
Heapify and Heapsort

Heapify the list L1, L2, . . . , Ln:

Step 1: Load elements into balanced tree structure of height dlog2 ne
Step 2: Find the largest element in the tree, then bubble it into the root
position by a sequence of swaps from its current position to the root position.

Step 3: Heapify the subtrees hanging from the root. Since the largest element
is already in the root position, the entire tree is a heap.

Analysis: In the course of heapifying, every element in the original tree
gets bubbled upwards some number of levels. Since there are h levels to
begin with, each bubbling operation takes at most h swaps. So at most
nh = ndlog2ne swaps are required to heapify a list of n elements.

Heapsort the list L1, L2, . . . , Ln:

Step 1: Heafipy the list.

Step 2: Continue to do the following: extract the root element, then adjust
the remaining elements to form a heap. Adjusting proceeds as follows: after
extracting the root element, the root position is empty. Swap the larger child
of the root into the root position, changing the empty position of the tree.
Now swap the larger child of the empty position into this position. Keep on
going until the empty position is a leaf position.

In the course of extracting elements from the heap, we are emptying the heap
in such a way that the elements extracted decrease from largest to smallest.
So in the process of extracting from the heap we are ordering the original list
in reverse order.

Analysis: each extraction requires no more than h swaps to bubble the empty
root position down to a leaf position. So extraction requires at most nh =
ndlog2ne swaps to perform. Combined with Heapify, Heapsort requires at
most 2ndlog2ne swaps to order a list of length n.

1


