a plane partition. Let

P(z)
k = {(x, y) : (x, y, k) ∈ P}

denote the slice of P consisting of all (x, y) coordinates corresponding to
z = k. We can visualize this as a horizontal slice hovering k units above the
xy plane. If (x, y, k) ∈ P and k > 1 then we know that (x, y, k − 1) ∈ P
also. Therefore P(z)

k ⊆ P(z)
k−1. That is, the slice at z = k fits nicely inside the

slice at z = k − 1. We can define P(x)
k and P(y)

k similarly, slices parallel to
the yz-plane and the xz-plane respectively:

P(x)
k = {(y, z) : (k, y, z) ∈ P}

and
P(y)

k = {(x, z) : (x, k, z) ∈ P}.
We have the containments

P(x)
1 ⊇ P (x)

2 ⊇ P (x)
3 ⊇ · · · ,

P(y)
1 ⊇ P (y)

2 ⊇ P (y)
3 ⊇ · · · ,

P(z)
1 ⊇ P (z)

2 ⊇ P (z)
3 ⊇ · · · .

Another way to represent plane partitions is to use 2-dimensional dia-
grams which describe the z-slices. For example, there are 6 plane partitions
of the number 3:

1. P(z)
1 = {(1, 1), (1, 2), (1, 3)}
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2. P(z)
1 = {(1, 1), (1, 2), (2, 1)}

3. P(z)
1 = {(1, 1), (2, 1), (3, 1)}

4. + P(z)
1 = {(1, 1), (1, 2)}, P(z)

2 = {(1, 1)}

5.

+

P(z)
1 = {(1, 1), (2, 1)}, P(z)

2 = {(1, 1)}

6. + + P(z)
1 = {(1, 1)}, P(z)

2 = {(1, 1)}, P(z)
3 = {(1, 1)}.

If we denote by pp(n) the number of plane partitions with n cubes in it,
then a challenging problem is to provide a formula or some other systematic
way of computing pp(n). There is a table of the first few values of pp(n) on
page 10. Properties of plane partitions were known to people working with
alternating sign matrices, and these researchers discovered numerical evi-
dence suggesting a link between alternating sign matrices and a special class
of plane partitions. So we will digress at this point to describe a standard
technique for counting plane partitions.

Method of counting plane partitions: generating functions

A generating function for the sequence of numbers a0, a1, a2, . . . is the
power series

g = a0 + a1q + a2q
2 + · · · =

∞∑
n=0

anq
n.

Example 1: Let an = 1 for all n ≥ 0. Then g is the geometric series

g = 1 + q + q2 + · · · =
∞∑

n=0

qn =
1

1− q
.

Example 2: Let

an =

{
1 if n is even

0 if n is odd
.
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Then g is the geometric series

g = 1 + q2 + q4 + · · · =
∞∑

n=0

q2n =
1

1− q2
.

Example 3: For each n ≥ 0 let an = n + 1. Then

g =
∞∑

n=0

(n + 1)qn.

We can simplify this:

∞∑
n=0

(n + 1)qn = 1 + 2q + 3q2 + 4q3 + · · ·

= (1 + q + q2 + q3 + q4 + · · · )′

=

(
1

1− q

)′

=
1

(1− q)2
.

Therefore

g =
1

(1− q)2
.

Example 4: Let a0 = 1, and for each n ≥ 1 let an = the number of ways to
express the integer n as a sum of the form

λ1 + λ2 + · · ·+ λk,

where
λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1

and the numbers add up to n. For example, a3 = 3 because there are 3 ways
to express the number 3:

3, 2 + 1, 1 + 1 + 1.
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Note the correspondence between these expressions and the products

q3, q2q1, (q1)3,

which represent all the ways to produce q3 when expanding the product

(
1 + q3 + (q3)2 + · · · ) (

1 + q2 + (q2)2 + · · · ) (
1 + q1 + (q1)2 + · · · ) =

1

(1− q3)(1− q2)(1− q1)
.

Therefore a3 is the coefficient of q3 in

1

(1− q3)(1− q2)(1− q)
.

Similarly, a4 is the coefficient of q4 in

1

(1− q4)(1− q3)(1− q2)(1− q)
.

Observe that a3 is also the coefficient of q3 in

1

(1− q4)(1− q3)(1− q2)(1− q)
,

because the terms in 1
1−q4 to not make any contribution to q3. Generalizing

further, we can say that a3 is the coefficient of q3 and a4 is the coefficient of
q4 in the same series

1

(1− q)(1− q2)(1− q3)(1− q4)(1− q5) · · · =
∞∏

j=1

1

1− qj
.

In fact, an is the coefficient of qn in this series for each n ≥ 1. Therefore the
generating function for the sequence of numbers a0, a1, a2, . . . is

g =
∞∏

j=1

1

1− qj
.
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This is the context for Theorem 1.1, page 11: If an = pp(n) for each n,
then the generating function is

g = pp(0) + pp(1)q + pp(2)q2 + · · · =
∞∏

j=1

1

(1− qj)j
,

where by convention we set pp(0) = 1 (there is one empty partition). Given
this generating function representation, we can compute the numbers pp(n)
recursively by Theorem 1.2: for n ≥ 2 we have

pp(n) =
1

n
(σ2(1)pp(n− 1) + σ2(2)pp(n− 2) + · · ·+ σ2(n)pp(0)),

where
σ2(j) =

∑

d|j
d2.

As mentioned above, there is a connection between alternating sign matri-
ces and a special class of plane partitions. We will spend some time wrapping
our minds around these objects.

Classes of plane partitions:

a. Restricted plane partitions, page 13. B(r, s, t) consists of all points
(i, j, k) such that 1 ≤ i ≤ r, 1 ≤ j ≤ s, and 1 ≤ k ≤ t. These points form
a cubic lattice of points with one vertex at (1, 1, 1) and another vertex at
(r, s, t). Let rpp(n) = the number of plane partitions of n which are subsets
of B(r, s, t). Note that rpp(n) = 0 if n > rst. By Theorem 1.3, the generating
function for the number of such partitions is

rst∑
n=0

rpp(n)qn =
r∏

i=1

s∏
j=1

1− qi+j+t−1

1− qi+j−1
=

∏

η∈B(r,s,t)

1− q1+ht(η)

1− qht(η)
,

where the height of η = (i, j, k) ∈ B(r, s, t) is i + j + k − 2.

Note that if we let q → 1 in

rst∑
n=0

rpp(n)qn
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we get
rst∑
n=0

rpp(n),

which is the total number of plane partitions inside B(r, s, t) (including the
empty partition). Therefore, we should get the same answer if we let q → 1
in

∏

η∈B(r,s,t)

1− q1+ht(η)

1− qht(η)
.

Note that

1− qa

1− qb
=

(1− q)(1 + q + · · ·+ qa−1)

(1− q)(1 + q + · · ·+ qb−1)
=

1 + q + · · ·+ qa−1

1 + q + · · ·+ qb−1
,

hence letting q → 1 we obtain a
b
. Therefore the total number of plane

partitions inside B(r, s, t) is

∏

η∈B(r,s,t)

1 + ht(η)

ht(η)
.

b. Symmetric plane partitions, page 13. If (i, j, k) is a point in a

symmetric plane partition, then so is (j, i, k). That is, if (x, y) ∈ P(z)
k then

(y, x) ∈ P (z)
k also. There is therefore symmetry about the line y = x in every

slice of P which is parallel to the xy-plane. We can see this in Figure 1.5 on
page 13.

Note that if (i, j, k) belongs to B(r, r, t) then so does (j, i, k). Moreover,

ht(i, j, k) = ht(j, i, k) = i + j + k − 2.

The symmetric orbit of (i, j, k) is {(i, j, k), (j, i, k)}, and the size of this orbit
is 2 or 1 depending on whether i 6= j or i = j. Therefore the generating
function for plane partitions restricted to B(r, r, t) can be expressed as

r2t∑
n=0

rpp(n)qn =
∏

η∈B(r,r,t)/S2

(
1− q1+ht(η)

1− qht(η)

)|η|

,
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where |η| is the size of the symmetric orbit of η and B(r, r, t)/S2 is a set
consisting of one η per orbit. Let rspp(n) = the number of symmetric plane
partitions restricted to B(r, r, t). The MacMahon Conjecture (subsequently
proved to be true) is that the generating function for symmetric plane par-
titions restricted to B(r, r, t) is

r2t∑
n=0

rspp(n)qn =
∏

η∈B(r,r,t)/S2

1− q|η|(1+ht(η))

1− q|η|ht(η)
.

Letting q → 1, we find that the number of symmetric plane partitions living
in B(r, r, t) is equal to

r2t∑
n=0

rspp(n) =
∏

η∈B(r,r,t)/S2

1 + ht(η)

ht(η)
.

c. Cyclic plane partitions, page 15. If (i, j, k) is in the partition, then
so are (j, k, i) and (k, i, j). How to visualize these: imagine you are looking
at the point (0, 10, 5) in the yz-plane. If you draw a line from (0, 0, 0) to
(0, 10, 5), you will see that the line has slope equal to 1

2
in the yz-plane.

When you cyclically permute the coordinates of (0, 10, 5) you produce the
point (10, 5, 0). If you draw a line from (0, 0, 0) to (10, 5, 0), you will see that
the line has slope equal to 1

2
in the xy-plane. It is easy to see that when you

cyclically permute all the coordinates on the line z = 1
2
y in the yz-plane you

produce all the points on the line y = 1
2
x in the xy-plane. Geometrically, the

effect of cyclically permuting the coordinates of the yz-plane is to rotate the
yz-plane into the position of the xy-plane.

Continuing this example, if you cyclically permute the coordinates of
(10, 5, 0) you produce the point (5, 0, 10). This is the point that results
by rotating the xy-plane into the position of the xz-plane. Another cyclic
permutation produces (0, 10, 5), the point we started with.

If we repeat this exercise starting with the point (k, 10, 5), and regarding
this as a point in the x = k slice of a cyclically symmetric plane partition P ,
we can see that (10, 5, k) is the corresponding point in the z = k slice of P and
(5, k, 10) is the corresponding point in the y = k slice of P . To summarize,
when you cyclically permute the coordinates of the x = k slice of P you
obtain the z = k slice of P , when you cyclically permute the coordinates of
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the z = k slice of P you obtain the y = k slice of P , and when you cyclically
permute the coordinates of the y = k slice of P you obtain the x = k slice of
P .

Analogous to our remarks regarding symmetric plane partitions restricted
to B(r, r, t), we can make the following observations about cyclically sym-
metric plane partitions restricted to B(r, r, r). Note that if (i, j, k) belongs
to B(r, r, r) then so does (j, k, i) and (k, i, j). Moreover,

ht(i, j, k) = ht(j, k, i) = ht(k, i, j) = i + j + k − 2.

The cyclic orbit of (i, j, k) is {(i, j, k), (j, k, i), (k, i, j)}, and the size of this
orbit is 3 or 1 depending on i, j and k. Therefore the generating function
for plane partitions restricted to B(r, r, r) can be expressed as

r3∑
n=0

rpp(n)qn =
∏

η∈B(r,r,r)/C3

(
1− q1+ht(η)

1− qht(η)

)|η|

,

where |η| is the size of the cyclic orbit of η and B(r, r, t)/C3 is a set consisting
of one η per orbit. Let rcspp(n) = the number of cyclically symmetric plane
partitions which live in B(r, r, r). Another conjecture due to MacMahon (also
subsequently proved to be true) is that the generating function for symmetric
plane partitions restricted to B(r, r, r) is

r3∑
n=0

rcspp(n)qn =
∏

η∈B(r,r,r)/C3

1− q|η|(1+ht(η))

1− q|η|ht(η)
.

Letting q → 1, we find that the number of cyclically symmetric plane parti-
tions living in B(r, r, t) is equal to

r3∑
n=0

rcspp(n) =
∏

η∈B(r,r,r)/C3

1 + ht(η)

ht(η)
.

d. Totally symmetric plane partitions, page 15. These are partitions
with the following property: if (p, q, r) is in the partition, then so is every
permutation of these three coordinates. Note: If a plane partition is totally
symmetric, then it must be both symmetric and cyclically symmetric. So it
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will have both of the geometric properties we stated above. Moreover, it is
easy to see that if a plane partition is symmetric and cyclically symmetric,
then it must be totally symmetric. So the totally symmetric plane partitions
are precisely those with symmetry about the line x = y and whose slices can
be rotated into each other by cyclic permutations.

Let rtspp(n) = the total number of totally symmetric plane partitions
living in B(r, r, r). It would be tempting to say that the generating function
for totally symmetric plane partitions restricted to B(r, r, r) is

r3∑
n=0

rtspp(n)qn =
∏

η∈B(r,r,r)/S3

1− q|η|(1+ht(η))

1− q|η|ht(η)
,

where we define the totally symmetric orbit of (i, j, k) to be the set of all
permutations of the coordinates i, j, k. It turns that this conjecture is false
(in problem 10 you will prove that the right-hand side of this formula is
not a polynomial for r = 3, while the left-hand side must be a polynomial).
However, the conjecture suggests the formula

r3∑
n=0

rtspp(n) =
∏

η∈B(r,r,r)/S3

1 + ht(η)

ht(η)
,

and this formula is correct (but must be proved by other means).

Exercises: 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 15

Section 1.3: Descending Plane Partitions

There is a very tangled narrative here which I will attempt to unravel.
It is a chronology which shows how researchers made a connection between
alternating sign matrices and descending plane partitions.

1. MacMahon derived the generating function for plane partitions restricted
to B(r, s, t):

∏

η∈B(r,s,t)

1− q1+ht(η)

1− qht(η)
.
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2. MacMahon conjectured (correctly) that the generating function for sym-
metric plane partitions restricted to B(r, r, t) is

∏

η∈B(r,r,t)/S2

(
1− q1+ht(η)

1− qht(η)

)|η|

.

3. Macdonald conjectured (incorrectly) that the generating function for to-
tally symmetric plane partitions restricted to B(r, r, r) is

∏

η∈B(r,r,r)/S3

1− q|η|(1+ht(η))

1− q|η|ht(η)
.

4. Macdonald conjectured (correctly) that the generating function for cycli-
cally symmetric plane partitions restricted to B(r, r, r) is

∏

η∈B(r,r,r)/C3

1− q|η|(1+ht(η))

1− q|η|ht(η)
.

5. The generating function for cyclically symmetric plane partitions in B(r, r, r)
can be expressed as a determinant:

det

(
δij + q3i−2

[
i + j − 2

i− 1

]

q3

)r

i,j=1

.

6. Andrews was unable to prove Macdonald’s conjecture by evaluating the
determinant in (5). But he was able to prove the q → 1 version:

det

(
δij +

(
i + j − 2

j − 1

))
=

∏

η∈B(r,r,r)/C3

|η|(1 + ht(η))

|η|ht(η)
.

7. Andrews found a generating function for descending plane partitions with
largest part ≤ r, expressed in determinant form:

det

(
δij + qi+1

[
i + j
j − 1

]

q

)
.
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Every cyclically symmetric plane partition corresponds in a unique way to a
special class of strict shifted plane partitions; strict shifted plane partitions
are a special class of descending plane partitions.

8. Andrews conjectured that his generating function for descending plane
partitions (7) has a product form:

∏
1≤i≤j≤r

1− qr+i+j−1

1− q2i+j−1
.

9. Andrews was unable to evaluate the determinant representing the generat-
ing function for descending plane partitions, just as he was unable to evaluate
the determinant representing the generating function for cyclically symmet-
ric plane partitions. But he was able to prove the q → 1 version, which yields
a conjectured formula for descending plane partitions with largest part ≤ r:

det

(
δij +

(
i + j
j − 1

))
=

∏
1≤i≤j≤r

r + i + j − 1

2i + j − 1
.

10. Stanley observed that Andrews result (9) seems to count the number of
alternating sign matrices of size r. Andrews’ formula can be expressed in the
form

∏
1≤i≤j≤r

r + i + j − 1

2i + j − 1
=

r−1∏
j=0

(3j + 1)!

(r + j)!
,

which we have already encountered as the conjectured formula for Ar.

11. This discovery motivated Mills, Robbins, and Rumsey to find a one-to-
one correspondence between descending plane partitions with largest part
≤ r and r × r alternating sign matrices. They didn’t find one, and this is
still an open question.

12. Alternating sign matrices of size r can be divided into classes according
to the position of the 1 in the first row. This suggested to Mills, Robbins,
and Rumsey that there should be a way to divide descending plane partitions
with largest part ≤ r into classes of the same size. Class k of alternating
sign matrices conjectured to correspond to descending plane partitions with
largest part ≤ r and the part r appears exactly k − 1 times.

14



13. This method of dividing descending plane partitions into classes led to
techniques for evaluating the determinant expressing total number of de-
scending plane partitions. These techniques were eventually used to prove
Macdonald’s conjecture (6), Andrews’ conjecture (8), and the conjecture of
Mills, Robbins, and Rumsey (12).

There are a lot of new ideas here: strict shifted plane partition, the
correspondence between cyclically symmetric plane partitions and a special
class of strict shifted plane partitions, and descending plane partitions. They
all seem to run together and I get dizzy trying to keep track of them all. The
only way to remedy this is to make them real by defining them carefully and
investigating their properties. So we will make a digression here and take a
close look at these objects. We will begin by looking at matrix formulation
of plane partition.

Let P be a plane partition. We can encode the information in P by a
matrix of non-negative integers M = (zij) as follows: If (i, j, 1) belongs to
P , then we set zij equal to the maximum z-coordinate such that (i, j, zij)
belongs to P . If (i, j, 1) 6∈ P then we set zij = 0. We can interpret zij as the
number of cubes of the partition at x coordinate i and y-coordinate j. The
matrix which represents the plane partition of 75 on page 10 is

M =




6 5 5 4 3 3
6 4 3 3 1
6 4 3 1 1
4 2 2 1
3 1 1
1 1 1




,

where we have omitted the zero entries.

Observe that the entries of each row of the matrix weakly decrease from
left to right and the entries of each column of the matrix weakly decrease
from top to bottom. In order to prove that this will always be the case,
consider zij, the entry in row i and column j. Assume zij > 0. If i > 1 we
must prove that zij ≤ zi−1,j, and if j > 1 we must prove that zij ≤ zi,j−1.

Consider i > 1. We have (i, j, zij) ∈ P , therefore (i − 1, j, zij) ∈ P .
Therefore the maximum z-coordinate such that (i − 1, j, z) belongs to P is
greater than or equal to zij. This implies zi−1,j ≥ zij.
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Consider j > 1. We have (i, j, zij) ∈ P , therefore (i, j − 1, zij) ∈ P .
Therefore the maximum z-coordinate such that (i, j − 1, z) belongs to P is
greater than or equal to zij. This implies zi,j−1 ≥ zi,j.

A natural question to ask is this: beginning with an arbitrary matrix of
non-negative integers

M =




a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
...

...
...

. . .




such that each row and each column weakly decreases, is there a correspond-
ing plane partition P whose stack heights are represented by M? Yes: set

P = {(i, j, k) : i ≥ 1, j ≥ 1, 1 ≤ k ≤ aij}.

We must show that if (i, j, k) ∈ P and if 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j, and
1 ≤ k′ ≤ k, then (i′, j′, k′) ∈ P also.

Let (i, j, k) ∈ P be given. Then 1 ≤ k ≤ aij, so we know that aij ≥ 1.
Now let 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j, and 1 ≤ k′ ≤ k be given. We must show that
(i′, j′, k′) ∈ P , that is 1 ≤ k′ ≤ ai′j′ . We have

k′ ≤ k ≤ aij ≤ ai′j ≤ ai′j′ ,

the third and fourth inequalities due to the fact that the row entries of M
weakly increase and the column entries of M weakly decrease, respectively.

We will now investigate what properties the matrix representing a plane
partition P must possess if P is cyclically symmetric. In order to do this, we
need to understand how to extract information about the z-slices of a plane
partition from its matrix representation M = (zij).

For each k ≥ 1, P(z)
k is represented by M

(z)
k , the matrix whose i, j-entry

is

a
(k)
ij =

{
1 if zij ≥ k

0 otherwise.
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The positions of the 1s record positions of cubes with z = k. For the partition
on page 10, we have

M
(z)
1 =




1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1 1 1




, M
(z)
2 =




1 1 1 1 1 1
1 1 1 1
1 1 1
1 1 1
1




,

M
(z)
3 =




1 1 1 1 1 1
1 1 1 1
1 1 1
1
1




, M
(z)
4 =




1 1 1 1
1 1
1 1
1




,

M
(z)
5 =




1 1 1
1
1




, M
(z)
6 =




1
1
1




.

Observe that

M = M
(z)
1 + M

(z)
2 + M

(z)
3 + M

(z)
4 + M

(z)
5 + M

(z)
6 ,

and that each z-slice fits inside the one below it. This explains why we refer
to P as a plane partition.

The plane partition on page 10 happens to be cyclically symmetric. The
following theorem tells us how to recognize a cyclically symmetric plane par-
tition by its z slices.

Theorem: Let P be an arbitrary plane partition, and let M = (zij) be its

matrix representation. Let M
(z)
1 , M

(z)
2 , M

(z)
3 , . . . be the matrices representing

the z-slices. Then P is cyclically symmetric if and only for each i and j the
number zij is equal to the number of 1s in row j of M

(z)
i and is also equal to

the number of 1s in column i of M
(z)
j . In brief, for each p the row sums in

M
(z)
p are recorded in row p of M , and the column sums in M

(z)
p are recorded

in column p of M . (Verify this for the plane partition on page 10.)
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Proof. This is really just a restatement of what it means to be cyclically
symmetric. Consider the vertical column of cubes in a plane partition P
with x-coordinate i and y-coordinate j. There are zij of these cubes, and
their coordinates are

(i, j, 1), (i, j, 2), , (i, j, 3), , . . . , (i, j, zij).

In order for there to be cyclic symmetry, each of the coordinates

(j, 1, i), (j, 2, i), , (j, 3, i), , . . . , (j, zij, i)

must correspond to cubes in P , and they all belong to the z = i slice.
Therefore there are at least zij positions in the jth row of M

(z)
i . Again, in

order for there to be cyclic symmetry, each of the coordinates

(1, i, j), (2, i, j), , (3, i, j), , . . . , (zij, i, j)

must correspond to cubes in P , and they all belong to the z = j slice.
Therefore there are at least zij positions in the ith column of M

(z)
j . Another

cyclic permutation of coordinates brings us back to the original coordinates.
Therefore P is cyclically symmetric if and only if zij is exactly equal to the

number of 1s in row j of M
(z)
i and is also equal to the number of 1s in column

i of M
(z)
j .

The chronology above makes reference to a correspondence between cycli-
cally symmetric plane partitions and a special class of strict shifted plane
partitions. We will now describe this correspondence.

Let M = (zij) be the matrix representing a cyclically symmetric plane
partition P . We know that the x = 1, y = 1, and z = 1 slices are all iso-
morphic to each other in the sense that each can be rotated to overlap each
other. Therefore, if we throw away all cubes in these slices, then replace each
remaining (i, j, k) by (i− 1, j − 1, k− 1), we obtain a smaller cyclically sym-
metric plane partition. If we continue to do this we obtain a finite sequence
of cyclically symmetric plane partitions P1,P2,P3, · · · , where P1 = P . We
can use this idea to obtain an alternative matrix representation of P . Here’s
how:

Let M1, M2, M3, . . . be the matrices which represent P1,P2,P3, · · · . For
each k > 1 the matrix Mk is obtained from the matrix Mk−1 is obtained by
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subtracting 1 from all the non-zero entries (throw out the z = 1 slice), then
deleting the first row and first column (throw out the x = 1 and y = 1 slices).
Let Rk represent the first row of Mk. The new matrix representation, which
we call R, is obtained by assembling the rows R1, R2, R3, . . . into a single
matrix.

Example: The plane partition on page 10 is cyclically symmetric.

M1 =




6 5 5 4 3 3
6 4 3 3 1
6 4 3 1 1
4 2 2 1
3 1 1
1 1 1




, R1 =
[
6 5 5 4 3 3

]
,

M2 =




3 2 2
3 2
1 1


 , R2 =

[
3 2 2

]
,

M3 =
[
1
]
, R3 =

[
1
]
.

Therefore

R =




6 5 5 4 3 3
3 2 2

1


 .

See pp. 19-20.

In general, beginning with the matrix M = (zij) we obtain the matrix

R =




z11 z12 z13 z14 · · ·
z22 − 1 z23 − 1 z24 − 1 · · ·

z33 − 2 z34 − 2 · · ·
z44 − 3 · · ·

. . .




.

The rows of R are weakly decreasing from left to right and strictly decreasing
from top to bottom. R is an example of a strict shifted plane partition.
We will refer to R as the strict shifted representation of P .

It is not an easy task to construct a cyclically symmetric plane partition
from scratch, let alone count all of those containing a given number of cubes.
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The next theorem spells out the correspondence between cyclically symmetric
matrices and a special class of strict shifted plane partitions. It is much
easier to generate strict shifted plane partitions than to generate cyclically
symmetric plane partitions.

Theorem:

(1) Let P is a cyclically symmetric plane partition with strict shifted repre-
sentation R. Then R has the following property: the largest entry in each
row is equal to the number of positive entries in that row. (See for example
the cyclically symmetric plane partition on page 10.)

(2) For each strict shifted plane partition R there is a unique cyclically sym-
metric plane partition P which generates it.

Proof. We will first prove (1). Let P be a cyclically symmetric plane parti-
tion, and let R be its strict shifted matrix representation. We will prove that
the first entry of each row is equal to the number of positive entries in that
row by strong induction on the size n of P .

Base Case: n = 1. In this case M = [1] = R, and the property is true.

Induction Hypothesis: For every cyclically symmetric plane partition P of
size n or less cubes, the matrix R has property (1).

Now consider any cyclically symmetric plane partition P which has size
n+1 cubes. Form the sequence P1, P2, P3, . . . , and the corresponding strict
shifted representation R. Observe that if we delete the first row and first
column of R, and call the result R′, then R′ is the strict shifted representation
of P2. Since P2 has size n or less, R′ satisfies property (1) by the induction
hypothesis. So we just need to show that the first row of R satisfies property
(1). It does: the largest entry in the first row of R is z11, and by the previous
theorem we know that z11 is equal to the number of 1s in the first row of
M

(z)
1 . This is equal to the number of positive entries in the first row of M ,

which is equal to the number of positive entries in the first row of R. This
completes the induction proof of (1).

We will now prove (2) by induction on n, the number of rows of R.

Base Case: n = 1. Let R =
[
a11 a12 · · · a1k

]
be a strictly shifted plane

partition with one row, and assume a11 = k. We will construct a matrix M
as follows:

Step 1: put R in the first row.
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Step 2: By the previous theorem, we know what M
(z)
1 should look like: there

should be a1j 1s in row j.

Step 3: By the previous theorem, we should set zj1 equal to the number of

1s in column j of M
(z)
1 .

Step 4: We have a possible conflict when we define z11: it should equal a11,
and it should also equal the number of 1s in column 1 of M

(z)
1 . The number

of 1s in column 1 of M
(z)
1 is equal to the number of rows in M

(z)
1 , and there

is one row per positive number in R. The number of positive numbers in R
is by hypothesis equal to a11.

Step 5: There cannot be a cube in position (2, 2, 2), otherwise M cannot be
represented by R. So the entries of M not in row 1 or column 1 must be
equal to 1, and their positions are determined by M

(z)
1 .

Step 6: M is cyclically symmetric: since we used property (1) to construct
the y = 1 slice from the x = 1 slice, we know the x = 1 slice can be rotated
into the y = 1 slice. Also, we constructed the z = 1 slice in such a way that
the x = 1 slice can be rotated into it. So M is cyclically symmetric.

Step 7: We must verify that the rows and columns of M are weakly decreas-
ing, otherwise we cannot be sure that it represents a valid plane partition.
It is easy to see that all of its rows are weakly decreasing. It is also easy to
see that columns 2 through k are weakly decreasing. We must verify that
column 1 is weakly decreasing.

Row i of M
(z)
1 consists of 1s in positions (i, 1), (i, 2), . . . , (i, a1i). Therefore

row i contains a 1 in column j if and only if j ≤ a1i. Therefore the number
of rows that have an entry in column j is equal to the number of indices i
such that j ≤ a1i. Note that if j ≤ a1i then j ≤ a1,i−1 because a1,i−1 ≥ a1i.

Therefore the number of 1s in column j of M
(z)
1 is equal to max{i : j ≤ a1i}.

Therefore
zj1 = max{i : j ≤ a1i}.

Compare this to
zj−1,1 = max{i : j − 1 ≤ a1i}.

Every index i which satisfies j ≤ a1i will also satisfy j − 1 ≤ a1i. Therefore
the maximum value in the larger set will be greater than or equal to the
maximum value in the smaller set. That is,

zj−1,1 ≥ zj1.
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This proves that the first column of M is weakly decreasing.

Hence we have uniquely constructed a valid cyclically symmetric plane
partition which is represented by R. This completes the base case.

Induction Hypothesis: Every strict shifted plane partition R with property
(1) and n rows represents a unique cyclically symmetric plane partition.

Now consider R with property (1) and n + 1 rows. We need to construct
a cyclically symmetric plane partition P which is represented by R, and
show that no other cyclically symmetric plane partition is represented by
R. Let R1 be the first row of R. Construct a cyclically symmetric plane
partition A represented by R1 using the algorithm above. Let R′ be what’s
left of R after deleting the first row and column. R′ is a strict shifted plane
partition which satisfies property (1) and which has n rows. Construct a
cyclically symmetric plane partition B represented by R′ using the induction
hypothesis. The choices of A and B are unique. Let B′ be the set of points
that result from adding (1, 1, 1) to all the points in B. Glue together A and
B′ together to form P . Note that since B is cyclically symmetric, so is B′.
We must verify that P is a valid cyclically symmetric plane partition which
is represented by R.

There is no question that P is cyclically symmetric, because A and B′
are. To check that P is a valid plane partition we need to verify that the
x = 2, y = 2, and z = 2 slices of P are dominated by the x = 1, y = 1, and
z = 1 slices of A. By cyclic symmetry it will suffice to check that the x = 2
slice is dominated by the x = 1 slice.

Let A = (aij)i,j≥1 represent A, let B = (bij)i,j≥2 represent B, and let

A
(z)
1 = (cij)i,j≥1 be the z = 1 slice of A. Then the matrix representing P is

M = (zij)i,j≥1 defined by

zij =

{
aij if i = 1 or j = 1

bij + cij if i ≥ 2 and j ≥ 2.

Note how the indexing of the matrix B has to be altered to make this formula
work. Interpret bij as the height of cubes in B over x-coordinate i − 1 and
y-coordinate j− 1. Note that a1j = r1j for j ≥ 1 and b2j = r2j for j ≥ 2. We
know that r1j ≥ r2j + 1 for j ≥ 2, therefore

z1j = a1j = r1j ≥ r2j + 1 = b2j + 1 ≥ b2j + c2j = z2j.
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This proves that the x = 2 slice of P is dominated by the x = 1 slice of A.

Finally, we must show that P is unique. If Q is a cyclically symmetric
plane partition which is represented by R, then Q can be decomposed into
Q1 and Q2, where Q1 consists of the bottom shell of Q and Q2 contains
all the other cubes in Q. Then Q must be represented by R1 and Q2 must
be represented by R′. Therefore, by uniqueness we must have Q1 = A and
Q2 = B. Therefore Q = P . This completes the induction proof of (2).

According to the theorem we have just proved, the strict shifted plane
partitions which result from cyclically symmetric plane partitions must have
the following additional property that the first positive number in any given
row is equal to the number of positive numbers in that row. Not all strict
shifted plane partitions have this property, so the cyclically symmetric plane
partitions correspond to a proper subset of all strict shifted plane partitions.

Another class of strict shifted plane partition is the set of descending
plane partitions. These have the property that the number of parts in a row
is strictly less than the first part in the row and is greater than or equal to
the first part in the next row down. For example, see Figure 1.8 on page 21.

As stated above, Stanley observed that there appear to be the same num-
ber of descending plane partitions with largest part ≤ r as there are alter-
nating sign matrices of size r. There is an example of this on page 21. This
observation was subsequently proved to be true. But to date one has found a
direct correspondence between these and alternating sign matrices, analogous
to the direct correspondence between cyclically symmetric plane partitions
and the special class of strict shifted plane partitions we have exhibited.

Conjecture 8, page 24, is a first step towards finding a correspondence
between alternating sign matrices of size r and descending plane partitions
with largest part ≤ r. This conjecture is still open. Conjecture 8 implies
Conjecture 9, page 24, a formula for the number of descending plane par-
titions with largest part r having the additional property that r appears
exactly k − 1 times. Conjecture 9 turns out to be true, and can be taken as
evidence that Conjecture 8 might also be true.

Exercises: 1, 2, 3, 4, 5, 6, 7, 10, 12, 13

Chapter 2: Fundamental Structures

23



We will be taking a closer look at generating functions, integer partitions,
recursive formulas, and determinants in this chapter. Symmetric functions
are introduced on pp. 33–35, but are not studied until Chapter 4. So we will
skip over this material for now.

Section 2.1: Generating Functions

We gave a primer on generating functions on pp. 5–7 of these notes.
Example 4 on pp. 6–7 illustrates how we can use generating functions to
count integer partitions of a given size.

We use the notation p(n) to denote the number of partitions of the positive
integer n. By convention we set p(0) = 1. The generating function for
partitions is

∞∑
n=0

p(n)qn =
∞∏

k=1

1

1− qk
.

The first few terms of this generating function are given on page 35.

We will prove that this formula is correct. See page 43 for the definition
of the Ferrers graph representation of a partition. We can express each of
the geometric series

1

1− q
,

1

1− q2
,

1

1− q3
, . . .

in terms of Ferrers graphs:

1

1− q
=

1

1− q
r = 1 + q

r
+ q

r r
+ q

r r r
+ q

r r r r
+ · · ·

1

1− q2
=

1

1− q
rr = 1 + q

rr
+ q

rr rr
+ q

rr rr rr
+ q

rr rr rr rr
+ · · ·

1

1− q3
=

1

1− q
rr
r = 1 + q

rr
r
+ q

rr
r
rr
r
+ q

rr
r
rr
r
rr
r
+ q

rr
r
rr
r
rr
r
rr
r
+ · · ·

The typical term in

1

(1− q3)(1− q2)(1− q)
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is

q

a︷ ︸︸ ︷
rr
r
rr
r
rr
r
· · ·

b︷ ︸︸ ︷
rr rr rr · · ·

c︷ ︸︸ ︷r r r
· · ·,

which corresponds to the partition with a ≥ 0 copies of 3, b ≥ 0 copies of 2,
and c ≥ 0 copies of 1. Therefore

1

(1− q3)(1− q2)(1− q)

is the generating function for all partitions whose parts are of size ≤ 3.
Generalizing this argument,

1

(1− qn)(1− qn−1) · · · (1− q)

is the generating function for all partitions whose parts are of size ≤ n, and

∞∏

k=1

1

1− qk

is the generating function for all partitions (no upper limit to size of largest
part).

It should be clear now that
∞∏

k=1

1

1− q2k

is the generating function for all partitions whose parts are all even,

∞∏

k=1

1

1− q2k+1

is the generating function for partitions whose parts are all odd,

∞∏

k=1

(1 + qk)

is the generating function for all partitions whose parts are distinct,

∞∏

k=1

(1 + qk + q2k)
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is the generating function for all partitions whose parts occur at most twice,
and so on.

We can use generating functions to prove that the number of partitions of
n with all odd parts is equal to the number of partitions of n with all distinct
parts. All we have to do is prove that their generating functions are equal.
See Theorem 2.2, pp. 38–39. There are many variations on this argument.
See Corollaries 2.3 and 2.4, pp. 39–40.

The product
∏∞

k=1 (1− qk) cannot easily be recognized as a generating
function, but when you multiply it out you get the expression on page 36.
Every non-zero coefficient is 1 or −1, and the exponents corresponding to
these coefficients are

1, 5 = 1 + 4, 12 = 1 + 4 + 7, 22 = 1 + 4 + 7 + 10, . . . .

These are called pentagonal numbers. Hence we obtain Euler’s pentagonal
number theorem, top of page 37 (proof deferred to Section 2.1).

When expand the product

(1− q − q2 + q5 + q7 − · · · )(p(0) + p(1)q + p(2)q2 + p(3)q3 + · · · )
you obtain

p(0) + (p(1)− p(0))q + (p(2)− p(1)− p(0))q2 + (p(3)− p(2)− p(1))q3 + · · · .

The coefficient of qn is equal to

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7)− · · · .

However, this product is equal to

∞∏

k=1

(1− qk) ·
∞∏

k=1

1

1− qk
= 1.

Therefore for n ≥ 1 the coefficient of qn in the product should be equal to 0.
This gives rise to a recurrence relation for p(n):

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · · ,

where the terms drop back according to the signed pentagonal numbers

−1,−2, 5, 7,−12,−15, · · · .
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Exercises: 7, 8, 9, 12, 13, 16, 17.

Section 2.2: Partitions.

The convention in this book for depicting an integer partition by a Ferrers
graph is to let the number of dots in row i represent the ith part of the
partition. The bijection on page 44 between partitions of 7 into 3 parts and
partitions of 7 whose largest part is 3 can be described as follows: take a
partition, represent it by a Ferrers diagram, then use the column sums to
create the new partition. For example,

5 + 1 + 1 → rr
r r r r r

→ 3 + 1 + 1 + 1 + 1.

This process is called conjugation. The mystery is why the column sums
are always weakly decreasing. But we have actually proved this property
already: In Step 1 of the proof on page 19 of these notes, we used a set of
weakly decreasing numbers a1 ≥ a2 ≥ a3 ≥ · · · (the first row of a strict

shifted plane partition) to create the matrix M
(z)
1 with ai 1s in row i. In Step

3 the numbers z11, z21, z31, . . . were found by setting zj1 equal to the number

of 1s in column j of M
(z)
1 . In Step 7 we proved that these numbers are weakly

decreasing. This is exactly the process we use to create a conjugate partition.
Geometrically, conjugation is reflection across the main diagonal.

Sylvester’s bijection between partitions with odd parts and partitions
with distinct parts is given on pp. 44–46. We will not give a proof that the
correspondence is a bijection, but you will familiarize yourself with it in the
exercises.

The Jacobi triple product can be used to prove the pentagonal number
theorem.

Jacobi Triple Product:

∞∏
i=1

(1 + xqi)(1 + x−1qi−1) =
∞∏

j=1

1

1− qj

∞∑
n=−∞

qn(n+1)/2xn.

Proof. Write

f(x) =
∞∏
i=1

(1 + xqi)(1 + x−1qi−1) =
∞∑

n=−∞
an(q)xn.

27



Then

f(xq) =
∞∏
i=1

(1 + xqi+1)(1 + x−1qi−2) =
1 + x−1q−1

1 + xq
f(x) = x−1q−1f(x),

∞∑
n=−∞

an(q)qnxn =
∞∑

n=−∞
an+1(q)q

−1xn,

therefore
an+1(q) = qn+1an(q)

for all n. This recurrence relation implies that

an(q) = qn(n+1)/2a0(q)

for all integers n. Therefore

f(x) = a0(q)
∞∑

n=−∞
qn(n+1)/2xn.

Now we just need to compute a0(n), the coefficient of x0 in f(x).

Let DP (n, k) denote the number of partitions of n into k distinct positive
parts. Then we have

∞∏
i=1

(1 + xqi) = 1 +
∞∑

n=1

∞∑

k=1

DP (n, k)xkqn.

Let DNN(n, k) denote the number of partitions of n into k distinct non-
negative parts. Then we have

∞∏
i=1

(1 + x−1qi−1) = 1 +
∞∑

n=0

∞∑

k=1

DNN(n, k)x−kqn.

Then

f(x) =

(
1 +

∞∑
n=1

∞∑

k=1

DP (n, k)xkqn

)(
1 +

∞∑
n=0

∞∑

k=1

DNN(n, k)x−kqn

)
.

The coefficient of x0 in f(x) is therefore

∞∑

k=1

[( ∞∑
n=1

DP (n, k)qn

)( ∞∑
n=0

DNN(n, k)qn

)]
.
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This can be interpreted as the generating function for the number of par-
titions which can be decomposed into k ≥ 1 distinct positive parts and an
equal number of distinct non-negative parts. The diagram on page 50 indi-
cates that every partition has a unique decomposition of this form. Therefore
this is the generating function for all partitions, and

a0(q) =
∞∏

k=1

1

1− qk
.

The pentagonal number theorem can now be proved by replacing q by q3

in Jacobi triple product identity, then setting x = −q−1. See page 51.

Exercises: 1, 3–5, 6–7, 8–10

Section 2.3: Recursive Formulae.

The generating function for plane partitions is given by

∞∑
n=0

pp(n)qn =
∞∏

k=1

1

(1− qk)k
.

The proof appears later in the book. However, if you differentiate the gen-
erating function equation, you get a recurrence relation for pp(n).

Differentiating
∑∞

n=0 pp(n)qn, we obtain

∞∑
n=0

npp(n)qn−1.

Differentiating

∞∏

k=1

1

(1− qk)k
= e

ln
∏∞

k=1
1

(1−qk)k = e
∑∞

k=1 ln 1

(1−qk)k = e
∑∞

k=1−k ln (1−qk)

we obtain
( ∞∏

k=1

1

(1− qk)k

)′

=

( ∞∑

k=1

−k ln (1− qk)

)′

e
∑∞

k=1−k ln (1−qk)
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=

( ∞∑

k=1

k2qk−1

1− qk

) ∞∏

k=1

1

(1− qk)k
.

Therefore
∞∑

n=0

pp(n)qn =

( ∞∑

k=1

k2qk

1− qk

) ∞∏
n=1

pp(n)qn.

The coefficient of qj in

k2qk

1− qk
= k2(qk + q2k + q3k + · · · )

is {
k2 if j|k
0 otherwise.

Therefore the coefficient of qj in

∞∑

k=1

k2qk

1− qk

is ∑

k|j
k2 = σ2(j).

This implies

pp(n) =
n∑

j=1

σ2(j)pp(n− j).

Counting alternating sign matrices

Starting with an n × n matrix A, let B be the matrix whose ith row is
the sum of the first i rows of A, 1 ≤ i ≤ n. Then B turns out to have i
1s in row i for each i. The monotone triangle records the column positions
of the 1s. The rows of the monotone triangle are strictly increasing, the
ascending diagonals are weakly increasing, and the descending diagonals art
weakly decreasing. It turns out that there is a 1:1 correspondence between
alternating sign matrices and monotone triangles, although we will not give
a proof. A proof would consist of showing that each monotone triangle gives

30



rise to a unique alternating sign matrix that generates it. You will gain some
insight into this proof by doing exercises 14 and 15.

Exercises: 4, 5, 6, 12, 13, 14, 15, 16, 18, 19.

Section 2.4: Determinants

Alternating polynomial in n variables: every transposition in two of
the variables results in a change of sign.

Example 1: f(x1, x2) = x1 − x2 is an alternating polynomial in 2 variables.
Reason:

f(x2, x1) = x2 − x1 = −f(x1, x2).

Example 2:

f(x1, x2, x3, x4) = (x1 − x2)(x1 − x3)(x1 − x3)(x2 − x3)(x2 − x4)(x3 − x4)

is an alternating polynomial in 4 variables. Reason: let’s look at what hap-
pens to each factor when you swap xa and xb where a < b.

xa − xb → −(xa − xb)
(xi − xa)(xi − xb) → (xi − xb)(xi − xa) for i < a
(xa − xi)(xi − xb) → (xb − xi)(xi − xa) for a < i < b
(xa − xi)(xb − xi) → (xb − xi)(xa − xi) for i < b.

The only sign change is xa − xb → xb − xa. Therefore swapping xa and xb

results in −f(x1, x2, x3, x4).

The argument in Example 2 proves that

f(x1, x2, . . . , xn) =
∏

1≤i<j≤n

(xi − xi)

is an alternating polynomials in n variables for all n ≥ 2.

Note: if f(x1, . . . , xn−1, xn) is alternating and you evaluate at

(x1, . . . , xn) = (a1, . . . , an),

where ai = aj = a but i < j, then f(a1, . . . , an) = 0 (assuming characteristic
6= 0). Reason: evaluating f(x1, . . . , xn) at (a1, . . . , an) is the same as evalu-
ating f(. . . , xj, . . . , xi, . . . ) at (a1, . . . , an). The first evaluation produces

f(a1, . . . , a, . . . , a, . . . , an)
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and the second evaluation produces

−f(a1, . . . , a, . . . , a, . . . , an).

Since these must be the same, it must true that

f(a1, . . . , an) = 0.

Symmetric polynomial in n variables: every transposition in two of the
variables results in the same polynomial.

Example 3: f(x1, x2, x3) = x1x2x3 + x1x2 + x1x3 + x2x3 is a symmetric
polynomial in 3 variables.

Theorem: Let n ≥ 2 be given. Every alternating polynomial f(x1, x2, . . . , xn)
can be factored into

f(x1, x2, . . . , xn) = g(x1, x2, . . . , xn)
∏
i<j

(xi − xi)

for some symmetric polynomial g(x1, x2, . . . , xn).

Proof. First suppose that we have already factored f(x1, . . . , xn) into

f(x1, . . . , xn) = g(x1, x2, . . . xn)
∏

1≤i<j≤n

(xi − xj)

for some polynomial g(x1, . . . , xn). Then g(x1, . . . , xn) must be symmet-
ric, because swapping xp and xq for any i < j changes the sign in both
f(x1, . . . , xn) and

∏
1≤i<j≤n (xi − xj). Therefore swapping xp and xq must

leave g(x1, . . . , xn) unchanged. So now we just have to show that is possible
to factor f(x1, . . . , xn) in this way.

For each i let hi(t) be the polynomial obtained by setting xi = t in
f(x1, . . . , xn). Then we can say

hi(t) =
∑
p≥0

gip(x1, . . . , xn)tp,

where the variable xi does not appear in any of the polynomials gip(x1, . . . , xn).
Then we have

hi(xj) = f(. . . , xi, . . . , xi, . . . ) = 0

for each j > i. Therefore each of the expressions t − xj is a factor of hi(t)
for j > i. Since f(x1, . . . , xn) = hi(xi), xi− xj is a factor of f(x1, . . . , xn) for
each j > i. Therefore f(x1, . . . , xn) can be factored as above.
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Corollary:

det

∣∣∣∣∣∣∣∣∣∣∣

xn−1
1 xn−1

2 · · · xn−1
n

xn−2
1 xn−2

2 · · · xn−2
n

...
...

...
x1 x2 · · · xn

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

=
∏

1≤i<j≤n

(xi − xj).

Proof. Let

f(x1, . . . , xn) = det

∣∣∣∣∣∣∣∣∣∣∣

xn−1
1 xn−1

2 · · · xn−1
n

xn−2
1 xn−2

2 · · · xn−2
n

...
...

...
x1 x2 · · · xn

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

.

By properties of determinants, f(x1, . . . , xn) is an alternating polynomial.
Therefore, by the theorem we have

f(x1, . . . , xn) = g(x1, . . . , xn)
∏

1≤i<j≤n

(xi − xj)

for some polynomial g(x1, . . . , xn). Since the leading term of both f(x1, . . . , xn)
and

∏
1≤i<j≤n (xi − xj) is equal to xn−1

1 xn−2
2 · · ·xn−1, we must have

g(x1, . . . , xn) = 1.

The same idea is used to prove Krattenthaler’s formula on page 67. It
will be used later to derive the generating function

∞∑
n=0

pp(n)qn =
∞∏

k=1

1

(1− qk)k
.

The Weyl denominator formula

The formula for Bn will used later in the book to derive the generating
function for symmetric plane partitions.
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Exercises: 7, 8, 9

Chapter 3: Lattice Paths and Plane Partitions

A lattice path from (0, 0) to (m, n) can be encoded by a binary string
consisting of m 1s and n 0s in some order. Every 0 encodes a step north of
1 unit, and every 1 encodes a step east of 1 unit. For example, the lattice
path on page 74 is encoded by the binary string

01101011001.

We will use the notation S(m,n) to denote the set of lattice paths from (0, 0)
to (m,n). Since there are

(
m+n

n

)
possible binary strings of this description

(choose 0 locations) there are this many lattice paths from (0, 0) to (m,n).

We can classify the lattice paths in S(m,n) as those ending in 0 and
those ending in 1. The number of lattice paths which end in 0 is equal to the
number of lattice paths in S(m,n − 1). The number of lattice paths which
end in 1 is equal to the number of lattice paths in S(m− 1, n). Therefore we
have a combinatorial proof of the identity

(
m + n

n

)
=

(
m + n− 1

n− 1

)
+

(
m + n− 1

n

)
.

Section 3.1: Lattice Paths

Note to students: we will skip the alternative proof of Jacobi’s triple
product, pp. 78–79.

A weighted lattice path from (0, 0) to (m,n) is a lattice path with every
square in m × n board which is above the path filled with a dot. See the
figure at the bottom of page 74. The weight of the path is the number of
dots. We will use the notation I(σ) to denote the weight of the path σ.
Using this notation, we have I(01101011001) = 15. We will use the notation
S(m,n) to denote the set binary strings with m 1s and n 0s, which we can
identify with the set of all lattice paths from (0, 0) to (m,n). We will also
set [

m + n
n

]

q

=
∑

σ∈S(m,n)

qI(σ).
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This can be considered a q-analogue of
(

m+n
m

)
, because if we let q → 1 we

obtain

lim
q→1

[
m + n

n

]

q

=
∑

σ∈S(m,n)

1I(σ) = |S(m,n)| =
(

m + n

n

)
.

The expression I(σ) is called the inversion number of σ. It can be com-
puted from σ as follows: write

σ = σ1σ2 · · · σk,

where each σi is 0 or 1. For each i let Ii(σ) = number of characters to the
left of σi which are strictly larger than σi. For example, in σ = 01101011001
we have

(I1(σ), I2(σ), I3(σ), I4(σ), I5(σ), I6(σ), I7(σ), I8(σ), I9(σ), I10(σ), I11(σ)) =

(0, 0, 0, 2, 0, 3, 0, 0, 5, 5, 0).

If you look at weighted lattice path on page 74, you can see that the number
of dots in each row (from bottom to top) is recorded by the positive entries
in the vector. The inversion number of σ is therefore

I(σ) =
k∑

i=1

Ii(σ).

For example, the inversion number of 01101011001 is

I(01101011001) = 0 + 0 + 0 + 2 + 0 + 3 + 0 + 0 + 5 + 5 + 0 = 15.

We say that Ii(σ) is the number of inversions caused by σi.

A recurrence relation for

[
m + n

n

]

q

In the remarks above we showed that

S(m,n) = {σ0 : σ ∈ S(m,n− 1)}
⋃
{σ1 : σ ∈ S(m− 1, n)}.

Moreover,
σ ∈ S(m,n− 1) ⇒ I(σ0) = I(σ) + m
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and
σ ∈ S(m− 1, n) ⇒ I(σ1) = I(σ).

Therefore
[
m + n

n

]

q

=
∑

σ∈S(m,n)

qI(σ) =
∑

σ∈S(m,n−1)

qI(σ)+m +
∑

σ∈S(m−1,n)

qI(σ) =

qm

[
m + n− 1

n− 1

]

q

+

[
m + n− 1

n

]

q

.

Proposition 3.2:

[
m + n

n

]

q

=
(1− q)(1− q2) · · · (1− qm+n)

(1− q) · · · (1− q)m(1− q) · · · (1− qn)
.

In the book this is proved by showing that both sides of the equation
satisfy the same recurrence relation. I will give an alternative proof of this
in the next section.

Note that

[
m + n

n

]

q

can be regarded as the generating function for par-

titions into at most n parts with each part less than or equal to m. Reason:
There is an exact correspondence between partitions of this sort and lattice
paths in S(m,n). Each part in the partition is equal to the number of dots
in each column above the lattice path. See the figure at the bottom of page
74.

q-Binomial Theorem: For any positive integer n,

(1 + xq)(1 + xq2) · · · (1 + xqn) =
n∑

i=0

[
n
i

]

q

qi(i+1)/2xi.

Proof. Let DP(i, n) denote the set of partitions with i distinct parts, all of
which are ≤ n. Then

(1 + xq)(1 + xq2) · · · (1 + xqn) = 1 +
n∑

i=1

∑

λ∈DP(i,n)

q|λ|xi.
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We must show that ∑

λ∈DP(i,n)

q|λ| =
[
n
i

]

q

qi(i+1)/2.

We have
[
n
i

]

q

qi(i+1)/2 =

[
(n− i) + i

i

]

q

qi(i+1)/2 =
∑

σ∈S(n−i,i)

qI(σ)qi(i+1)/2.

Therefore it will suffice to exhibit a bijection between S(n−i, i) and DP(i, n)
with the following property: if σ ↔ λ then

I(σ) + i(i + 1)/2 = |λ|.

Let σ ∈ S(n−i, i) be given. Then σ can be interpreted as partition into i non-
negative parts, each of which is ≤ n− i. Call this partition α1 +α2 + · · ·+αi,
where 0 ≤ α1 ≤ · · · ≤ αi ≤ n− i. Then

(α1 + 1) + (α2 + 2) + · · ·+ (αi + i)

is a partition with i distinct positive parts, each of which is ≤ n. If we set

λ = (α1 + 1, α2 + 2, . . . , αi + i),

then

|λ| = α1 + · · ·+ αi + (1 + 2 + · · ·+ i) = I(σ) + i(i + 1)/2.

Therefore σ ↔ λ is the desired correspondence.

Exercises: 18–22.

Section 3.2: Inversion numbers

Note to students: we will skip the material on page 88 for now, but come
back to it later.

We can compute the inversion number of a permutation using the same
definition as above for binary strings. For example, we have

I(13524) = 0 + 0 + 0 + 2 + 1 = 3.

37



Before we prove Proposition 3.2, we will prove Corollary 3.5, page 86.

Corollary 3.5: If we let Sn denote the set of permutations on n letters, then

∑
σ∈Sn

qI(σ) =
(1− q)(1− q2) · · · (1− qn)

(1− q)n
.

Proof. First note that the formula is equivalent to

∑
σ∈Sn

qI(σ) = (1)(1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1).

Reason:
1− qi

1− q
= 1 + q + · · ·+ qi−1.

It will suffice to prove the recurrence relation

∑
σ∈Sn

qI(σ) = (1 + q + q2 + · · ·+ qn−1)
∑

σ∈Sn−1

qI(σ).

Consider the typical permutation in Sn. It is a list of the numbers 1 through
n written in some order. If the number n appears in position k, then it con-
tributes 1 to the number of inversions caused by σk+1 through σn. Therefore,
if we let σ′ denote the permutation of 1 through n− 1 obtained by deleting
n from σ, we have

I(σ) = n− k + I(σ′).

Therefore ∑

σ ∈ Sn,
σk = n

qI(σ) = qn−k
∑

σ′∈Sn−1

qI(σ′).

Summing over all possible values of k we obtain

∑
σ∈Sn

qI(σ) =
n∑

k=1




∑

σ ∈ Sn,
σk = n

qI(σ)




=
n∑

k=1

qn−k
∑

σ′∈Sn−1

qI(σ′) =
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(1 + q + q2 + · · ·+ qn−1)
∑

σ∈Sn−1

qI(σ).

We are now in a position to prove Proposition 3.2.

Proof. It will be sufficient to prove the identity

(1−q)(1−q2) · · · (1−qm+n) = (1−q) · · · (1−q)m(1−q) · · · (1−qn)

[
m + n

n

]

q

.

Dividing both sides by (1− q)m+n, this is equivalent to

m+n∏
i=1

(1 + q + · · ·+ qi−1) =
m∏

i=1

(1 + q + · · ·+ qi−1)
n∏

i=1

(1 + q + · · ·+ qi−1)

[
m + n

n

]

q

.

By Corollary 3.5, the left-hand side of this identity is equal to

∑
σ∈Sm+n

qI(σ).

We must show that we can factor this to look like the right-hand side of the
identity.

Let σ ∈ Sm+n be given. Then σ is a list of the numbers 1 through m + n
in some order. Let α be the corresponding binary string with

αi =

{
0 if σi ≤ m

1 if σi > m.

For example, if m = 6 and n = 5 and

σ = 28(10)1(11)397546

then
α = 01101011001.

We can decompose σ into two permutations and a binary string,

σ → (σ′, σ′′, α),
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as follows: to obtain σ′, delete all the terms in σ which are > m. To obtain
σ′′, delete all the terms in σ which are ≤ m. Let α be the binary string which
records the positions where σi ≤ m and σi > m. For example,

28(10)1(11)397546 → (213546, 8(10)(11)97, 01101011001).

It is easy to see that all permutations of m + n can be uniquely decomposed
in this form. We can reconstruct σ from (σ′, σ′′, α) by using α to tell us how
to combine σ′ and σ′′. Note that

I(σ) = I(σ′) + I(σ′′) + I(α).

Reason: if σi > m then it causes the same number of inversions in σ′′ as it
does in σ. But if σi ≤ m then some of the inversions it causes in σ do not
appear in σ′, namely instances where a number to the left of σi is larger than
σi and also larger than m. This deficit is made up by counting the 1s to the
left of αi (note αi = 0 because σi ≤ m).

Note that σ′′ is a permutation of the numbers {m + 1,m + 2, · · ·m + n}.
If we subtract m from each of the terms in σ′′, we will obtain a permutation
of the numbers 1 through n having the same inversion number. So we can
regard σ′′ as belonging to Sn.

We now have
∑

σ∈Sm+n

qI(σ) =
∑

σ′ ∈ Sm,
σ′′ ∈ Sn,

α ∈ S(m,n)

qI(σ′,σ′′,α) =
∑

σ′ ∈ Sm,
σ′′ ∈ Sn,

α ∈ S(m,n)

qI(σ′)+I(σ′′)+I(α) =

( ∑

σ′∈Sm

qI(σ′)

)( ∑

σ′′∈Sn

qI(σ′′)

) 
 ∑

α∈S(m,n)

qI(α)


 .

However, by Corollary 3.5 we have

∑
σ∈Sp

qI(σ) =

p∏
i=1

(1 + q + · · ·+ qi−1)

and by definition we have

∑

α∈S(m,n)

qI(α) =

[
m + n

m

]

q

,
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so we’re done.

Proposition 3.4, page 86, is the natural generalization of this argument.
We will omit the proof, but suffice it to say that involves decomposing a
permutation

σ ∈ Sm1+···+mn

into
(τ1, . . . , τn, α),

where τi ∈ Si for each i and α is string consisting of m1 1s, m2 2s, . . . , mn

ns which describes how the τs are woven together to produce σ.

Exercises: 5, 7.

Additional Exercise #1: Let S(m1,m2,m3) denote the set of strings
consisting of m1 1s, m2 2s, and m3 3s. Prove that

∑

α∈S(m1,m2,m3)

qI(α) =

(1− q) · · · (1− qm1+m2+m3)

(1− q) · · · (1− qm1)(1− q) · · · (1− qm2)(1− q) · · · (1− qm3)
.

Additional Exercise #2: Let σ = σ1σ2 · · · σn be a permutation of 1
through n. Prove that if you swap two adjacent terms in this list then
the number of inversions either increases or decreases by 1.

Section 3.3: Plane partitions

Topic to review: definition of the determinant, sign-reversing involutions,
involution principle.

In this section we construct a generating function for plane partitions
restricted to B(r, s, t). This generating function will have the form of a de-
terminant of q-binomial coefficients. We will then use Krattenthaler’s formula
(page 67) to express this determinant as a product. Finally, we will use the
generating function for restricted plane partitions to derive the generating
function for all plane partitions. I have reworked the proofs and exercises to
make them more clear and to correct some minor mistakes in the textbook.

41



Determinant of A = (aij)
n
i,j=1:

det A =
∑
σ∈Sn

(−1)I(σ)a1σ(1) · · · anσ(n).

Sign-reversing involution: Let X be a finite set. Let w(x) be a scalar
for each x ∈ X. Let θ : X → X be a function for X to X. Then θ is a
sign-reversing involution with respect to w if

w(θ(x)) = −w(x)

and
θ(θ(x)) = x

for all x ∈ X.

Involution Principle: Let X be a finite set. Let w(x) be a scalar for each
x ∈ X. Let θ : X → X be a sign-reversing involution with respect to w.
Then ∑

x∈X

w(x) = 0.

Proof. Every x ∈ X can be represented as θ(y) for some y ∈ X. Reason:
given x ∈ X, set y = θ(x). Then θ(y) = θ(θ(x)) = x. Moreover, the choice
of y is unique: if θ(y′) = x then θ(θ(y′)) = θ(x), which implies y′ = θ(x).
Now write

Z =
∑
x∈X

w(x).

Then we have
Z =

∑
y∈X

w(θ(y)) = −
∑
y∈X

w(y) = −Z.

Therefore Z = 0.

The generating function for plane partitions is derived using a sign-
reversing involution.

Theorem: Let pp(n) denote the number of plane partitions in B(r, s, t).
Then

rst∑
n=0

pp(n)qn = det

(
qi(i−j)

[
t + s

s− i + j

])
.
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Proof. We will evaluate the determinant, then use a sign-reversing involution
to show that a large number of terms cancel each other out. What survives
will be the generating function for restricted plane partitions.

We have

det

(
qi(i−j)

[
t + s

s− i + j

])
=

∑
σ∈Sr

(−1)I(σ)q1(1−σ(1))+···+n(n−σ(n))

[
s + t

s− 1 + σ(1)

]

q

· · ·
[

s + t
s− r + σ(r)

]

q

.

For each σ ∈ Sr let Lσ(r, s, t) denote the set of r-tuples of lattice paths of
the form (P1, . . . , Pr), where Pi begins at vertex (−σ(i) + 1, σ(i) − 1) and
ends at vertex (s − i + 1, t + i − 1). The example depicted in Figure 3.3,
page 96, belongs to L4162735(7, 6, 6). Since Pi takes s − i + σ(i) steps north
and t + i − σ(i) steps east, it corresponds to an integer partition having
≤ s− i+σ(i) parts and largest part ≤ t+ i−σ(i). We will denote by |Pi| size
of this partition. We will also write |P | = |P1| + · · · + |Pr|. The generating
function for Lσ(r, s, t) is

∑

(P1,...,Pr)∈Lσ(r,s,t)

q|P1|+···+|Pr| =

(∑
P1

q|P1|
)
· · ·

(∑
Pr

q|Pr|
)

=

[
s + t

s− 1 + σ(1)

]

q

· · ·
[

s + t
s− r + σ(r)

]

q

.

Therefore, if we set

X = {(σ, P1, . . . , Pr) : σ ∈ Sr, (P1, . . . , Pr) ∈ Lσ(r, s, t)}

and
w(σ, P1, . . . , Pr) = (−1)I(σ)q1(1−σ(1))+···+n(n−σ(n))q|P1|+···+|Pr|,

then

det

(
qi(i−j)

[
t + s

s− i + j

])
=

∑

(σ,P1,...,Pr)∈X

w(σ, P1, . . . , Pr).

We will now identify a subset X0 of X and a sign-reversing involution θ on
X0. We set X0 equal to all (σ, P1, . . . , Pr) such that two or more of the lattice
paths intersect each other. Given (σ, P1, . . . , Pr) ∈ X0, let Pa and Pb be the
two intersecting paths forming the northern-most, eastern-most intersection
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point (with a < b). We will think of Pa and Pb as being represented by binary

strings. These can be factored into P
(1)
a P

(2)
a and P

(1)
b P

(2)
b , the subpaths before

and after the point of intersection. We will set

θ(σ, P1, . . . , Pr) = (σ′, P ′
1, . . . , P

′
r),

where σ′ is obtained from σ by swapping σa and σb, setting

P ′
a = P (1)

a P
(2)
b

and
P ′

b = P
(1)
b P (2)

a ,

and leaving the other lattice paths unchanged. It is easy to see that

θ(θ(σ, P1, . . . , Pr)) = (σ, P1, . . . , Pr).

We need to verify that

w(σ′, P ′
1, . . . , P

′
r) = −w(σ, P1, . . . , Pr).

Assume (σ, P1, . . . , Pn) and (σ′, P ′
1, . . . , P

′
n) be related by a tail switch

of paths Pa and Pb as above. Claim: b = a + 1. Reason: Suppose a <
c < b. Consider the region between Pa and Pb to the north and east of the
intersection point we identified. There can be no intersections in this region.
Since Pc terminates between Pa and Pb, it must be above Pa and below Pb

throughout this region. Therefore Pc has to intersect both Pa and Pb at the
point where Pa and Pb intersect. This is impossible, because there are only
two ways to exit the intersection point, north and east, but Pc can’t proceed
in either direction without intersecting either Pa or Pb. So the claim is true.

If we write
σ = σ1 · · ·σr

and
σ′ = σ′1 · · · σ′r,

then σ′a = σb and σ′b = σa and all the other terms are unchanged. Therefore

I(σ′) = I(σ)± 1
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(additional exercise #2, Section 3.2). This implies (−1)I(σ′) = −(−1)I(σ).

We also have

|P ′| = |P | − |Pa| − |Pb|+ |P ′
a|+ |P ′

b| = |P |+ σ(a)− σ(a + 1).

See exercises 1 and 2 at the end of this section.

Finally, we have

r∑
i=1

i(i− σ′(i)) =
r∑

i=1

i(i− σ(i)) + σ(a + 1)− σ(a).

See exercise 3 at the end of this section.

Putting everything together we have

w(σ′, P ′
1, . . . , P

′
r) = −w(σ, P1, . . . , Pr).

Therefore θ is a sign-reversing involution on X0 and we have
∑

(σ,P1,...,Pr)∈X0

w(σ, P1, . . . , Pr) = 0.

Therefore

det

(
qi(i−j)

[
t + s

s− i + j

])
=

∑

(σ,P1,...,Pr)∈X\X0

w(σ, P1, . . . , Pr).

However, it is easy to see that (σ, P1, . . . , Pr) belongs to X\X0 if and only if
σ is the identity permutation e, each Pi begins at (−i + 1, i − 1) and ends
at (s− i + 1, t + i− 1), and no two of the lattice paths intersect each other.
Therefore each Pi represents an integer partition with ≤ s parts, all of which
are ≤ t, and if we arrange these partitions into an r×s matrix then the rows
and columns will be weakly decreasing. That is, (e, P1, . . . , Pr) corresponds
to a plane partition in B(r, s, t) with |P1| + · · · + |Pr| cubes. Note also that
I(e) = 0 and

∑r
i=1 i(i− e(i)) = 0. Therefore

w(e, P1, . . . , Pr) = q|P1|+···+|Pr|.

Hence ∑

(σ,P1,...,Pr)∈X\X0

w(σ, P1, . . . , Pr) =
∑

P1,...,Pr

q|P1|+···+|Pr|,
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where the sum is taking over all families of lattice paths which represent
plane partitions in B(r, s, t). Therefore our determinant is the generating
function for these plane partitions.

Theorem:

det

(
qi(i−j)

[
t + s

s− i + j

])
=

∏

(a,b,c)∈B(r,s,t)

1− qa+b+c−1

1− qa+b+c−2
.

Proof. We will use Krattenhaler’s formula, page 67. We have

(q; q)s−i+j(q
s−i+j+1; q)r−j = (q; q)s−i+r

and
(q; q)t−j+i(q

t−j+i+1; q)j−1 = (q; q)t+i−1.

Therefore

qi(i−j)

[
t + s

s− i + j

]

q

=
qi(i−j)(q; q)t+s

(q; q)s−i+j(q; q)t−j+i

=
qi(i−j)(q; q)t+s(q

s−i+j+1; q)r−j(q
t−j+i+1; q)j−1

(q; q)s−i+r(q; q)t+i−1

.

We have

(qs−i+j+1; q)r−j = (1− qs−i+j+1) · · · (1− qs−i+r)

= q−i(r−j)(qi − qs+j+1) · · · (qi − qs+r)

= q−i(r−j)(xi + ar) · · · (xi + aj+1)

and

(qt−j+i+1; q)j−1 = (1− qt−j+i+1) · · · (1− qt+i−1)

= (−1)j−1q(j−1)t−(j
2)(qi − q−t+j−1) · · · (qi − q−t+2−1)
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= (−1)j−1q(j−1)t−(j
2)(xi + bj) · · · (xi + b2),

where for each 1 ≤ k ≤ r we have xk = qk, ak = −qs+k, bk = −q−t+k−1 for
1 ≤ k ≤ r.

Therefore

qi(i−j)

[
t + s

s− i + j

]

q

=

(q; q)t+sq
−i(r−i)

(q; q)s−i+r(q; q)t+i−1

(−1)j−1q(j−1)t−(j
2)(xi+ar) · · · (xi+aj+1)(xi+bj) · · · (xi+b2).

Therefore we can factor

(q; q)t+sq
−i(r−i)

(q; q)s−i+r(q; q)t+i−1

from each row of the determinant,

(−1)j−1q(j−1)t−(j
2)

from each column of the determinant, leaving Krattenthaler’s formula

det((xi + ar) · · · (xi + aj+1)(xi + bj) · · · (xi + b2))
r
i,j=1 =

∏
1≤i<j≤r

(xi − xj)
∏

2≤i≤j≤r

(bi − aj) =

∏
1≤i<j≤r

(qi − qj)
∏

2≤i≤j≤r

(−q−t+i−1 + qs+j).

Therefore our determinant is equal to

r∏
i=1

(q; q)t+sq
−i(r−i)

(q; q)s−i+r(q; q)t+i−1

r∏
j=1

(−1)j−1q(j−1)t−(j
2)

∏
1≤i<j≤r

(qi − qj)
∏

2≤i≤j≤r

(−q−t+i−1 + qs+j).

To complete the proof, do exercises 4 through 7.

Corollary: The generating function for all plane partitions is

∞∏
j=1

1

(1− qj)j
.
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Proof. We will compute pp(n), the total number of plane partitions of size
n. All of these plane partitions appear in B(n, n, n). Therefore we need the
coefficient of qn in

∏

(i,j,k)∈B(n,n,n)

1− qi+j+k−1

1− qi+j+k−2
=

n∏
i=1

n∏
j=1

n∏

k=1

1− qi+j+k−1

1− qi+j+k−2
.

Fixing i and k we have

n∏

k=1

1− qi+j+k−1

1− qi+j+k−2
=

(1− qi+j) · · · (1− qi+j+n−1)

(1− qi+j−1) · · · (1− qi+j+n−2)
=

1− qi+j+n−1

1− qi+j−1
.

Therefore

∏

(i,j,k)∈B(n,n,n)

1− qi+j+k−1

1− qi+j+k−2
=

n∏
i=1

n∏
j=1

1− qi+j+n−1

1− qi+j−1
.

The coefficient of qn in this last expression is equal to the coefficient of qn in

n∏
i=1

n∏
j=1

1

1− qi+j−1
.

The coefficient of qn in this is equal to the coefficient of qn in

∏

1 ≤ i, j ≤ n
i + j − 1 ≤ n

1

1− qi+j−1
.

If p ≥ n, then there are exactly p solutions to i + j − 1 = p using 1 ≤ i ≤ n
and 1 ≤ j ≤ n:

(i, j) ∈ {(1, p), (2, p− 1), . . . , (p, 1)}.
Therefore

∏

1 ≤ i, j ≤ n
i + j − 1 ≤ n

1

1− qi+j−1
=

1

(1− q)(1− q2)2 · · · (1− qn)n
.
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Therefore pp(n) is the coefficient of qn in

n∏
j=1

1

(1− qj)j
,

which is the same as the coefficient of qn in

∞∏
j=1

1

(1− qj)j
.

Exercises:

1. Let f0 and f1 denote the functions which count the number of zeros and
number of ones in a binary string. Let α and β be binary strings. Prove that

I(αβ) = I(α) + I(β) + f1(α)f0(β).

2. Let (P1, . . . , Pr) and (P ′
1, . . . , P

′
r) be related by a tail switch of Pa and Pb

as in the theorem proved above. Show that

|P ′| − |P | = |P ′
a|+ |P ′

b| − |Pa| − |Pb| =

I(P (1)
a P

(2)
b ) + I(P

(1)
b P (2)

a )− I(P (1)
a P (2)

a )− I(P
(1)
b P

(2)
b ) =

(f1(P
(1)
a )− f1(P

(1)
b ))(f0(P

(2)
b )− f0(P

(2)
a )) =

(b− a)(σ(a)− σ(b)).

3. Let σ′ be obtained from σ by swapping σ(a) and σ(b). Show that

r∑
i=1

i(i− σ′(i))−
r∑

i=1

i(i− σ(i)) = (b− a)(σ(b)− σ(a)).

4. Prove that
r∏

i=1

q−i(r−i)
∏

1≤i<j≤r

(qi − qj) =
r−1∏

k=1

(q; q)k.
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5. Prove that

r∏
j=1

(−1)j−1q(j−1)t−(j
2)

∏
2≤i≤j≤r

(−q−t+i−1 + qs+j) =
r−1∏

k=1

(q; q)s+k(q
s+k+1; q)t

(q; q)s+t

.

6. Prove that

r∏
i=1

(q; q)t+s

(q; q)s−i+r(q; q)t+i−1

r−1∏

k=1

(q; q)k

r−1∏

k=1

(q; q)s+k(q
s+k+1; q)t

(q; q)s+t

=
r∏

i=1

(qi+s; q)t

(qi; q)t
=

r∏
i=1

t∏
j=1

1− qi+j+s−1

1− qi+j−1
.

7. Prove that

r∏
i=1

t∏
j=1

1− qi+j+s−1

1− qi+j−1
=

∏

(a,b,c)∈B(r,s,t)

1− qa+b+c−1

1− qa+b+c−2
.

Section 3.4: Cyclically symmetric plane partitions

Topic to review: inversion number of a permutation

Preliminaries

Theorem: Let σ = σ1 · · · σn be a permutation of the numbers 1 through
n. Let σ′ be the permutation obtained by swapping two terms of σ. Then
I(σ′) ≡ I(σ) (mod 2).

Proof. We will first prove this is true when we swap two consecutive terms
of σ, σa ↔ σa+1. We have

I(σ′) =

{
I(σ) + 1 if σa+1 > σa

I(σ)− 1 if σa+1 < σa,

therefore I(σ′) ≡ I(σ) (mod 2).
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For the general case, we can swap σb with σa, b > a, by performing the
sequence of b− a swaps

σb ↔ σb−1, σb ↔ σb−2, . . . , σb ↔ σa,

resulting in the sequence of permutations

σ = σ(0) → σ(1) → · · · → σ(b−a),

followed by the sequence of b− a + 1 swaps

σa ↔ σa+1, σa ↔ σa+2, . . . , σa ↔ σb+1,

resulting in the sequence of permutations

σ(b−a) → σ(b−a+1) → · · · → σ(2b−2a+1) = σ′.

In every case we are swapping consecutive terms of a permutation, hence we
have

I(σ) ≡ I(σ(1))+1 ≡ I(σ(2))+2 ≡ · · · ≡ I(σ(2b−2a+1))+2b−2a+1 ≡ I(σ′)+1.

Corollary: If the permutation σ = σ1σ2 · · · σn can be transformed into the
permutation 12 · · ·n by k swaps, then (−1)I(σ) = (−1)k.

Proof. This follows from 0 = I(12 · · ·n) ≡ I(σ) + k (mod 2).

Corollary: Let (zij) be an r × r matrix. Given 0 < a1 < · · · < am ≤ r, let
(zaiaj

) denote the m ×m matrix obtained by using rows a1 through am and
columns a1 through am of (zij). For each i and j between 1 and r let

δij =

{
1 if i = j

0 if i 6= j.

Then

det(δij + zij) = 1 +
r∑

m=1

∑
0<a1<···<am≤r

det(zaiaj
).
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Proof. We have

det(δij + zij) =
∑
σ∈Sr

(−1)I(σ)(δ1σ(1) + z1σ(1)) · · · (δnσ(n) + znσ(n)).

The typical term in the product produces

δb1σ(b1) · · · δbr−mσ(br−m)za1σ(a1) · · · zamσ(am),

where {a1, . . . , am} is an arbitrary subset of {1, . . . , r} and {b1, . . . , br−m}
contains the other indices. This term is non-zero if and only if σ(bi) = bi for
each i. Therefore

det(δij + zij) =

1 +
m∑

r=1

∑
0<a1<···<am≤r

∑

σ ∈ S
σ(bi) = bi ∀i

(−1)I(σ)za1σ(a1) · · · zamσ(am).

The last summation in this expression resembles a determinant. Say that
the permutation τ = σ(a1) · · · σ(am) requires k swaps to bring it into the
form a1 · · · am. Then σ requires k swaps to bring it into the form 12 · · · r,
since the numbers b1 through br−m are already in their natural positions in
σ. Therefore

(−1)I(τ) = (−1)k = (−1)I(σ).

Hence ∑

σ ∈ S
σ(bi) = bi ∀i

(−1)I(σ)za1σ(a1) · · · zamσ(am) =

∑

τ∈S(a1,...,am)

(−1)I(τ)za1τ(a1) · · · zamτ(am) =

det(zaiaj
).

A generating function for cyclically symmetric plane partitions in
B(r, s, t)
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Recall that every cyclically symmetric plane partition can be represented
by a strict shifted plane partition. The correspondence is

M = (zij) ↔ R =




z11 z12 z13 z14 · · ·
z22 − 1 z23 − 1 z24 − 1 · · ·

z33 − 2 z34 − 2 · · ·
z44 − 3 · · ·

. . .




.

If we write ai = zii−i+1 for each i then the row leaders of R are the numbers
a1 > a2 > · · · . Row i of R has exactly ai parts, each of which is ≤ ai. If
we delete the row leader of row i and subtract 1 from the remaining positive
entries of row i, we obtain a partition with ≤ ai − 1 positive parts and each
part ≤ ai− 1. This partition can be represented by a lattice path containing
ai − 1 northward steps and ai − 1 eastward steps. These can be drawn as a
non-intersecting family as follows:

Assume the plane partition is restricted to B(r, r, r). In the section 3.3
we represented the ith row of M by a lattice path which begins in position
(−i + 1, i− 1) and ends in position (r − i + 1, r + i− 1). Subtracting i from
every entry in the ith row of M is equivalent to throwing away every portion
of every lattice path that has an x-coordinate ≤ 1 and counting squares to
the right of x-coordinate 1. Deleting the first i − 1 entries in the ith row of
the resulting matrix is equivalent to throwing away every portion of every
lattice path that has a y-coordinate ≥ r. So we can take the lattice paths
corresponding to M and just use what survives to the right of x = 1 and below
y = r. In general, if there are m row leaders in R, then this procedure will
define m lattice paths (P1, . . . , Pm). Each Pi begins in position (1, r−ai +1)
and ends in position (ai, r). See for example Figure 3.5, page 103. It has
been obtained from Figure 3.2, page 95, by taking everything that survives
to the right of x = 1 and below y = 6, then shifting everything down 1 unit
and to the right 1 unit.

We now have a one-to-one correspondence between cyclically symmetric
plane partitions restricted to B(r, r, r) and all lists of non-intersecting lattice
paths (P1, . . . , Pm) with 1 ≤ m ≤ r as described above. As the textbook
explains on pp. 103-104, the number of cubes in the ith shell of the cyclically
symmetric plane partition represented by (P1, . . . , Pm) having row leaders
a1 > · · · > am) is

3ai − 2 + 3|Pi|,
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where |Pi| is the number of cubes in the partition represented by Pi, equiva-
lently the inversion number of the binary string which represents Pi. There-
fore the generating function for cyclically symmetric plane partitions with m
shells and row leaders a1 > · · · > am is

∑

(P1,...,Pm)

q(3a1−2+3|P1|)+···+(3am−2+3|Pm|),

where the lattice paths P1 through Pm are constructed as above.

Theorem: The generating function for cyclically symmetric plane partitions
in B(r, r, r) having m shells and row leaders a1 > · · · > am is

det

(
q3ai−2

[
ai + aj − 2

ai − 1

]

q3

)
.

Proof. As before, we will evaluate the determinant, then use a sign-reversing
involution to show that a large number of terms cancel each other out. What
survives will be the generating function for restricted cyclically symmetric
plane partitions with row leaders r ≥ a1 > · · · > am ≥ 1.

We have

det

(
q3ai−2

[
ai + aj − 2

ai − 1

]

q3

)
=

∑
σ∈Sm

(−1)I(σ)q(3a1−2)+···+(3am−2)

[
a1 + aσ(1) − 2
a1 − 1 + σ(1)

]

q3

· · ·
[
am + aσ(m) − 2
am − 1 + σ(r)

]

q3

.

For each σ ∈ Sr let Lσ(r; a1, . . . , am) denote the set of m-tuples of lattice
paths of the form (P1, . . . , Pm), where Pi begins at vertex (1, r − aσ(i) + 1)
and ends at vertex (ai, r). Since Pi takes ai−1 steps north and aσ(i)−1 steps
east, it corresponds to an integer partition having ai − 1 parts and largest
part ≤ aσ(i) − 1. We will denote by |Pi| size of this partition. We will also
write |P | = |P1| + · · · + |Pm|. The generating function for Lσ(r; a1, . . . , am)
is

∑

(P1,...,Pm)∈Lσ(r;a1,...,am)

q3|P1|+···+3|Pm| =

(∑
P1

q3|P1|
)
· · ·

(∑
Pm

q3|Pm|
)

=
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[
a1 + aσ(1) − 2

a1 − 1

]

q3

· · ·
[
am + aσ(m) − 2

am − 1

]

q3

.

Therefore, if we set

X = {(σ, P1, . . . , Pm) : σ ∈ Sm, (P1, . . . , Pm) ∈ Lσ(r; a1, . . . , am)}

and
w(σ, P1, . . . , Pm) = (−1)I(σ)q(3a1−2)+···+(3am−2)q3|P1|+···+3|Pm|,

then

det

(
q3ai−2)

[
ai + aσ(i) − 2

ai − 1

]

q3

)
=

∑

(σ,P1,...,Pm)∈X

w(σ, P1, . . . , Pm).

We will now identify a subset X0 of X and a sign-reversing involution θ on
X0. We set X0 equal to all (σ, P1, . . . , Pm) such that two or more of the lattice
paths intersect each other. Given (σ, P1, . . . , Pm) ∈ X0, let Pa and Pb be the
two intersecting paths forming the northern-most, eastern-most intersection
point (with a < b). We will think of Pa and Pb as being represented by binary

strings. These can be factored into P
(1)
a P

(2)
a and P

(1)
b P

(2)
b , the subpaths before

and after the point of intersection. We will set

θ(σ, P1, . . . , Pm) = (σ′, P ′
1, . . . , P

′
m),

where σ′ is obtained from σ by swapping σa and σb, setting

P ′
a = P (1)

a P
(2)
b

and
P ′

b = P
(1)
b P (2)

a ,

and leaving the other lattice paths unchanged. We have

θ(θ(σ, P1, . . . , Pm)) = (σ, P1, . . . , Pm).

We need to verify that

w(σ′, P ′
1, . . . , P

′
m) = −w(σ, P1, . . . , Pm).
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Assume (σ, P1, . . . , Pn) and (σ′, P ′
1, . . . , P

′
n) be related by a tail switch of

paths Pa and Pb as above. As in the previous theorem, we have b = a + 1.
We also have (−1)I(σ′) = −(−1)I(σ).

The one major difference between this construction and the one in Section
3.3 is that |P ′| = |P |. Reason: if we look at exercise 2 of Section 3.3, we see
that

|P ′| − |P | = (f1(P
(1)
a )− f1(P

(1)
b ))(f0(P

(2)
b )− f0(P

(2)
a )).

Since P
(1)
a and P

(1)
b , the initial part of each tail before the intersection point,

both begin at x-coordinate 1, the number of 1s in each string is the same.
Therefore

f1(P
(1)
a )− f1(P

(1)
b ) = 0.

Putting everything together we have

w(σ′, P ′
1, . . . , P

′
m) = −w(σ, P1, . . . , Pm).

Therefore θ is a sign-reversing involution on X0 and we have
∑

(σ,P1,...,Pr)∈X0

w(σ, P1, . . . , Pm) = 0.

Therefore

det

(
q3ai−1

[
ai + aj − 2

ai − 1

])
=

∑

(σ,P1,...,Pm)∈X\X0

w(σ, P1, . . . , Pm).

However, it is easy to see that (σ, P1, . . . , Pm) belongs to X\X0 if and only if
σ is the identity permutation e, each Pi begins at (1, r− ai + 1) and ends at
(ai, r), and no two of the lattice paths intersect each other. Therefore each Pi

represents an integer partition with ≤ ai− 1 parts, all of which are ≤ ai− 1,
and (P1, . . . , Pm) encodes a strict shifted plane partition R having row leaders
a1 > · · · > am. That is, (e, P1, . . . , Pm) corresponds to a cyclically symmetric
plane partition in B(r, r, r) with

(3a1 − 2 + 3|P1|) + · · ·+ (3am − 2 + 3|Pm|)
cubes. Hence∑

(σ,P1,...,Pm)∈X\X0

w(σ, P1, . . . , Pm) =
∑

P1,...,Pm

q(3a1−2+3|P1|)+···+(3am−2+3|Pm|)

is the generating function for these cyclically symmetric plane partitions.
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The theorem above provides us a generating function for cyclically sym-
metric plane partitions in B(r, r, r) with a fixed set of row leaders. To obtain
the generating function for cyclically symmetric plane partitions in B(r, r, r)
and all possible row leaders, we have to add all the generating functions cor-
responding to all possible sequences of row leaders r ≥ a1 > a2 · · · > am ≥ 1
and all m between 1 and r. Hence the generating function we are looking for
is

r∑
m=1

∑
0<a1<···<am≤r

det

(
q3ai−2

[
ai + aj − 2

ai − 1

]

q3

)
.

We can express this sum as a single determinant using the theorem we proved
in the preliminaries section.

Theorem: The generating function for cyclically symmetric plane partitions
contained in B(r, r, r) is

det

(
δij + q3i−2

[
i + j − 2

i− 1

]

q3

)r

i,j=1

.

Note that if a cyclically symmetric plane partition in B(r, r, r) has no
parts equal to r, then it lives in B(r − 1, r − 1, r − 1). So the generating
function for these is

det

(
δij + q3i−2

[
i + j − 2

i− 1

]

q3

)r−1

i,j=1

.

A slight modification of the two theorems we proved above allows us to
construct the generating function for cyclically symmetric plane partitions
with exactly k ≥ 1 parts equal to r.

Theorem: The generating function for cyclically symmetric plane partitions
in B(r, r, r) having m shells and row leaders a1 > · · · > am and exactly k ≥ 1
parts equal to r is det(zij), where

zij =





q3ai−2

[
ai + aj − 2

ai − 1

]

q3

if i ≤ m− 1

q(3kr−2)+(k−1)(r−1)

[
r − 2 + aj − k

r − 2

]

q3

if i = m.
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Proof. We must have am = r. We will modify our construction of Lσ(a1, . . . , am)
so that Pm begins at (1, r− aσ(m) +1), passes through (r− 1, r− k +1), then
takes one step east and k − 1 steps north. Therefore it decomposes into
two parts, the first of which represents a partition with ≤ r − 2 parts and
each part ≤ aσ(m) − k, followed by the remaining steps which contribute
(r− 1)(k− 1) cubes. The position of the tail is such (at the extreme right of
the diagram) that if Pi intersects Pm then the intersection must occur to the
south and west of (r − 1, r − k + 1). Therefore our sign-reversing involution
θ will preserve this feature. The generating function for Lσ(r; a1, . . . , am) is
now

∑

(P1,...,Pm)∈Lσ(r;a1,...,am)

q3|P1|+···+3|Pm| =

(∑
P1

q3|P1|
)
· · ·

(∑
Pm

q3|Pm|
)

=

[
a1 + aσ(1) − 2

a1 − 1

]

q3

· · ·
[
am−1 + aσ(m−1) − 2

am−1 − 1

]

q3

q(r−1)(k−1)

[
r − 2 + aσ(m) − k

r − 2

]

q3

.

The remaining details of the proof are unchanged.

Given this theorem, the generating for all cyclically symmetric plane par-
titions in B(r, r, r) with exactly k ≥ 1 parts equal to r is

r−1∑
m=0

∑
0<a1<···<am−1≤r−1

det(zij(a1, . . . , am))m+1
i,j=1,

where am = r and

zij(a1, . . . , am) =





q3ai−2

[
ai + aj − 2

ai − 1

]

q3

if i ≤ m− 1

q(3kr−2)+(k−1)(r−1)

[
r − 2 + aj − k

r − 2

]

q3

if i = m.

Using additional exercise #1, we can express this as a single determinant:
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Theorem: The generating function for cyclically symmetric plane partitions
in B(r, r, r) with exactly k ≥ 1 parts equal to r is det(δ̂ij + zij), where

zij =





q3i−2

[
i + j − 2

i− 1

]

q3

if i ≤ r − 1

q(3kr−2)+(k−1)(r−1)

[
r − 2 + j − k

r − 2

]

q3

if i = r.

There is an analogous generating function for descending plane partitions
(see 9. 21 of the textbook for the definition). You will prove this theorem in
the exercises.

Exercises: 9–14.

Additional Exercise #1: Let (zij) be an r × r matrix. Given 0 < a1 <
· · · < am−1 ≤ r − 1, let (zaiaj

) denote the m ×m matrix obtained by using
rows a1 through am and columns a1 through am of (zij), where am = r. For
each i and j between 1 and r let

δ̂ij =





1 if i = j ≤ m− 1

0 if i = j = m

0 if i 6= j.

Then

det(δ̂ij + zij) =
r−1∑
m=0

∑
0<a1<···<am−1≤r−1

det(zaiaj
).

Mimic the proof in the preliminary section, changing what needs to be
changed.

Section 3.5: Dodgson’s Algorithm

Topic to review: the inversion number of a matrix.

The inversion number of a matrix

Let M = (aij) be an arbitrary n× n matrix. The inversion number of M
is

I(M) =
∑

n ≥ i > j ≥ 1
1 ≤ p < q ≤ n

aipajq.
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Each term in this sum represents the product of a pair of entries, ajq being to
the north (smaller row index) and east (larger column index) of aip. If M is
the matrix representing a permutation σ = σ1 · · · σn, in which for each i ≤ n
the ith row contains 1 in column σi and 0s elsewhere, then I(M) = I(σ).

In this section Dodgson’s algorithm for computing a determinant is in-
troduced. The algorithm is based on the following idea: The determinant of
an n× n matrix can be computed from its (n− 1)× (n− 1) minors and its
(n− 2)× (n− 2) minors. The calculation (Theorem 3.12) can be expressed
in the form of a fraction whose numerator can be recognized as a 2 × 2 de-
terminant. Working our way backwards, each (n− 1)× (n− 1) minor can be
computed from its (n− 3)× (n− 3) minors and its (n− 4)× (n− 4) minors.
We can go all the way back to 2×2 minors. Dodgson’s algorithm reverses the
direction of this calculation, successively working out 2×2 determinants and
storing intermediate results in a pair of matrices. You will practice this com-
putation in Exercises 1 and 4. The λ-determinant of a matrix is obtained by
replacing each 2× 2 determinant in Dodgson’s algorithm by its λ-analogue,

∣∣∣∣
a b
c d

∣∣∣∣
λ

= ad + λbc.

You will use this to derive the generalized Vandermonde determinant

|xn−i
j |λ =

∏
1≤i<j≤n

(xi + λxj).

At the bottom of page 116 there is a general formula for |M |λ, the λ-
determinant of the n× n matrix M . It is expressed in the form

|M |λ =
∑

B∈An

w(B),

where

w(B) = λI(B)(1 + λ−1)N(B))
n∏

i,j=1

a
Bij

ij ,

An is the set of n × n alternating matrices, I(B) is the inversion number
of B, N(B) is the number of −1s in B, and the entries of M are aij and
the entries of B are Bij. This was the starting point of the alternating sign
matrix conjecture: how many of these things are there?
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Exercises: 1, 4, 6. Note: problem 4 refers to the Vandermonde formula on
page 63. Problem 6 refers to the generalized Vandermonde product on page
117.

Chapter 4: Symmetric Functions

Topic to review: properties of permutations.

Sn is the group of permutations of n letters. We have been using the
notation σ = σ1 · · · σn. This is shorthand for the function

σ : {1, . . . , n} → {1, . . . , n}
defined by σ(i) = σi for all i ≤ n. Permutations are multiplied together using
function composition. If σ and τ are permutations, then σ · τ = σ ◦ τ . As a
list of numbers, we have

στ = σ(τ(1)) · · ·σ(τ(n)).

The inverse of σ is the function

σ−1 : {1, . . . , n} → {1, . . . , n}
which satisfies σ−1(σi) = i for all i ≤ n. The identity permutation is

e : {1, . . . , n} → {1, . . . , n}
which satisfies e(i) = i for all i ≤ n. As a list of numbers, we have e = 1 · · ·n.

In the previous section we introduced the matrix representation of a per-
mutation: If σ = σ1 · · ·σn, then

Mσ = (δσ(i),j),

where

δp,q =

{
1 if p = q

0 if p 6= q.

In particular, Me is the n× n identity matrix. Note that MσMτ = Mτσ. To
prove this, we must show that the i, j entry of MσMτ is δτ(σ(i)),j. Here’s the
computation: The i, j entry of MσMτ is

n∑

k=1

δσ(i),kδτ(k),j.
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The k 6= σ(i) terms are zero, leaving

δσ(i),σ(i)δτ(σ(i)),j = δτ(σ(i)),j.

Another property to be aware of is that I(στ) ≡ I(σ) + I(τ) (mod 2),
which is equivalent to

(−1)I(στ) = (−1)I(σ)(−1)I(τ).

To prove this, recall that if k swaps are required to rearrange a permutation
to the identity permutation, then the inversion number of the permutation
is congruent to k (mod 2). Say that t swaps are required to rearrange τ to e
and that s swaps are required to rearrange σ to e. We can rearrange στ to
e in s + t swaps as follows:

σ(τ(1)) · · · σ(τ(n)) → (t swaps) → σ(1) · · · σ(n) → (s swaps) → 1 · · ·n.

Therefore
I(στ) ≡ s + t ≡ I(σ) + I(τ).

Section 4.1: Schur functions

Fix variables x1 through xn. All partitions in this section will be of the
form λ = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, that is a partition with ≤ n positive
parts. For each p ≥ 1 let Vp be the vector space over the rational numbers
of all symmetric polynomials in x1 through xn having total degree p. Then
Vp has basis {mλ : λ ` p}, where λ = (λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0,
λ1 + · · ·+ λn = p, and mλ consists of all terms of the form

xλ1

σ(1)x
λ2

σ(2) · · · xλn

σ(n)

with all coefficients equal to 1. For example, if n = 3 then in V3 we have

m(2,1) = x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2.

If we order the monomials in increasing lexicographic order (same as in-
creasing alphabetical order if our alphabet is x1, x2, . . . , xn), then the leading
(first) term of mλ is xλ1

1 · · ·xλn
n . The polynomials mλ are called monomial
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symmetric functions. We will describe three other classes of symmetric func-
tions.

Elementary symmetric functions

For 1 ≤ i ≤ n the ith elementary symmetric function ei is the sum of
every product of i variables:

ei =
∑

1≤k1<k2<···<ki≤n

xk1xk2 · · ·xki
.

We also set e0 = 1 and ei = 0 for i > n. The leading term of ei is x1x2 · · · xi for
1 ≤ i ≤ n. The generating function for the elementary symmetric functions
is

E(t) =
n∑

i=0

eit
i =

n∏

k=1

(1 + xkt).

Given a partition λ ` p we set

eλ = eλ1eλ2 · · · eλn .

Provided each λi ≤ n, the leading term of eλ is the product of the leading
terms of the eλi

. The leading term of eλi
is x1 . . . xλi

. We can compute the
leading term of eλ as follows: For each i ≤ n replace the dots in the ith row
of the Ferrers graph of λ by the variables x1, x2, . . . , xλi

. Then multiply all
the variables in the diagram together. The exponent of xi will be equal to
the number of terms in the ith column of the diagram. Therefore the leading
term of eλ is equal to

x
λ′1
1 x

λ′2
2 · · ·xλ′n

n ,

where
λ′ = λ′1 ≥ λ′2 ≥ · · · ≥ λ′n

is the conjugate partition. For example, if n = 5 and p = 7 then in V7 we
have

e(5,1,1) →
x1 x2 x3 x4 x5

x1

x1

→ x3
1x2x3x4x5,

and the leading term of e(5,1,1) is x3
1x2x3x4x5.
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The elementary symmetric functions of total degree n form a basis for
Vn. To see this, expand eλ in terms of the monomial symmetric functions:

eλ =
∑

γ`n

cγmγ.

The non-zero coefficients cγ correspond to partitions which are ≤ λ′ in lexi-
cographic order. For example, we have

e(2,1) = e2e1 = (x1x2 + x1x3 + x2x3)(x1 + x2 + x3) =

x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2 + 3x1x2x3 =

m(2,1) + 3m(1,1,1).

If we create the matrix Mn whose rows are indexed by partitions of n which
decrease in lexicographic order and whose columns are indexed by partitions
of n which increase in lexicographic order and whose λth row contains the
coefficients which express eλ as a linear combination of the monomial sym-
metric functions, then Mn will be a lower triangular matrix with 1s along
the diagonal. For example, we have

e(3) = 1m(111)

e(21) = 3m(111) + 1m(21)

e(111) = 6m(111) + 3m(21) + 1m(3),

therefore

M3 =




1 0 0
3 1 0
6 3 1


 .

In general, Mn is a lower-triangular matrix with 1s down the diagonal
(proof omitted). This implies that the elementary symmetric functions are
linearly independent and span the vector space of all symmetric functions
in x1 through xn having total degree n. Reason: The linear transformation
f : Vn → Vn defined by

f(
∑

λ`n

αλmλ) =
∑

λ`n

αλeλ′

is represented by the matrix Mn. Since Mn is invertible, f is an isomorphism.
Since f(mλ) = eλ′ for each λ, the eλ′ form a basis for Vn.
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Complete symmetric functions.

These are also known as the homogeneous symmetric functions. For i ≥ 0,
hi is the sum of all monomials in the variables x1 through xn with total degree
equal to i:

hi =
∑

0 ≤ α1, . . . , αn ≤ n
α1 + · · ·+ αn = i

xα1
1 · · · xαn

n .

The leading term of hi is xi
1. The generating function for the complete

symmetric functions is

H(t) =
∞∑
i=0

hit
i =

n∏
j=1

1

1− xjt
.

Given a partition λ ` p we set

hλ = hλ1hλ2 · · ·hλn .

The leading term of hλ is xp
1. If p = n then hλ ∈ Vn. The matrix expressing

the coefficients of the hλ expanded in terms of the mλ is not lower triangular,
so we can’t prove that the complete symmetric functions of total degree n
form a basis for Vn using the argument above. However, if we can prove
that the complete symmetric functions of total degree n span Vn, then they
must be linearly independent because there are as many of them as there are
monomial symmetric functions of total degree n.

We know that the elementary symmetric functions of total degree n span
Vn. If we can show that every ei is a linear combination of complete sym-
metric functions, then every product of the ei will be a linear combination of
complete symmetric functions, therefore every eλ will be a linear combination
of complete symmetric functions of total degree n when λ ` n. We will show
that ei is a linear combination of complete symmetric functions by induction
on i.

The base case is i = 0, and we have e0 = h0 = 1. Now assume that e0

through ep−1 can be expressed as linear combinations of complete symmetric
functions. Observe that we have

E(t)H(−t) =
n∏

j=1

(1 + xjt)
n∏

j=1

1

1 + xjt
= 1.
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Extracting the coefficient of tp we obtain

eph0 − ep−1h1 + ep−2h2 − · · · = 0.

Since h0 = 1, we can rearrange this to

ep = ep−1h1 − ep−2h2 + · · · .

Therefore ep can be expressed as a linear combination of complete symmetric
functions. This completes the induction proof.

Schur functions

Let λ1 ≥ · · · ≥ λn ≥ 0 be a partition of p. The determinant

det(xn−i+λi
j ) =

∑
σ∈Sn

(−1)I(σ)xn−1+λ1

σ(1) · · · xn−n+λn

σ(n)

is an alternating polynomial of total degree
(

n
2

)
+ p. The Vandermonde

determinant
det(xn−i

j ) =
∑
σ∈Sn

(−1)I(σ)xn−1
σ(1) · · · xn−n+λn

σ(n)

is an alternating polynomial of total degree
(

n
2

)
. Therefore the Schur function

sλ =
det(xn−i+λi

j )

det(xn−i
j )

is a symmetric polynomial of total degree p. In exercise 3 of Section 4.2 you
will prove that the Schur functions of total degree n form a basis of Vn. One
of the ingredients of the proof is the Jacobi-Trudi Identity.

Jacobi-Trudi Identity: Let λ1 ≥ · · · ≥ λn ≥ 0 be a partition of p. Then

sλ = det(hλi+j−i).

Proof. We have

sλ =
det(xn−i+λi

j )

det(xn−i
j )

.

We will factor the matrices (xn−1
j ) and (xn−i+λi

j ) as follows:

66



Our starting point is
H(t)E(−t) = 1.

Fix a and b between 1 and n. Multiplying both sides by 1
1−xbt

we obtain

H(t)
∏

1 ≤ j ≤ n
j 6= b

(1− xjt) =
1

1− xbt
.

Write
∏

1 ≤ j ≤ n
j 6= b

(1− xjt) =
n−1∑
j=0

e
(b)
j tj.

Then we have

H(t)
n−1∑
j=0

e
(b)
j tj =

1

1− xbt
.

Extracting the coefficient of tn−a we obtain

n∑

k=1

hk−ae
(b)
n−k = xn−a

b .

This implies the matrix equation

(hj−i)(e
(j)
n−i) = (xn−i

j ).

If instead we extract the coefficient of tλa+n−a we obtain
n∑

k=1

hλa+k−ae
(b)
n−k = xλa+n−a

b .

This implies the matrix equation

(hλi+j−i)(e
(j)
n−i) = (xλi+n−i

j ).

The matrix (hj−i) has determinant equal to 1 because it is upper trian-
gular with 1s along the diagonal. Evaluating determinants we obtain

det(e
(j)
n−i) = det(xn−i

j )
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and
det(hλi+j−i) det(e

(j)
n−i) = det(xλi+n−i

j ).

Therefore

det(hλi+j−i) =
det(xλi+n−i

j )

det(e
(j)
n−i)

=
det(xλi+n−i

j )

det(xn−i
j )

= sλ.

Exercises: 1, 2, 4, 6, 7, 8

Section 4.2: Semistandard tableaux

Given a partition λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, we derive an alternative
expression for sλ. Let Tλ,n denote the set of semistandard tableaux of shape
λ. This is the set of all diagrams obtained by replacing the dots in the Ferrers
diagram for λ with numbers selected from {1, . . . , n}, where the numbers
weakly increase along rows and strictly decrease down columns. Then

sλ =
∑

T∈Tλ,n

xT ,

where
xT =

∏
i∈T

xi.

See the example at the bottom of page 128.

Proof. The idea of the proof is to evaluate det(hλi+j−i) using families of lat-
tice paths, then construct a sign-reversing involution which cancels out terms
corresponding to families with intersections. This leaves a sum over families
of lattice paths which don’t intersect, which will be equal to

∑
T∈Tλ,n

xT .

Consider the semistandard tableau at the bottom of page 128. For each i,
the entries in row i constitute a partition with exactly λi parts, each of which
is≤ n. If we subtract 1 from each entry, we obtain a partition with≤ λi parts,
each of which is ≤ n−1. Therefore we can represent this row by a lattice path
which has λi northward steps and n− 1 eastward steps. If we let the lattice
path Pi begin in position (1, n− i) and end in position (n, λn + n− i), then
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the condition that the columns strictly decrease is precisely the restriction
needed to keep the lattice paths from intersecting each other.

More generally, for each σ ∈ Sn let Lσ represent the set of all lattice paths
of the form (P1, . . . , Pn), where Pi begins in position (1, n − σ(i)) and ends
in position (n, λn + n− i). Next, we set

X = {(σ, P1, . . . , Pn) : σ ∈ Sn, (P1, . . . , Pn) ∈ Lσ}.
For each (σ, P1, . . . , Pn) ∈ X we set

w(σ, P1, . . . , Pn) = (−1)I(σ)xP1 · · ·xPn ,

where

xPi =
n∏

i=1

x
(# of northward steps at x = i in Pi)
i .

Finally, we set

Z =
∑

(σ,P1,...,Pn)∈X

w(σ, P1, . . . , Pn).

Claim: Z = sλ. To see this, fix a permutation σ and observe that every xPi

corresponding to (σ, P1, . . . , Pn) ∈ Lσ is a monomial of total degree λσ(i)+n−i
in the variables x1 through xn. If we sum over all such Pi, we obtain hλσ(i)+n−i.
Therefore

∑

(σ,P1,...,Pn)∈Lσ

w(σ, P1, . . . , Pn) = (−1)I(σ)hλσ(1)+n−1 · · ·hλσ(n)+n−n.

Therefore
Z =

∑
σ∈Sn

∑

(σ,P1,...,Pn)∈Lσ

w(σ, P1, . . . , Pn) =

∑
σ∈Sn

(−1)I(σ)hλσ(1)+n−1 · · ·hλσ(n)+n−n = det(hσ(i)+j−i) = sλ.

Let X0 consist of all configurations (σ, P1, . . . , Pn) ∈ X which contains
intersecting lattice paths. Construct an involution θ : X0 → X0 via tail-
switches. Observe that if θ(σ, P1, . . . , Pn) = (σ′, P ′

1, . . . , P
′
n), then (−1)I(σ′) =

(−1)I(σ) as before, and

xP1 · · · xPn = xP ′1 · · · xP ′n
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because the total number of northward steps along any vertical line in two
diagrams related by a tail switch does not change. Therefore

w(σ′, P ′
1, . . . , P

′
n) = −w(σ, P1, . . . , Pn),

which means that θ is a sign-reversing involution. Hence

∑

(σ,P1,...,Pn)∈X0

w(σ, P1, . . . , Pn) = 0

and
sλ = Z =

∑

(σ,P1,...,Pn)∈X\X0

w(σ, P1, . . . , Pn) =
∑

T∈Tλ,n

xT .

Proof of the generating function for plane partitions

We now have a very powerful tool at our disposal, because column-strict
tableaux of shape λ, where λ1 = · · · = λr = s and λr+1 = · · · = λr + t = 0,
can be used to represent plane partitions in B(r, s, t). The construction is
this: Fill the Ferrers diagram of this partition with the variables x1 through
xr+t to create a column-strict tableau. Then evaluate x1 = qr+t, x2 = qr+1−1,
. . . , xr+t = q. The exponents of the qs will be weakly decreasing in rows and
strictly decreasing in columns. If we multiply each term in the first row by
q−r, each term in the second row by q−(r−1), and each term in the rth row
by q−1, then the exponents in the rows will be weakly decreasing and the
exponents in the columns will be weakly decreasing. Moreover, the largest
exponent in the diagram will by ≤ t. Hence the diagram of exponents will
represent a plane partition in B(r, s, t). The product of all the qs in the
diagram will be equal to the number of cubes in the plane partition. The
upshot is that if we evaluate sλ at xi = qr+t+1−i for each i, then multiply by

q−rs−(r−1)s−···−s = q−s(r+1
2 ), we obtain

∑

P∈B(r,s,t)

q|P |.

Therefore

q−s(r+1
2 )sλ(q

r+t, qr+t−1, . . . , q) =
rst∑
n=0

pp(n)qn.
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We can evaluate q−s(r+1
2 )sλ(q

r+t, qr+t−1, . . . , q) using the Jacobi-Trudi identity
and Vandermonde’s formula to obtain the product formula on page 131.

You have plenty of experience with these calculations, given the exercises
on pp. 48-49 of these notes, so skip the details on pp. 132-133 of the textbook.

Exercises: 3, 4, 5, 6, 8.

Section 4.3: Proof of the MacMahon conjecture (generating func-
tion for symmetric plane partitions)

Theorem: There is a one-one correspondence between symmetric plane par-
titions in B(r, r, t) and column-strict partitions with odd stack heights con-
tained in B(r, t, 2r − 1).

Proof. Let P be a symmetric plane partition in B(r, r, t). Then each z-slice
can be interpreted as a self-conjugate partition – see Figure 4.3, page 136.
Any self-conjugate partition can be decomposed into a partition with distinct
odd parts – see Figure 4.4, page 136. We will represent the jth slice by the
partition 2α1j − 1 > 2α2j − 1 > · · · . There can be at most r positive parts
to this partition. Since each z-slice has to fit on top of the one below it, we
have 2αi1 − 1 ≥ 2αi2 − 1 ≥ · · · . There can be at most t z-slices. We will
identify P with the r × t matrix whose non-zero entries are 2αij − 1. The
largest entry is ≤ 2r − 1. We have just made an argument that the rows
are weakly decreasing and the columns are strictly decreasing. The entries
are all odd and they add up to the size of P . Hence the matrix (2αij − 1)
represents a column-strict plane partition in B(r, t, 2r − 1). This establishes
the one-to-one correspondence.

Corollary: The generating function for symmetric plane partitions con-
tained in B(r, r, t) is

∑

t≥λ1≥···≥λr≥0

sλ(q
2r−1, q2r−3, . . . , q).

Proof. Represent a symmetric plane partition P by the matrix (2αij − 1) as
above. Then

r∏
i=1

r∏
j=1

q2αij−1 = q|P |.
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We can form a semistandard tableau T by overwriting each non-zero entry
2αij − 1 by the variable xr−αij+1. The assignment xi = q2r−2i+1, 1 ≤ i ≤ r,
yields the evaluation

xT =
∏
xi∈T

xi =
∏

αij 6=0

xr−αij+1 =
∏

αij 6=0

q2αij−1 = q|P |.

The shape of T is λ = λ1 ≥ λ2 ≥ · · · ≥ λr, where λi is the number of
positive entries in the ith row of (2αij − 1). Therefore we have a one-to-
one correspondence between all q|P | and xT , where P is a symmetric plane
partition in B(r, r, t) and T is a semistandard tableau in the variables x1

through xr with shape λ, t ≥ λ1 ≥ · · · ≥ λr ≥ 0. This yields
∑

t≥λ1≥···≥λr≥0

sλ(q
2r−1, q2r−3, . . . , q) =

∑

t≥λ1≥···≥λr≥0

∑

T∈T (λ,r)

xT =

∑

P ∈ B(r, r, t)
P is symmetric

q|P | =
rrt∑
n=0

rspp(n)qn.

Lemma 4.5, page 135, provides a proof of the formula

∑

t≥λ1≥···≥λr≥0

sλ(x1, x2, . . . , xr) =
det(xj−1

i − xt+2r−j
i )

det(xj−1
i − x2r−j

i )
.

It is a proof by induction, incorporating the Jacobi-Trudi identity, Vander-
monde’s product, and the Weyl denominator formula, pp. 140–145. It is
somewhat easier to derive the formula

∑

λ1≥···≥λr≥0

sλ(x1, x2, . . . , xr) =
n∏

i=1

1

1− xi

∏
1≤i<j≤n

1

1− xixj

.

See pp. 138-140.

In these notes we will limit ourselves to proving

∑

λ1≥λ2≥λ3≥0

sλ(x1, x2, x3) =
3∏

i=1

1

1− xi

∏
1≤i<j≤3

1

1− xixj

.
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If T is a semistandard tableau of shape λ1 ≥ λ2 ≥ λ3 in the variables x1, x2,
and x3, then every column of T must belong to the set








x1

x2

x3


 ,




x1

x2


 ,




x1

x3


 ,




x2

x3


 ,




x1


 ,




x2


 ,




x3






 .

The columns




x2

x3


 and




x1


 cannot both appear in T . There are two

possibilities:

T =




x1

x2

x3




a 


x1

x2




b 


x1

x3




c 


x1




d 


x2




e 


x3




f

for a, b, c, d, e, f ≥ 0, and

T =




x1

x2

x3




a 


x1

x2




b 


x1

x3




c 


x2

x3




d 


x2




e 


x3




f

for a, b, c, e, f ≥ 0 and d ≥ 1. Therefore

∑

λ1≥λ2≥λ3≥0

sλ(x1, x2, x3) =
∑

T∈Tλ,3

xT =

∑

a,b,c,d,e,f≥0

(x1x2x3)
a(x1x2)

b(x1x3)
cxd

1x
e
2x

f
3+

∑

a,b,c,e,f≥0,d≥1

(x1x2x3)
a(x1x2)

b(x1x3)
c(x2x3)

dxe
2x

f
3 =

1

1− x1x2x3

1

1− x1x2

1

1− x1x3

1

1− x1

1

1− x2

1

1− x3

+

1

1− x1x2x3

1

1− x1x2

1

1− x1x3

x2x3

1− x2x3

1

1− x2

1

1− x3

=

1

1− x1

1

1− x2

1

1− x3

1

1− x1x2

1

1− x1x3

1

1− x2x3

.
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Exercise 1: Prove that the number of symmetric plane partitions of size n
which are restricted to B(3, 3,∞) is equal to the coefficient of qn in

∞∑
n=0

rspp(n)qn =
1

(1− q)(1− q3)(1− q4)(1− q5)(1− q6)(1− q8)
.

Exercise 2: Find the number of symmetric plane partitions of 50 which live
in B(3, 3,∞).

Exercise 3: Do exercise 4.3.9 under the assumption that n = 3. Adapt the
proof given at the end of this section.

Exercise 4: Do exercise 4.3.10 using Exercise 3 above.

Exercise 5: Do exercise 4.3.12 under the assumption that n = 3. Adapt
the proof given at the end of this section.

Exercise 6: Do exercise 4.3.13 under the assumption n = 3. Use Exercise
5.

Chapter 5: Hypergeometric Series

This chapter is going to require major surgery. Andrews’ conjecture (page
21 of textbook) can be proved without recourse to the theory of basic hy-
pergeometric series. It’s not clear if Macdonald’s conjecture can be proved
without basic hypergeometric series, but the details presented in the book
are not pleasant to work through. So we are going to skip the treatment of
basic hypergeometric series completely and just use the q-binomial theorem.

In this textbook we are working our way through the sequence of ideas
in the chronology described on pp. 12–15 of these notes. Let’s see where we
are going and what we’ve done so far:

Conjecture 2: The total number of n× n alternating sign matrices with a
1 in the kth column of the first row is

An,k =

(
n + k − 2

k − 1

)
(2n− k − 1)!

(n− k)!

n−2∏
j=0

(3j + 1)!

(n + j)!
.
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Conjecture 3: The total number of n× n alternating sign matrices is

An = An+1,1 =
n−1∏
j=0

(3j + 1)!

(n + j)!
.

Conjecture 8: The number of descending plane partitions with largest part
≤ r and for which r appears exactly k − 1 times is equal to the number of
r × r alternating sign matrices with a 1 in the kth column of the first row.

Conjecture 9: The number of descending plane partitions with largest part
≤ r and for which r appears exactly k − 1 times is equal to

(
r + k − 2

k − 1

)
(2r − k − 1)!

(r − k)!

r−2∏
j=0

(3j + 1)!

(r + j)!
.

Theorem 3.11: Let Hr(q) denote the matrix

Hr(q) =

(
qi+1

[
i + j
j − 1

])r

i,j=1

.

The generating function for descending plane partitions with largest part ≤ r
is given by

det(Ir−1 + Hr−1(q)).

The generating function for descending plane partitions with exactly k parts
of size r, 0 ≤ k ≤ r − 1, is given by

det(Hk,r−1(q)),

where Hk,r−1(q) is the matrix formed by replacing the last row of Ir−1 +Hr−1

by (0, . . . , 0, 1) when k = 0 and by

qkr

([
r − 0
1− k

]
,

[
r + 1− k

2− k

]
, . . . ,

[
r + r − 1− k

r − 1− k

])
.

Conjecture 7 (The Andrews conjecture): The generating function for
descending plane partitions with largest part less than or equal to r is

∏
1≤i≤j≤r

1− qr+i+j−1

1− q2i+j−1
.
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We will denote by Hr and Hir the limits as q → 1 of the matrices Hr(q)
and Hir(q). We don’t as yet have a formula for det(Ir + Hr). But if Con-
jectures 8 and 9 are correct, then combined with Theorem 3.11 they would
imply that

det(Ir + Hr) =
r∏

j=0

(3j + 1)!

(r + j + 1)!

and

det(Hir) =

(
r + i

i

)
(2r − i)!

(r − i)!

r−1∏
j=0

(3j + 1)!

(r + j + 1)!
.

We don’t need to prove the conjectures to verify that these evaluations are
correct. In the next section we will learn how Mills, Robbins and Rumsey
proved these determinant formulas.

Section 5.1: Mills, Robbins, and Rumsey’s bright idea

Let hr = det(Ir + Hr), hir = det(Hir),

Lr =
r∏

j=0

(3j + 1)!

(r + j + 1)!
,

and

Lir =

(
r + i

i

)
(2r − i)!

(r − i)!

r−1∏
j=0

(3j + 1)!

(r + j + 1)!
.

We wish to prove that hr = Lr and hir = Lir for all r ≥ 1 and 0 ≤ i ≤ r.

Observe that we have
∑r

i=0 hir = hr, because we are counting descending
plane partitions by type. Also, h0r = number of descending plane partitions
with largest part ≤ r, hence

h0r = det(Ir−1 + Hr−1) = hr−1.

We can easily check that
∑r

i=0 Lir = Lr and L0r = Lr−1. (See the deriva-
tion of An from An,k on pp. 2–3 of these notes.)
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We clearly have h1 = L1 = 2. To prove that hr = Lr and hir = Lir for
all r ≥ 1 and 0 ≤ i ≤ r, we can use the following theorem. (Note that the
textbook drops the r and writes Li = Li,r.)

Theorem: Let a1, a2, a3, . . . and b1, b2, b3, . . . be two sequences of numbers
with a1 = b1. Assume that for each r ≥ 1 there are numbers a0r through arr

and b0r and brr such that ar =
∑r

i=0 air and br =
∑r

i=0 bir. Assume further
that for each r ≥ 2 we have a0r = ar−1 and b0r = br−1 and there exists a
non-singular r × r matrix Mr and a column vector Vr such that

Mr




a1r

a2r
...

arr


 = a0rVr

and

Mr




b1r

b2r
...

brr


 = b0rVr.

Then ar = br and air = bir for all r ≥ 1 and 0 ≤ i ≤ r.

Proof. By induction on r. We have a1 = b1 by hypothesis. Now assume
that ar−1 = br−1. Since a0r = ar−1 and b0r = br−1, this implies a0r = b0r.
Therefore

Mr




a1r

a2r
...

arr


 = a0rVr = b0rVr = Mr




b1r

b2r
...

brr


 .

Since Mr is non-singular, this implies



a1r

a2r
...

arr


 =




b1r

b2r
...

brr


 ,

hence air = bir for 0 ≤ i ≤ r. Moreover we have

ar =
r∑

i=0

air =
r∑

i=0

bir = br.
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This completes the induction proof.

Corollary: With all notation as above, replace the hypothesis

Mr




b1r

b2r
...

brr


 = b0rVr

by the hypothesis that the vector




b0r

b1r
...

brr




satisfies the matrix equation

Kr




b0r

b1r
...

brr


 =




b0r

b1r
...

brr


 ,

where Kr is any (r + 1)× (r + 1) matrix with Vr embedded in the lower left
hand corner and Ir − Mr embedded in the lower right hand corner. Then
ar = br and air = bir for all r ≥ 1 and 0 ≤ i ≤ r.

Proof. The equation

Kr




b0r

b1r
...

brr


 =




b0r

b1r
...

brr




implies the equation




b1r

b1r
...

brr


 = b0rVr + (Ir −Mr)




b1r

b1r
...

brr


 ,
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which can be rearranged to

Mr




b1r

b2r
...

brr


 = b0rVr.

This corollary can be used to prove that ar = br and air = bir for all r and
i ≤ r, assuming that formulas for both are given. If we wish to derive the br

and bir formulas, starting only with the ar and air values, we can proceed as
follows:

1. Derive b1, b01, and b11 directly.

2. Assuming br−1 and bi,r−1 have been derived for 0 ≤ i ≤ r − 1, let




v0r

v1r
...

vrr




be any eigenvector of Kr corresponding to eigenvalue 1. Assuming that
v0 6= 0, the vector

br−1

v0




v0r

v1r
...

vrr




is another eigenvalue corresponding to eigenvalue 1. Set

bir =
br−1

v0r

vir

and

br =
r∑

i=0

bi,r.

Then b0r = br−1 by design.
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3. Use step 2 to create the numbers br and bir for all values of r and i ≤ r.
These numbers satisfy the hypotheses of the corollary, hence ar = br and
air = bir for all r and i ≤ r.

Here’s the bright idea of Mills, Robbins, and Rumsey: they formulated
this procedure and applied it to ar = hr, air = hir, br = Lr, bir = Lir. We
will carry out these steps and construct Mr , Vr, and Kr as follows: Let c1

through cr be the cofactors of the rth row of the matrix Ir + Hr. These are
also the cofactors of the last row of each Hir because Ir + Hr and Hir are
identical in the first r − 1 rows. Let Ri denote the rth row of Hir. Let C be
the column vector containing the cofactors c1 through cr. By properties of
determinants the dot product Ri • C is equal to det(Hir) = hir. If we let R
be the r × r matrix whose rows are R1 through Rr, then we obtain

RC =




h1r

h2r
...

hrr


 .

Since R is an upper triangular matrix with 1s along the diagonal, it is in-
vertible. Hence

C = R−1




h1r

h2r
...

hrr


 .

If T is any row of H0r other than the last row, then the dot product T •C
can be interpreted as the determinant of the matrix obtained by replacing
the last row of H0r with T . Hence this determinant is zero. Combined with
R0 • C = h0r, we obtain

H0rC =




0
0
...

h0r


 = h0r




0
0
...
1


 .
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Therefore

RH0rR
−1




h1r

h2r
...

hrr


 = RH0rC = h0rR




0
0
...
1


 .

If we choose
Mr = RH0rR

−1

and

Vr = R




0
0
...
1


 ,

then we have

Mr




h1r

h2r
...

hrr


 = h0rVr.

Mr is non-singular because it has determinant equal to det(H0r) = h0r 6= 0.

R is the matrix whose rows are R1 through Rr, where Ri is the rth row
of Hir. Therefore

R =

((
r + j − i

j − i

))

1≤i,j≤r

.

We wish to compute R−1. Observe that

(1− x)r+1 =
r∑

a=0

(−1)a

(
r + 1

a

)
xa

and
1

(1− x)r+1
=

∞∑
a=0

(
r + a

a

)
xa.

If we extract the coefficient of xj−i from both sides of the equation

(1 + x)r+1 1

(1 + x)r+1
= 1,
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where 1 ≤ i, j ≤ r, we obtain

∑

k≥i

(−1)k−i

(
r + 1

k − i

)(
r + j − k

j − k

)
= δi,j.

The non-zero terms must satisfy k ≥ i and j ≥ k. Therefore we can assume
k lies in the range between 1 and r, and write

r∑

k=1

(−1)k−i

(
r + 1

k − i

)(
r + j − k

j − k

)
= δi,j.

This implies the matrix product
(

(−1)j−i

(
r + 1

j − i

))((
r + j − i

j − i

))
= I.

For example, when r = 3 we get



1 −4 6
0 1 −4
0 0 1







1 4 10
0 1 4
0 0 1


 =




1 0 0
0 1 0
0 0 1


 .

In general, we conclude

R−1 =

((
r + j − i

j − i

))−1

=

(
(−1)j−i

(
r + 1

j − i

))
.

H0r = Ir + H∗
r , where H∗

r is the same as Hr in the first r − 1 rows and
has last row 0. Therefore

RH0rR
−1 = Ir + RH∗

r R−1.

We will compute the entries of RH∗
r R−1 using the binomial theorem. The

last row of H∗
r R−1 contains zeroes. The i-j entry of H∗

r R−1 for i < r is

r∑

k=1

(H∗
r )i,k(R

−1)k,j =
r∑

k=1

(
i + k

k − 1

)
(−1)j−k

(
r + 1

j − k

)
=

r−1∑

k=0

(
i + 1 + k

k

)
(−1)j−1−k

(
r + 1

j − 1− k

)
.
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This is the coefficient of xj−1 in

1

(1− x)i+2
(1− x)r+1 = (1− x)r−i−1,

namely

(−1)j−1

(
r − i− 1

j − 1

)
.

The i-j entry of RH∗
r R−1 is

(−1)j−1

r−1∑

k=1

(
r + k − i

k − i

)(
r − k − 1

j − 1

)
.

The non-zero terms come from i ≤ k ≤ r − j. So we will rewrite this as

(−1)j−1

r−j∑

k=i

(
r + k − i

k − i

)(
r − k − 1

j − 1

)
= (−1)j−1

r−i−j∑

k=0

(
r + k

k

)(
r − k − i− 1

j − 1

)
=

(−1)j−1

r−i−j∑

k=0

(
r + k

k

)(
r − k − i− 1

r − k − i− j

)
.

We recognize this as the coefficient of xr−i−j in

(−1)j−1 1

(1− x)r+1

1

(1− x)j
=

1

(1− x)r+j+1
,

which is

(−1)j−1

(
2r − i

r − i− j

)
.

Hence

I −Mr =

(
(−1)j

(
2r − i

r − i− j

))
1 ≤ i ≤ r
1 ≤ j ≤ r

and

Vr = R




0
0
...
1


 =




(
2r−1
r−1

)
...(

2r−r
r−r

)


 ,
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therefore we obtain

Kr =

(
(−1)j

(
2r − i

r − i− j

))
0 ≤ i ≤ r
0 ≤ j ≤ r

as described on page 78 of these notes.

At this point we just need to check that

Kr




L0r

L1r
...

Lrr


 =




L0r

L1r
...

Lrr


 ,

where

Lir =

(
r + i

i

)
(2r − i)!

(r − i)!

r−1∏
j=0

(3j + 1)!

(r + j + 1)!
=

(
r + i

i

)(
2r − i

r − i

)
r!

r−1∏
j=0

(3j + 1)!

(r + j + 1)!
.

Since every Lir has the same factor r!
∏r−1

j=0
(3j+1)!

(r+j+1)!
, it will suffice to show

that the column vector 


(
r+0
0

)(
2r−0
r−0

)
...(

r+r
r

)(
2r−r
r−r

)




is an eigenvector of Kr with eigenvalue 1. This amounts to verifying

r∑

k=0

(−1)k

(
2r − p

r − p− k

)(
r + k

k

)(
2r − k

r − k

)
=

(
r + p

p

)(
2r − p

r − p

)

for 0 ≤ p ≤ r. Note that

(
2r − p

r − p− k

)(
r + k

k

)
=

(
2r − p

r − p

)(
r − p

k

)
=

(2r − p)!

(r − p− k)!r!k!

Therefore we must verify

r∑

k=0

(−1)k

(
r − p

k

)(
2r − k

r − k

)
=

(
r + p

p

)
.
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This identity is true: it is the result of comparing the coefficient of xr in both
sides of the equation

(1− x)r−p 1

(1− x)r+1
=

1

(1− x)p+1
.

Exercises: The following exercises will take you through the q-analogue of
this process, which will lead to a proof of Andrews’ conjecture,

det

(
δij + qi+1

[
i + j
j − 1

]

q

)

1≤i,j≤r

=
∏

1≤i≤j≤r+1

1− qr+i+j

1− q2i+j−1
.

The first thing to note is that now

R =

(
qi(r+1)

[
r + j − i

j − i

])

1≤i,j≤r

.

Exercise 1. Using the q-binomial theorem of page 36 of these notes,

(1 + x)(1 + xq) · · · (1 + xqn−1) =
n∑

i=0

[
n
i

]

j

qi(i−1)/2xi,

and using the other q-binomial theorem

∞∑

k=0

[
n− 1 + k

k

]
xk =

1

(1− x)(1− xq) · · · (1− xqn−1)
,

prove that

R−1 =

(
(−1)j−iq

(j−i)(j−i−1)
2

−j(r+1)

[
r + 1
j − i

])
.

Exercise 2. The next step is to simplify the calculation of the i-j entry of
H∗

r R−1 for i < r, namely

r∑

k=1

(H∗
r )ik(R

−1)kj =
r∑

k=1

qi+1

[
i + k
k − 1

]
(−1)j−kq

(j−k)(j−k−1)
2

−j(r+1)

[
r + 1
j − k

]
.
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Show that this is equal to the coefficient of xj−1 in

qi+1−j(r+1)(1− xqi+2) · · · (1− xqr),

namely

(−1)j−1q
j(j−1)

2
−jr+ij

[
r − i− 1

j − 1

]
.

Exercise 3. Show that the i-j entry of RH∗
r R−1 can be interpreted as the

coefficient of xr−i−j in

(−1)j−1q(i−j)(r+1)+
j(j+1)

2
+ij 1

(1− x)(1− xq) · · · (1− xqr+j)
,

hence

RH∗
r R−1 =

(
(−1)j−1q(i−j)(r+1)+

j(j+1)
2

+ij

[
2r − i

r − i− j

])
.

Exercise 4. Explain why we can choose

Kr =

(
(−1)jq(i−j)(r+1)+

j(j+1)
2

+ij

[
2r − i

r − i− j

])
0 ≤ i ≤ r
0 ≤ j ≤ r

.

Exercise 5. For 0 ≤ k ≤ r let

vkr = qk(r+1)

[
r + k

k

] [
2r − k
r − k

]
.

Explain why

Kr




v0r

v1r
...

vrr


 =




v0r

v1r
...

vrr


 .

Exercise 6. Explain why

r∑

k=0

vkr =

[
3r + 1

r

]
.
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Exercise 7. Set
Lir(q) = Lr−1(q)

vir

v0r

and

Lr(q) =
r∑

i=0

Lir(q).

Show that this implies the recurrence relation

Lr(q) =

[
3r + 1

r

]

[
2r
r

] Lr−1(q).

Exercise 8. Prove that the recurrence relation in exercise 7 implies Andrews
conjecture, namely

det

(
δij + qi+1

[
i + j
j − 1

]

q

)

1≤i,j≤r

= Lr(q) =
∏

1≤i≤j≤r+1

1− qr+i+j

1− q2i+j−1
.

Chapter 6: Explorations

In this chapter we finally get to the proof of the alternating sign matrix
conjecture. We count totally symmetric self-complementary plane partitions
using a lattice-path argument, expressing the result as a Pfaffian (a cousin to
the determinant) of binomial coefficients (pages 209–211). The Pfaffian can
be expressed as the square root of a determinant, and Andrews evaluated
this determinant (page 211). There is a one-to-one correspondence between
TSSCPs and magog triangles. There are the same number of magog trape-
zoids as there are gog trapezoids. Magog trapezoids are a generalization of
magog triangles, and gog trapezoids are a generalization of monotone trian-
gles. So there are the same number of magog triangles as there are monotone
triangles (proved by Zeilberger – see pages 215–220). Monotone triangles are
in one-to-one correspondence with alternating sign matrices (pp. 57–58). So
there are the same number of alternating sign matrices as there are TSS-
CPs. The formula for the number of TSSCPs is the same as the formula for
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the number of descending plane partitions (Andrew’s determinant evaluation
referenced on page 211). The formula for the number of descending plane
partitions is equal to the conjectured formula for the number of alternating
sign matrices.

Section 6.1: Charting the territory

There is a lot of material here. We will focus our attention on the hid-
den symmetry in descending plane partitions described on pages 194–195.
Thinking about this symmetry motivated David Robbins to start counting
totally symmetric self-complementary plane partitions (see Figure 6.1, page
196), which led him to Conjecture 12 (about which more below).

A hidden symmetry

Conjecture 8 claims that there is a correspondence between alternating
sign matrices and descending plane partitions. Conjecture 10 (to date still
unproven) is a more refined version this correspondence:

Conjecture 10 (Mills, Robbins, Rumsey 1983): Let A(n, k,m, p) be
the number of n × n alternating sign matrices with a 1 in the kth column
of the first row, with m −1s, and with inversion number equal to p. Let
D(n, k, m, p) be the number of descending plane partitions with largest part
≤ n, and with exactly k − 1 parts of size n, with m special parts, and with a
total of p parts. We then have that

A(n, k,m, p) = D(n, k, m, p).

The inversion number of an alternating sign matrix is defined on page 59
of these notes. An example of a descending plane partition is given at the
top of page 195 of the textbook:

7 6 6 5 4 4
5 5 3 3 −

3 2 − −
− − −

− −
−

We can see that this meets the definition of a descending plane partition
because there is weak decrease across rows, strict decrease along columns,
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the number of parts in each row is strictly less than the first part in each
row, and the first part in each row below the first is less than or equal to the
number of parts in the row above.

The definition of special parts in a descending plane partition is given
on page 192 of the textbook: those parts ai,j which satisfy ai,j ≤ j − i.
We can visualize the special parts as follows: we will compare this to the
corresponding diagram of j−i values. We will use boldface to mark locations
of special parts. We can see that the descending plane partition has 3 special
parts:

7 6 6 5 4 4
5 5 3 3 −

3 2 − −
− − −

− −
−

versus

0 1 2 3 4 5
0 1 2 3 4

0 1 2 3
0 1 2

0 1
0

Since the largest part is n = 7 and there are exactly k − 1 = 1 parts of size
7 and there are m = 3 special parts, we would expect that there is a unique
7 × 7 alternating sign matrix corresponding to this having a 1 in the 2nd

column of the first row and containing 3 −1s.

Much earlier in the course (Exercise 2.2.1) you found a correspondence
between self-conjugate integer partitions of n and partitions of n into distinct
odd parts. This correspondence implies that there are the same number of
each. To date nobody has identified an explicit correspondence between
alternating sign matrices and descending plane partitions. The content of
the alternating sign conjecture is that there are the same number of each.
Anyone looking for a correspondence should make sure that it does not con-
tradict Conjecture 10 (which undoubtedly is supported by strong numerical
evidence).

Alternating sign matrices have a lot of symmetries. For example, if (aij)
is an n × n alternating sign matrix with 1 in the kth column of row one, m
−1s, and inversion number p, then (ai,n−j+1), its reflection about the central
vertical axis, is an n×n alternating sign matrix with a 1 in column n−k+1,
m −1s, and inversion number

(
n
2

)
+ m− p. (You will prove this in Exercise

5.) It stands to reason that there should be a way to reflect a descending
plane partition with largest part ≤ n, k − 1 parts of size n, m special parts,
and p parts overall into another descending plane partition with largest part

89



≤ n, n − k parts of size n, m special parts, and
(

n
2

)
+ m − p parts overall.

Such a reflection is described on pages 194 and 195 of the textbook. You will
verify its properties in the exercises. The algorithm for this reflection has a
complicated description, but we can visualize it as follows:

Consider the descending plane partition

7 6 6 5 4 4
5 5 3 3 −

3 2 − −
− − −

− −
−

which we examined above. Represent this by its matrix of entries (aij). The
reflected descending plane partition is created in two steps. First create the
complementary array (bij). Then create the mirror image of (bij), namely
(bn−j,n−i). Our goal is to visualize the complementary array (bij), given its
description at the bottom of page 194 of the textbook. The result is the
array on the right-hand side at the top of page 195.

First, we describe how to create those entries bij corresponding to the
special parts of (aij):




1 2 3 4 5 6
1 2 3 4 5

1 2 3 4
1 2 3

1 2
1



−




7 6 6 5 4 4
5 5 3 3 −

3 2 − −
− − −

− −
−




=




∗ ∗ ∗ ∗ 1 2
∗ ∗ ∗ 1 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗




.

Next, we describe how to create those entries bij corresponding to blank
positions in (aij). The formula is

bij = j + 1− βij.
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Therefore we are computing



− − − − − −
− − − − b2,6

− − b3,5 b3,6

b4,4 b4,5 4,6

b5,5 b5,6

b6,6




=




− − − − − −
− − − − 7

− − 6 7
5 6 7

6 7
7



−




− − − − − −
− − − − β2,6

− − β3,5 β3,6

β4,4 β4,5 4,6

β5,5 β5,6

β6,6




.

To compute βij, count the number of non-negative entries in the ith column
of (aij) minus the column 



j + 2
j + 1

...
j − n + 3


 .

For example, to compute β4,5 we calculate



5
3
2
−



−




7
6
5
−




=




−2
−3
−3
−




,

therefore β4,5 = 0. Hence b4,5 = 6− 0 = 6.

Exercises: 2, 5, 6, 7, 8.

Section 6.2: Totally symmetric self-complementary plane parti-
tions

We have seen examples of symmetric plane partitions (invariance with
respect to reflection across the plane x = y), cyclically symmetric plane par-
titions (invariance with respect to cyclic permutation of axes), and totally
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symmetric plane partitions (invariance with respect to transposition of any
two axes). Another type of symmetry is invariance with respect to com-
plementation. Namely, a plane partition P which lives inside B(r, s, t) is
self-complementary if and only if the set complement B(r, s, t) − P can be
interpreted as a plane partition (by rotating it into the correct position). For
example, the first plane partition at the top of page 196 is




6 6 6 5 4 3
6 6 5 3 3 2
6 5 5 3 3 1
5 3 3 1 1
4 3 3 1
3 2 1




,

which lives in B(6, 6, 6). If we subtract each entry from 6, we will be counting
the number of empty spaces above each x-y coordinate. We obtain




1 2 3
1 3 3 4

1 1 3 3 5
1 3 3 5 5 6
2 3 3 5 6 6
3 4 5 6 6 6




,

which is an inverted version of what we started with.

As we mentioned above, thinking about symmetries of descending plane
partitions led David Robbins to start counting totally symmetric self comple-
mentary plane partitions. I imagine he was thunderstruck when he discov-
ered, in every case he was able to check, that the number of totally symmetric
self-complementary plane partitions in B(2n, 2n, 2n) is equal to the number
of n×n alternating sign matrices. This is the content of Conjecture 12 (page
195).

In order to count totally symmetric self-complementary plane partitions,
we need an efficient way to represent them. The example we considered above
is totally symmetric and self complementary. Since the x = k slice is equal
to the y = k slice and the z = k slice, all the information about this plane
partition is contained in its z-slices. Moreover, since the plane partition is
self-complementary, it can be reconstructed from the top half of its z-slices.
There is an illustration in Figure 6.5, page 205, of this idea.
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The z = 5 through 10 slices of the totally symmetric self-complementary
plane partition in Figure 6.3, page 204, are shown. Each z-slice can be viewed
as the Ferrers diagram of an integer partition. Since the plane partition is to-
tally symmetric, each Ferrers diagram is self-conjugate. We know that every
self-conjugate integer partition can be represented by a partition of distinct
odd numbers. In Figure 6.5, each z-slice is encoded by such a partition.
These partitions are assembled into the array of numbers at the bottom of
page 205.

The properties of this array of numbers are described at the top of page
206. We can summarize them as follows: upper triangular, all positive entries
are odd numbers, diagonal entries are 2n − 1, 2n − 3, ..., 1, strict decrease
across rows and weak increase down columns. There is a one-to-one corre-
spondence between TSSCPP’s of order n (largest part 2n−1) and TSSCPP’s
living in B(2n, 2n, 2n).

The corresponding nest of lattice paths

A TSSCPP array of order n can be represented by a nest of lattice paths.
See for example the correspondence on page 207. Row i, 1 ≤ i ≤ n − 1, is
represented by a lattice path beginning at position (−2(n− 1− i), n− 1− i)
and ending on the line y = −x + 1. The lattice path corresponding to

(2(n− i + 1)− 1) + (2λ2 − 1) + · · ·+ (2λk − 1)

will pass through k − 1 points

(αi, βi − λ2), (αi + 1, βi − 1− λ3), . . . , (αi + k − 2, βi − k + 2− λk),

where αi = −2(n−1−i) and βi = −αi+1. These coordinates are respectively
λ2, λ3, ..., λk units below the line y = −x + 1. To complete the lattice path,
rise to the line y = −x + 1.

In order for such a lattice path to exist, we need the y-coordinates to
increase, i.e.

βi − j − λj+2 ≤ βi − j − 1− λj+3

for 0 ≤ j ≤ k − 3, and we need the last y-coordinate to be below the line
y = −x + 1, i.e.

βi − k + 2− λk ≤ −αi − k + 2 + 1.

But the first inequality is equivalent to

λj+3 ≤ λj+2 − 1,
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and the second inequality is equivalent to λk ≥ 1, both of which are true.

The properties of the TSSCPP array guarantee that the lattice paths can
be constructed and that none of them will intersect. As a technical matter
we include an additional lattice path from (2,−1) to (2,−1) if necessary to
ensure that there are an even number of lattice paths in the nest. There is a
one-to-one correspondence between nests of lattice paths and TSSCPPs.

At this point it would be tempting to express the generating function for
TSSCPPs corresponding to lattice paths which have a fixed set of ending
points in the form of a determinant of q-binomial coefficients, then show by
means of a sign-reversing involution that the terms corresponding to inter-
secting lattice paths cancel out. I suspect this can be done. I also suspect
that when we try to sum all the determinants together, this expression does
not easily collapse into a single determinant. The book takes another ap-
proach using Pfaffians (about which more below). Moreover, the author of
the book does not derive the generating function for TSSCPPs, just the for-
mula for the number of TSSCPPs in B(2n, 2n, 2n), which is found by letting
q → 1 in the generating function. So we are going to be dealing with a
Pfaffian of binomial coefficients.

Pfaffians

1-factors are to Pfaffians as permutations are to determinants. The de-
terminant of the n× n matrix A is

det(A) =
∑
σ∈Sn

(−1)I(σ)

n∏
i=1

ai,σ(i).

For an even number n, the Pfaffian (named after Gauss’s teacher Pfaff) of a
collection of numbers A = {ai,j|1 ≤ i < j ≤ n} is

Pf(A) =
∑

F∈Fn

(−1)X (F )
∏

(i,j)∈F

ai,j.

The set Fn consists of all partitions of the set {1, 2, . . . , n} into disjoint
subsets of size 2. For example, F3 = {F1, F2, F3}, where F1 = {(1, 2), (3, 4)},
F2 = {(1, 3), (2, 4)}, and F3 = {(1, 4), (2, 3)}. The total number of 1-factors
of a 2k-element set is

f2k = (2k − 1)f2k−2 = (2k − 1)(2k − 3)f2k−4 = · · · =
k∏

i=1

(2i− 1).
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The logic behind this counting argument is that there are 2k − 1 numbers
that 1 can be paired with, and then we have to pair off the remaining 2k− 2
numbers.

Given a 1-factor F ∈ Fn, the crossing number of F is X (F ) = the number
of pairs (a, b), (c, d) in F such that a < c < b < d. The Pfaffian of

A = {ai,j|1 ≤ i < j ≤ 4}

will have three terms, corresponding to the three 1-factors F1, F2, F3. Since
X (F1) = X (F3) = 0 and X (F2) = 1, we have

Pf(A) = a12a34 − a13a24 + a14a23.

It is a fact that the square of a Pfaffian can be expressed as the determi-
nant of an appropriately defined skew-symmetric matrix. You will prove this
in Exercise 11. See the example at the bottom of page 208. So now we are
anticipating that the number of TSSCPP’s will be expressed as the square
root of a determinant.

TSSCPP as Pfaffian

We are tracing through the description on page 209. I am going to slightly
modify the proof to make it clearer. Let Nn denote the set of nests of lattice
paths of order n beginning at the the coordinates (2− 2i, 2− 1) for a certain
range of values of i (see page 209) and ending on the line y = 1− x in which
no two paths end in the same vertex. (In the book, lattice paths in Nn are
allowed to arrive at the same vertex. But the weight of any nest with two
paths arriving at the same vertex is set to zero. So it is not necessary to
include these. The proof still works.) For example, let n = 5. Then there
will be 4 lattice paths. Path 1 begins at (0, 0), Path 2 begins at (−2, 1), Path
3 begins at (−4, 2), Path 4 begins at (−6, 3). The paths must end on the
line y = −x + 1. An example of a nest is

N = (P1, P2, P3, P4) = (0, 00, 111, 1001),

where we have encoded the paths by binary strings. If we denote by

(xk, 1− xk)
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the last vertex of path Pk, then we have

(x1, x2, x3, x4) = (0,−2,−1,−4).

There are 3 perfect matchings (1-factors) of these 4 indices:

F1 = {(1, 2), (3, 4)},

F2 = {(1, 3), (2, 4)},
F3 = {(1, 4), (2, 3)}.

This induces a perfect matching of x1 through x4:

f1 = {(x1, x2), (x3, x4)} = {(0,−2), (−1,−4)},

f2 = {(x1, x3), (x2, x4)} = {(0,−1), (−2,−4)},
f3 = {(x1, x4), (x2, x3)} = {(0,−4), (−2,−1)}.

Note that when i < j, Pi begins to the right of Pj. If they cross each other
an even number of times, then Pi ends to the right of Pj (same relative
positions). But if they cross each other an odd number of times, then Pi

ends to the left of Pj. We can detect an odd number of crossings by the
relationship xi < xj.

According to the book, the inversion number of (F, N) is the number of
pairs (xi, xj) ∈ f such that i < j and xi < xj. So by my count we have

I(F1, N) = 0,

I(F2, N) = 0,

I(F3, N) = 1.

It is easy to see that

(−1)I(F,N) =
∏

(i,j)∈F

(−1)χ(xi<xj),

where

χ(xi < xj) =

{
1 if xi < xj

0 if xi > xj.
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Having defined I(F, N), we set

w(F,N) = (−1)χ(F )+I(F,N).

Having defined w(F, N) for each 1-factor F of the nest of lattice paths,
we define the weight of the entire nest as

w(N) =
∑

F

w(F,N).

Since X (F1) = 0, X (F2) = 0, X (F3) = 1, I(F1, N) = 0, I(F2, N) = 0,
I(F3, N) = 1, and no two of the lattice paths have the same ending point,
we have

w(N) = (−1)0+0 + (−1)0+0 + (−1)1+1 = 3.

In general, if a nest N has no crossing lattice paths, then I(F, N) = 0 for
all 1-factors F , hence w(F, N) = 1 for all F and

w(N) =
∑

F

(−1)χ(F ) = 1,

since the Pfaffian of a set of 1s is equal to 1 by Exercise 9. We know that
there is a one-to-one correspondence between non-crossing nests of Pfaffians
of order n and TSSCPPs of order n. Therefore the number of TSSCPPs is

∑

N ∈ Nn is non-crossing

w(N).

In what follows we will show that if N ∈ Nn is a nest of lattice paths
which contains at least one pair of crossing paths, then there is a unique
nest N ′ ∈ Nn which also contains a pair of crossing paths and such that
w(N ′) = −w(N). In other words, there is a sign-reversing involution which
maps crossing nests to other crossing nests. Therefore

∑
N∈Nn

w(N) =
∑

N ∈ Nn is non-crossing

w(N)

because the terms corresponding to crossing nests cancel out.
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The advantage of passing from
∑

N ∈ Nn is non-crossing

w(N)

to ∑
N∈Nn

w(N)

is that the latter expression can be recognized as a Pfaffian. We have

∑
N∈Nn

w(N) =
∑

N∈Nn

(∑
F

w(F, N)

)
=

∑
F

( ∑
N∈Nn

w(F,N)

)
.

We will show later that there exists a collection of numbers

H = {H(i, j) : i < j}
such that ∑

N∈Nn

w(F, N) = (−1)χ(F )
∏

(i,j)∈F

H(i, j)

for each matching F . This will imply that

∑
F

( ∑
N∈Nn

w(F,N)

)
=

∑
F

(−1)χ(F )
∏

(i,j)∈F

H(i, j) = Pf(H).

Hence the number of TSCPPs of order n is Pf(H).

We will use our example above to illustrate the sign-reversing involution
on nests with crossing lattice paths. Given a nest N which contains crossing
paths, we must pick out one of the intersection points in a unique way, then
switch tails as we have before. This intersection point is found as follows
(see pp 209-210): “If any two paths intersect, then we choose the point of
intersection that is closest to one of the starting points, and among those
points at the same distance we choose the one with x coordinate closest to
0.”

Our example has exactly one intersection point, so it is too small to il-
lustrate the tie-breaking rule described above. But suffice it to say that the
method by which we find the intersection point guarantees that the inter-
secting paths will be of the form Pi and Pi+1 – we made a similar argument
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on page 44 of these notes. Starting with the nest N and the 1-factor F , we
create the new nest N ′ and the new 1-factor F ′ by switching the tails in Pi

and Pi+1 and switching i and i + 1 in F .

Let N = (0, 00, 111, 1001) as above. We can see that paths 2 and 3
intersect after 1 step along path 2 and after 2 steps along path 3, and this is
the unique intersection point. We have

P2 = 0/0

and
P3 = 11/1,

where / marks the the dividing line before and after the point of intersection.
The tails occur after /. Switching these tails, and leaving the other paths
unchanged, we arrive at

N ′ = (0, 01, 110, 1001).

When N is paired with F , we send (F, N) to (F ′, N ′) by swapping the
indices 2 and 3 in F to produce F ′. Hence

((0, 00, 111, 1001), {(1, 2), (3, 4)}) −→ ((0, 01, 110, 1001), {(1, 3), (2, 4)}),

((0, 00, 111, 1001), {(1, 3), (2, 4)}) −→ ((0, 01, 110, 1001), {(1, 2), (3, 4)}),
((0, 00, 111, 1001), {(1, 4), (2, 3)}) −→ ((0, 01, 110, 1001), {(1, 4), (2, 3)}).

We will now argue that that w(N ′, F ′) = −w(N, F ) in every case. This
is the same as checking that

(−1)χ(F ′)+I(N ′,F ′) = −(−1)χ(F )+I(N,F ).

This will occur provided we can show that either the matching number or
the inversion number changes by 1 when we perform a tail switch, while the
other value remains the same. There are two cases to consider. We will give
the general argument, not just the argument for our example.
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Case 1: i and i+1, the indices corresponding to crossing paths Pi and Pi+1,
occur in the same pair in F . Then the inversion number changes by 1, while
the crossing number remains the same. This corresponds to the example

((0, 00, 111, 1001), {(1, 4), (2, 3)}) −→ ((0, 01, 110, 1001), {(1, 4), (2, 3)}).
We can see that F ′ = F and χ(F ′) = χ(F ). To prove that I(N ′, F ′) =
I(N, F ) ± 1, we just note that the only difference between I(N, F ) and
I(N ′, F ′) is in the terms χ(xi < xi+1) and χ(x′i < x′i+1) = χ(xi+1 < xi).
Therefore

I(N ′, F ′) =

{
I(N, F )− 1 if xi < xi+1

I(N, F ) + 1 if xi > xi+1

Case 2: i and i + 1 occur in different pairs in F . Say that a and i occur in
one pair and b and i + 1 occur in a second pair in F . In principle we do not
know which index is the larger one in each pair, so there are 6 subcases to
check.

Case 2.1: a < i < i + 1 < b. An example of this is i = 2, i + 1 = 3, a = 1,
b = 4 in

((0, 00, 111, 1001), {(1, 2), (3, 4)}) −→ ((0, 01, 110, 1001), {(1, 3), (2, 4)}).
Then

(a, i) → (a, i + 1),

(i + 1, b) → (i, b).

The pair (a, i), (i + 1, b) contributes 0 to the crossing number of F and the
pair (a, i + 1), (i, b) contributes 1 to the crossing number of F ′. No other
pairs of ordered pairs are affected. Therefore χ(F ′) = χ(F ) + 1. Also,

χ(x′a < x′i+1) = χ(xa < xi)

and
χ(x′i < x′b) = χ(xi+1 < xb),

therefore I(F ′, N ′) = I(F,N).

Case 2.2: b < i < i + 1 < a. An example of this is i = 2, i + 1 = 3, a = 4,
b = 1 in

((0, 00, 111, 1001), {(1, 3), (2, 4)}) −→ ((0, 01, 110, 1001), {(1, 2), (3, 4)}).
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Then
(i, a) → (i + 1, a),

(b, i + 1)) → (b, i).

The pair (b, i + 1), (i, a) contributes 1 to the crossing number of F and the
pair (b, i)), (i + 1, a) contributes 0 to the crossing number of F ′. No other
pairs of ordered pairs are affected. Therefore χ(F ′) = χ(F )− 1. Also,

χ(x′i+1 < x′a) = χ(xi < xa)

and
χ(x′b < x′i) = χ(xb < xi+1),

therefore I(F ′, N ′) = I(F,N).

Case 2.3: a < b < i < i + 1. Then

(a, i) → (a, i + 1),

(b, i + 1) → (b, i).

The pair (a, i), (b, i + 1) contributes 1 to the crossing number of F and the
pair (a, i + 1), (b, i) contributes 0 to the crossing number of F ′. No other
pairs of ordered pairs are affected. Therefore χ(F ′) = χ(F )− 1. Also,

χ(x′a < x′i+1) = χ(xa < xi)

and
χ(x′b < x′i) = χ(xb < xi+1),

therefore I(F ′, N ′) = I(F,N).

Case 2.4: b < a < i < i + 1. Then

(a, i),→ (a, i + 1),

(b, i + 1) → (b, i).

The pair (b, i + 1), (a, i) contributes 0 to the crossing number of F and the
pair (b, i), (a, i + 1) contributes 1 to the crossing number of F ′. No other
pairs of ordered pairs are affected. Therefore χ(F ′) = χ(F ) + 1. Also,

χ(x′a < x′i+1) = χ(xa < xi)
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and
χ(x′b < x′i) = χ(xb < xi+1),

therefore I(F ′, N ′) = I(F,N).

Case 2.5: i < i + 1 < a < b. Then

(i, a),→ (i + 1, a),

(i + 1, b)) → (i, b).

The pair (i, a), (i + 1, b) contributes 1 to the crossing number of F and the
pair (i, b), (i + 1, a) contributes 0 to the crossing number of F ′. No other
pairs of ordered pairs are affected. Therefore χ(F ′) = χ(F )− 1. Also,

χ(x′i+1 < x′a) = χ(xi < xa)

and
χ(x′i < x′b) = χ(xi+1 < xb),

therefore I(F ′, N ′) = I(F,N).

Case 2.6: i < i + 1 < b < a. Then

(i, a),→ (i + 1, a),

(i + 1, b) → (i, b).

The pair (i, a), (i + 1, b) contributes 0 to the crossing number of F and the
pair (i, b), (i + 1, a) contributes 1 to the crossing number of F ′. No other
pairs of ordered pairs are affected. Therefore χ(F ′) = χ(F ) + 1. Also,

χ(x′i+1 < x′a) = χ(xi < xa)

and
χ(x′i < x′b) = χ(xi+1 < xb),

therefore I(F ′, N ′) = I(F,N).

Our mapping sends (F, N) to (F ′, N ′). We can see that this mapping is
an involution because the set of intersection points in N ′ are the same as the
set of intersection points in N . Applying the mapping to (F ′, N ′), we switch
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the tails of Pi and Pi+1 in N ′ and swap i and i+1 in F ′. This brings us back
to (F,N). We have

w(N) =
∑

F

w(F, N) =
∑

F ′
(−w(F ′, N ′)) = −w(N ′).

Sum of weights as Pfaffian

We return to the demonstration that

∑
N∈Nn

w(F, N) = (−1)χ(F )
∏

(i,j)∈F

H(i, j)

for a fixed matching F and an appropriate H. This is essential a counting
problem. For convenience we will just treat the case where n is odd. Then
we know that lattice paths begin in the n− 1 vertices (0, 0), (−2, 1), (−4, 2),
..., (−2n + 4, n − 2) and end in n − 1 vertices in the range (0, 1), (−1, 2),
(−2, 3), ..., (−2n + 4, 2n− 3). We will denote by D(x1, . . . , xn−1) the set of
lattice paths in which Pi ends in the vertex (xi, 1−xi) for 1 ≤ i ≤ n−1. Any
lattice path which begins in position (−2i + 2, i − 1) and ends in position
(xi, 1 − xi) can be represented by a binary string with xi + 2i − 2 1s and
2−xi− i 0s. The number of such binary strings is

(
i

2−xi−i

)
. In the book, the

notation for this is h(i, 2− xi) where h(i, r) =
(

i
r−i

)
. Therefore, the number

of lattice paths in D(x1, . . . , xn−1) is

n−1∏
i=1

h(i, 2− xi) =
∏

(i,j)∈F

h(i, 2− xi)h(j, 2− xj).

Given N ∈ D(x1, . . . , xn−1), the weight of the pair (F,N) is

w(F,N) = (−1)χ(F )
∏

(i,j)∈F

(−1)χ(xi<xj).

This weight is the same for all N ∈ D(x1, . . . , xn−1). Therefore

∑

N∈D(x1,...,xn−1)

w(F,N) =
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(−1)χ(F )
∏

(i,j)∈F

(−1)χ(xi<xj)h(i, 2− xi)h(j, 2− xj).

Letting xi range through all possible values for each i, we obtain

∑
N∈Nn

w(F,N) = (−1)χ(F )
∏

(i,j)∈F

(∑
r<s

h(i, r)h(j, s)− h(i, s)h(i, r)

)
.

If we set
H(i, j) =

∑
r<s

h(i, r)h(j, s)− h(i, s)h(i, r),

then we have ∑
N∈Nn

w(F, N) = (−1)χ(F )
∏

(i,j)∈F

H(i, j).

Therefore the number of TSSCPPs of order n is Pf(H) when n is odd.

The determinant evaluation

The Pfaffian Pf(H) can be expressed as the square root of an associated
determinant. You will demonstrate this in Exercise 11. George Andrews
evaluated this determinant. Apparently this was not easy, or, as Andrews
put it, “inordinately complicated.” See page 211 of the textbook. The proof is
omitted. But Andrews determinant evaluation proved the following theorem:

Theorem: The number of TSSCPPs in B(2r, 2r, 2r) is equal to the number
of descending plane partitions with largest part ≤ r. (See page 199.)

Exercises: 1, 2, 3, 4, 5, 7, 9, 10, 11, 12

Section 6.3: Proof of the ASM conjecture

Each TSCPP of order in B(2n, 2n, 2n) is uniquely encoded by a nest
of lattice paths, which is uniquely encoded by collection of shapes (Figure
6.6, page 216), which is uniquely encoded by a magog triangle of order n
(Figure 6.7, page 217) whose properties are given on page 216. The last
row of a magog triangle contains weakly increasing integers in which the jth

entry is ≤ j. Alternating sign matrices are uniquely encoded by monotone
triangles of order n (see page 58 and bottom of page 217). The north-
west edge of numbers are weakly increasing and whose jth entry is also ≤
j. This suggests that there might be a one-to-one correspondence between
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magog triangles and monotone triangles. More generally, we can define (n, k)-
magog trapezoids (last k rows of an order n magog triangle) and (n, k)-gog
trapezoids (first k northwest rows of an order n monotone triangle). Doron
Zeilberger proved that there are always the same number of each. This
proved the alternating sign matrix conjecture: the number of alternating
sign matrices is equal to the number of monotone triangles is equal to the
number of magog triangles is equal to the the number of TSSCPPs, the
formula for which is the same as the formula for the number of descending
plane partitions, the formula for which is equal to the conjectured formula for
the number of alternating sign matrices. You will do an exercise to familiarize
yourself with gog and magog trapezoids.

Constant term identities

Apparently Zeilberger did not provide a bijective proof that there are the
same number of magog and gog trapezpoids. Instead, he counted each by
identifying the numbers in question as constant terms of Laurent series. See
pp. 218-219. You will do some exercises to familiarize yourself with constant
term identities.

Exercises: 1, 2, 3, 4.

Chapter 7: Square Ice

Section 7.1: Insights from statistical mechanics

An 5× 5 sheet of square ice is depicted at the top of page 225 in Figure
7.1. This is a 5 × 5 array of oxygen atoms, each of which is attached to
exactly two hydrogen atoms. Any configuration of bonds is possible, subject
to the following restrictions: no O in the first row is attached to an H above
it, no O in the last row is attached to an H below it, every O in the first
column is attached to an H to its left, and every O in the last column is
attached to an H to its right.

It is easier to think about square ice if it is represented by the directed
graph below it in Figure 7.1. Represent each O by a vertex. Think of an O
as having four compass points around it: N , S, E, W (north, south, east,
west). Each O will be bonded with H’s in exactly 2 of these four compass
points. A bond is represented by an arrow directed from the compass point
towards the O. There are exactly 6 ways to choose 2 compass points out of
4, hence there are exactly 6 types of vertex in this figure: NS, NE, NW ,
SE, SW , EW . Hence the name six vertex model.
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There is a one-to-one correspondence between n×n 6-vertex models and
n × n alternating sign matrices. The book gives one description on pages
224-225, but I found this difficult use and have another way to think about
it.

Look at the 6-vertex model on page 225. I will classify all vertices into two
types: consistent and inconsistent. Consistent vertices have both horizontal
arrows pointing in the same direction and both vertical arrows pointing in
the same direction. Inconsistent vertices have both the horizontal arrows
pointing in opposite directions and the vertical arrows pointing in the oppo-
site directions. Vertices NE, NW , SE, and SW are all consistent. Vertices
NS and EW are inconsistent.

We are going to create a 5× 5 matrix A = (aij) which corresponds to the
6-vertex model on page 225. The rule is

aij =





0 if vertex vij is consistent

1 if vertex vij is inconsistent of type EW

−1 if vertex vij is inconsistent of type NS.

Then A must be an alternating sign matrix for the following reason: As you
read the arrows across any row, direction changes alternate. The same is true
down any column. Inconsistent vertices record direction changes. Therefore
1s alternate with −1s. The boundary conditions (direction of arrows along
west and north face of the diagram) imply that the first non-zero entry in
every row and column is equal to 1. Since the direction of the arrow at the
end of every row and column is the opposite of the direction of the arrow at
the beginning, there are an odd number of direction changes. This implies
that there is one more 1 than −1 in any row and column. Therefore the row
sums and column sums are all equal to 1.

Every alternating sign matrix corresponds to exactly one 6-vertex model.
To create the 6-vertex model, first create inconsistent vertices corresponding
to the 1s and the −1s. All the other vertices must be consistent, and their
arrow directions are determined by the arrow directions of the inconsistent
vertices and by the boundary conditions. The fact that we are starting with
an alternating sign matrix guarantees that it is possible to complete the
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diagram, since direction changes alternate and the first and last non-zero
entry in each row and column is equal to 1.

There are other representations of an alternating sign matrix, including
nested lattice paths that are allowed to touch at corners, and 3-colorings of
squares.

The weights

Each vertex in the 6-vertex model has an associated weight. These
weights are given on page 228. Inconsistent vertices of type EW have weight
z. Inconsistent vertices of type NS has weight z−1. Consistent vertices of
type NW and SE have weight

[z] =
z − z−1

a− a−1
.

Consistent vertices of type NE and SW have weight

[az] =
az − (az)−1

a− a−1
.

The total weight of a 6-vertex model is the product of the weights of all the
vertices appearing in the model. Having defined the weight of a 6-vertex
model, we set Zn(z, a) equal to the sum of the weights of all possible n × n
models. That is,

Zn(z, a) =
∑
M

znEW z−nNS [z]nNW +nSE [az]nNE+nSW =

zn
∑
M

[z]nNW +nSE [az]nNE+nSW ,

where the sum is taken over all n × n 6-vertex models M . Zn(z, a) can be
viewed as a generating function for n× n alternating sign matrices.

We can obtain information about alternating sign matrices by choosing
z and a carefully. First we need more information about how many of each
type of vertex occurs in any given model. Let nXY be the number of vertices
of type XY . In the first row of edges, all the edges are pointing up. Since
each row sum in the alternating sign matrix is equal to 1, the sum of the
entries in the first k− 1 rows is equal to k− 1. Hence there are a net of k− 1
direction changes along the edges from the first row to the kth row. Therefore
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there are exactly k − 1 edges pointing down in the kth row of edges for each
k. The total number of edges pointing down in the model is 1 + 2 + · · ·+ n.
Similarly, there are 1+2+· · ·+n edges pointing up in the model. Playing the
same game with the column sums, there are 1+2+ · · ·+n edges 1+2+· · ·+n
edges pointing left and the same number pointing right.

All edges pointing north are incident to vertices of type XY , where N 6∈
{X,Y }. All edges pointing south are incident to vertices of type XY , where
S 6∈ {X,Y }. All edges pointing east are incident to vertices of the type XY ,
where E ∈ {X,Y }. All edges pointing west are incident to vertices of type
XY , where W ∈ {X,Y }. Since every row of the alternating sum matrix
has row sum 1, the sum of all the entries in the alternating sign matrix is
n. Therefore there are n more vertices of type EW than of type NS. This
information leads to the system of equations

nSE + nSW + nEW =
n(n + 1)

2
,

nNE + nNW + nEW =
n(n + 1)

2
,

nNE + nSE + nEW =
n(n + 1)

2
,

nNW + nSW + nEW =
n(n + 1)

2
,

nEW − nSW = n.

The solution to this system of equations is




nNS

nNE

nNW

nSE

nSW

nEW




=




s− n

r

(
n+1

2

)− r − s

(
n+1

2

)− r − s

r

s



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where r and s are integers which vary depending on the model. The weight
of the 6-vertex model will be

znEW z−nNS [z]nNW +nSE [az]nNE+nSW = zn[z]n(n+1)−2r−2s[az]2r.

Note that s− n can be interpreted as the number of −1s in the alternating
sign matrix which corresponds to the model.

If we substitute a = z−2 then we have [z] = − 1
z+z−1 and [az] = 1

z+z−1 .
Therefore

Zn(z, z−2) = zn
∑

B∈An

(
1

z + z−1

)n(n+1)−2N(B)−2n

=

zn

(z + z−1)n2−n

∑
B∈An

(z + z−1)2N(B).

Let ω = e
2πi
3 . Then ω3 = 1 and w2 + w + 1 = 0. Therefore ω−2 = ω and

ω + ω−1 = −1. Setting z = ω we have

Z(ω, ω) = ωnAn,

where An is the number of n× n alternating sign matrices. There is a direct
path from these observations to a formula for An: see exercises 2.4.10, 7.2.6,
7.2.7, and 7.2.8.

In order to prove the refined alternating sign matrix conjecture, namely
the formula for An,k, it is necessary to work with the expression Zn(−→x ;−→y ; a),
whose formula is given in Theorem 7.1, page 229. Zn(−→x ;−→y ; a) is obtained by
replacing z by xi

yj
when computing the weight of the vertex in row i, column

j of the 6-vertex model. We think of xi

yj
as the label of this vertex. This more

general formula can be used to derive An,k. For example, the weight of the
6-vertex model on page 225 is R1R2R3R4R5, where

R1 =

[
ax1

y1

]
x1

y2

[
x1

y3

] [
x1

y4

] [
x1

y5

]
,

R2 =
x2

y1

y2

x2

[
ax2

y3

]
x2

y4

[
x2

y5

]
,

R3 =

[
x3

y1

]
x3

y2

[
x3

y3

]
y4

x3

x3

y5

,
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R4 =

[
x4

y1

] [
x4

y2

] [
ax4

y3

]
x4

y4

[
ax4

y5

]
,

R5 =

[
x5

y1

] [
x5

y2

]
x5

y3

[
ax5

y4

] [
ax5

y5

]
.

Theorem 7.1:

Zn(−→x ;−→y ; a) =

∏n
i=1

xi

yi

∏
1≤i,j≤n

[
xi

yj

] [
axi

yj

]

∏
1≤i<j≤n

[
xi

xj

] [
yi

yj

] det


 1[

xi

yj

] [
axi

yj

]



n

i,j=1

.

We can use this formula to derive An,k using the following argument.
Evaluating at x1 = ωt, x2 = · · · = xn = ω, y1 = · · · = yn = 1, a = ω we
obtain

(
ωnt

(ω − ω−1)n−1

)−1

Zn(−→x ;−→y ; a) =
n∑

k=1

(−1)k−1An,kPn,k(t),

where
Pn,k = (tω2 − t−1ω−2)k−1(tω − t−1ω−1)n−k.

See equation 7.4, page 230 of the textbook. The expressions Pn,k(t) are
linearly independent in the sense that

n∑

k=1

αkPn,k(t) = 0 =⇒ α1 = · · · = αn = 0

when α1 through αn are complex numbers. You will prove this in exercise
7.1.9. This implies

n∑

k=1

αkPn,k(t) =
n∑

k=1

βkPn,k(t) =⇒ α1 = β1, · · · , αn = βn.

Therefore, if we can show that

(
ωnt

(ω − ω−1)n−1

)−1

Zn(−→x ;−→y ; a) =
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n∑

k=1

(−1)k−1

(
n + k − 2

k − 1

)
(2n− k − 1)!

(n− k)!

n−2∏
j=0

(3j + 1)!

(n + j)!
Pn,k(t),

then we will have a proof that

An,k =

(
n + k − 2

k − 1

)
(2n− k − 1)!

(n− k)!

n−2∏
j=0

(3j + 1)!

(n + j)!

for each k.

Exercises: 1, 2, 7, 8, 9, 10, 11, 12, 13, 17

Section 7.2: Baxter’s triangle-to-triangle relation

The key to proving Theorem 7.1 is to first prove that Zn(−→x ;−→y ; a) is a
symmetric function in x1 through xn and is also a symmetric function in y1

through yn. In other words, the value of Zn(−→x ;−→y ; a) does not change when
we swap xi with xj or when we swap yi with yj. If we swap x2 with x3 then
the weight of the example on page 225 is changed to R1R

′
2R

′
3R4R5, where

R′
2 =

x3

y1

y2

x3

[
ax3

y3

]
x3

y4

[
x3

y5

]
,

R′
3 =

[
x2

y1

]
x2

y2

[
x2

y3

]
y4

x2

x2

y5

.

We are going to illustrate the idea behind the proof that Zn(−→x ;−→y ; a) is
a symmetric function in the xi’s and in the yi’s without working through all
the details. Let Z

xi,xj
n (−→x ;−→y ; a) denote the expression obtained by swapping

xi and xj in Zn(−→x ;−→y ; a). We wish to show that

Zxi,xj
n (−→x ;−→y ; a) = Zn(−→x ;−→y ; a).

We will argue that

[
axi+1

xi

]
Zxi,xj

n (−→x ;−→y ; a) =

[
axi+1

xi

]
Zn(−→x ;−→y ; a).

Dividing through by
[

axi+1

xi

]
we will obtain the desired result.
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Zn(−→x ;−→y ; a) is the sum of weights of n × n 6-vertex models. We will
introduce a new vertex v0 of type SW to each model, attached to the vertices
in positions (i, 1) and (i + 1, 1) as in the diagram on page 233, and label it
xi+1

xi
. The weight of this modified vertex model is

[
axi+1

xi

]
times the weight

of the original model. Therefore
[

axi+1

xi

]
Zn(−→x ;−→y ; a) is the sum of weights

of all the modified vertex models which contain v0. It can be shown (see the
calculation at the top of page 233) that the weight of any modified vertex
model is equal to the sum of the weights of two other modified vertex models.
To create these two models, swap the labels xi/y1 and xi+1/y1, remove v0 and
restore the edges which were incident to v0 to their original positions, then
introduce a vertex v1 labeled xi+1

xi
in the middle of the square created by the

edges connecting vertices (i, 1), (i, 2), (i + 1, 2), (i + 1, 1). Relocate the edge
connecting vertices (i, 1) and (i, 2) so that it connects v1 and (i, 2), retaining
the original direction of the edge. Relocate the edge connecting vertices
(i + 1, 1) and (i + 1, 2) so that it connects v1 and (i + 1, 2), retaining the
original direction of the edge. There are now two ways to connect vertices
(i, 1) and (i, 2) to v1 so that v1 has two edges directed into it and two edges
directed out of it.

It can be shown (Theorem 7.2, the triangle-to-triangle relation) that the
sum of the weights of these two modified models is equal to the sum of the
weights of yet two more modified models, obtained by first swapping the
labels xi

y2
and xi+1

y2
in the the model containing v1, removing v1, restoring the

edges which were incident to v1 to their original positions, then introducing
the vertex v2 in the middle of the next square over and directing 4 edges into
it analogous to what we did with v1. If we keep on going, we will find that
the sum of the weights of all models containing v0 is equal to the sum of the
weights of all models containing v1, which is equal to the sum of the weights
of all the models containing v2, ..., which is equal to the sum of the weights
of all the models containing vn, where vn appears on the right hand side of
the model attached to vertices (n, i) and (n, i + 1). The label of each vk is
xi+1

xi
. The vertex vn will always be of type NE. The weight of vn is

[
axi+1

xi

]
,

and in all the models containing vn the labels xi

yj
have been swapped with

xi+1

yj
for all j. Therefore the sum of the weights in the the models containing
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vn is
[

axi+1

xi

]
Zxi,x

j

n (−→x ;−→y ; a). Hence we have shown

[
axi+1

xi

]
Zxi,xj

n (−→x ;−→y ; a) =

[
axi+1

xi

]
Zn(−→x ;−→y ; a).

One can play the same game to show that

[
yi+1

yi

]
Zyi,yj

n (−→x ;−→y ; a) =

[
yi+1

yi

]
Zn(−→x ;−→y ; a),

where we use vertices w0 through wn attached between columns i and i + 1,
where w0 is of type SE and wn is of type NW . So Zn(−→x ;−→y ; a) is invariant
with respect to swapping any adjacent pair xi, xi+1 and any adjacent pair
yi, yi+1. Therefore it is invariant with respect to any arbitrary permutation
of the xi’s and any arbitrary permutation of the yi’s.

In the additional exercise (see below), you will verify that

[
ax3

x2

]
Zx2,x3

5 (−→x ;−→y ; a) =

[
ax3

x2

]
Z5(

−→x ;−→y ; a)

for the 5× 5 6-vertex model on page 225 of the textbook by mimicking this
calculation.

Now that we know that Zn(−→x ;−→y ; a) is a symmetric function in the xi’s
and the yi’s, Theorem 7.1 can be proved using this fact and an induction
argument. See pp. 238–240.

Exercises 7.1.17, 7.2.6, 7.2.7, 7.2.8, 2.4.9. and 2.4.10 supply a proof of
the Alternating Sign Matrix conjecture (Conjecture 3).

Exercises: 6, 7, 8, 2.4.9, and 2.4.10.

Additional Exercise: verify that

[
ax3

x2

]
Zx2,x3

5 (−→x ;−→y ; a) =

[
ax3

x2

]
Z5(

−→x ;−→y ; a)

for the 5× 5 6-vertex model on page 225 of the textbook.
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