Show all work

Notation: Q_{n} is the n-dimensional hypercube. Vertices are binary strings of length n. An edge connects two vertices when they differ in exactly one bit.

Notation: W_{n} is the wheel graph on n vertices. Vertices 1 through $n-1$ are arranged in circuit, and vertex n is joined by an edge to each of the other vertices.

1. Let G and H be the graphs depicted in Figure 1. Prove or disprove that they are isomorphic.

Solution: The two graphs have different vertex degree distributions, so they cannot be isomorphic.
2. Prove that a connected planar graph with 5 regions must have at least 8 edges. Hint: use a dot-counting argument.

Solution: Distributing 2 dots per edge, each interior region contributes at least 3 dots, and the exterior region also contributes at least 3 dots (since it wraps around the interior regions). So there are at least 15 dots. Hence $2 e \geq 15, e \geq 7.5$, which forces $e \geq 8$.
3. Prove that a connected planar graph with 5 regions and 8 edges must have 5 vertices. Draw an example of such a graph.

Solution: $r=e-v+2$ yields $5=8-v+2$, which implies $v=5$. One example is W_{5}.
4. Prove that Q_{3} is planar.

Solution: One of the cycles in Q_{3} is $000-010-110-100$. Another one is $001-011-111-101$. Draw the first cycle inside the second cycle, then add the edges $000-001,010-011,110-111,100-101$. This is a planar representation of Q_{3}.
5. Prove that Q_{3} is bipartite.

Solution: Color the vertices with an even number of 1 s in them red, and color the vertices with an odd number of 1 s in them blue. Then all edges connect red edges to blue edges. Hence the graph is bipartite.
6. Assuming that Q_{4} is bipartite, prove that it is non-planar by an edgecounting or dot-counting argument.

Solution: If Q_{4} is planar, then as a bipartite graph it must satisfy $e \leq 2 v-4$. But $e=32$ and $v=16$ fails this test.
7. Let G be the planar graph in Figure 7. Prove that it does not have a Hamilton Circuit.

Solution: Suppose it has a Hamilton Circuit. Then

$$
2\left(r_{4}-r_{4}^{\prime}\right)+4\left(r_{6}-r_{6}^{\prime}\right)+6\left(r_{8}-r_{8}^{\prime}\right)=0
$$

therefore

$$
1\left(r_{4}-r_{4}^{\prime}\right)+2\left(r_{6}-r_{6}^{\prime}\right)+3\left(r_{8}-r_{8}^{\prime}\right)=0 .
$$

In modulo 2 arithmetic, this says

$$
1\left(r_{4}+r_{4}^{\prime}\right)+1\left(r_{8}+r_{8}^{\prime}\right) \equiv 0 .
$$

However, there are an even number of regions with 4 edges and an odd number of regions with 8 edges, therefore $r_{4}+r_{4}^{\prime} \equiv 0$ and $r_{8}+r_{8}^{\prime} \equiv 1$. This implies

$$
1\left(r_{4}+r_{4}^{\prime}\right)+1\left(r_{8}+r_{8}^{\prime}\right) \equiv 1 .
$$

This contradiction implies that there is no Hamilton Circuit.
8. Compute $\chi_{v}\left(W_{6}\right)$ and $\chi_{e}\left(W_{6}\right)$.

Solution: The presence of K_{3} in W_{6} implies that $\chi_{v}\left(W_{6}\right) \geq 3$. But 3 colors are not possible, while 4 are, so $\chi_{v}\left(W_{6}\right)=4$. The presence of a degree 5 vertex in W_{6} implies that $\chi_{e}\left(W_{6}\right) \geq 5$. Since 5 colors are possible, $\chi_{e}\left(W_{6}\right)=5$.

