
Chapter 13: Network Flows and Applications

Network: directed graph with source S and target T . Non-negative edge
weights represent capacities.

Assume no edges into S or out of T . (If necessary, we can pull back to S ′

and extend to T ′ to accomplish this. Use sum of capacities out of S and into
T to assign capacities to new edges.)

Network flow: assignment of non-negative numbers to edges respecting
capacities and satisfying conservation of flow.

If P and Q are sets of vertices, flow(P, Q) = sum of flow values along all
(p, q) edges.

Definition: A vertex cut (P,Q) is a partition of V with S ∈ P , T ∈ Q.

Lemma: For any vertex cut (P, Q) we have

flow(P, Q)− flow(Q,P ) = flow(S, V ) = flow(V, T ).

Proof: We have

flow(P, Q) = flow (P, V )− flow(P, P )

and
flow(Q,P ) = flow(V, P )− flow(P, P ),

therefore

flow(P,Q)− flow(Q,P ) = flow(P, V )− flow(V, P ) = flow(S, V ).

Some more detail:

flow(P, V ) = flow(S, V ) +
∑

p∈P\{S}
flow(p, V )

and
flow(V, P ) =

∑

p∈P\{S}
flow(V, p) =

∑

p∈P\{S}
flow(p, V )

by conservation of flow, hence the cancelation. Similarly, we have

flow(P, Q) = flow (V,Q)− flow(Q,Q)
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and
flow(Q,P ) = flow(Q, V )− flow(Q,Q),

therefore

flow(P, Q)− flow(Q,P ) = flow(V,Q)− flow(Q, V ) = flow(V, T ).

In both cases we used conservation of flow and the assumption of no flow
into S or out of T .

Goal: find f maximizing flow(S, V ).

Definition: capacity(P, Q) = sum of capacities of all (p, q) edges.

Theorem: let P and Q be any partition of vertices in which S ∈ P and
T ∈ Q. Then flow(S, V ) ≤ capacity(P,Q).

Proof:

flow(S, V ) = flow(P,Q)− flow(Q,P ) ≤ flow(P, Q) ≤ capacity(P, Q).

Corollary: If flow(S, V ) = capacity(P, Q) for some cut (P,Q) then flow(S, V )
is maximal and capacity(P, Q) is minimal.

Corollary: To prove that a given flow assignment f has maximal flow(S, V ),
all we have to do is find a cut (P, Q) in which the (p, q) edges have flow equal
to capacity and the (q, p) edges have flow equal to zero. In this case we have

flow(S, V ) = flow(P, Q)− flow(Q, P ) = capacity(P,Q).

Given an existing flow, here is a method of augmenting it:

Find pseudo-path from S to T .

Define slack along forward edges e as capacity(e)−flow(e). Define slack along
backward edges as flow(e). Slack values are all non-negative. Let δ be the
smallest slack value value. If δ > 0, add δ to the forward edges and subtract δ
from the backward edges. This preserves conservation of flow along the path
and increases flow(S, V ) without exceeding capacities or creating negative
flow values.
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An algorithm for augmenting a flow to a maximal flow: turning the crank.

Here is one turn of the crank (a.k.a. the flow augmentation algorithm): Ini-
tialize P = {S} and Q = V −{S}. (Labelled and unlabelled vertices.) Label
S with (∗,∞). The first coordinate is predecessor, the second coordinate is
used to compute min slack.

Continue to do the following: examine every frontier edge pq. Classify as
forward or backwards edge, and calculate the slack δpq. If δpq = 0, move on
to the next frontier edge. If δpq > 0, do the following: assuming that the
label of p is (predecessor,minslack), then create the following label for q:
(p, min(minslack(p), δpq)). Now add q to P and delete q from Q. If T ∈ P ,
stop. Otherwise, keep on going.

There are two possible stopping conditions when you turn the crank:

Stop Condition 1: δpq = 0 along all frontier edges at some point in the
algorithm.

Stop Condition 2: T gets added to P .

Theorem: If we achieve Stop Condition 1, then the current flow assignment
is maximal. But if we achieve Stop Condition 2, then we can strictly augment
the flow.

Proof: In Stop Condition 1 we have identified a cut (P, Q) in which flow
= capacity along (p, q) edges and flow = 0 along (q, p) edges. This implies
maximal flow and minimal cut. In Stop Condition 2 we can identify a pseudo-
path from S to T using predecessor vertices, and the second coordinate of the
T -label calculates the minimum slack along this pseudo-path. This minimum
slack value will be positive, and we can use it to strictly augment the existing
flow.

Corollary: If we keep turning the crank this way, we will eventually find a
maximal flow and a minimal cut.

Proof: We can’t keep increasing flow(S, V ) indefinitely. So at some point
we achieve Stop Condition 1.

Section 13.3: Flows and Connectivity

Theorem 13.3.5: Let s and t be distinct vertices in a digraph D. Then the
maximum number of edge-disjoint st paths is equal to the minimum number
of edges in an st separating set.
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Proof: It is clear that any st separating set of edges must have at least as
many edges as there are edge-disjoint paths between s and t. So we must
have to show that the minimum number of edges is less than or equal to the
maximum number of paths.

Create a network N from D by adding a vertex S with in-degree 0 an a single
edge into s and a vertex T with out-degree 0 and a single edge into it from t.
Assign capacity 1 to all pre-existing edges, and capacity ∞ to the two new
edges. Find a flow in this network with flow(S, V ) = capacity(P,Q). If we
remove all (p, q) edges then there can be no surviving ST paths, hence no
surviving st paths. Therefore the minimum st edge separating set has less
than or equal to the number of such edges, which equal to the capacity of
(P, Q), which is equal to flow(S, V ). On the other hand, the flow defines a
set of edge-disjoint st paths, so the maximal number of them is greater than
or equal to flow(S, V ). QED.

Theorem 13.3.9: Let s and t be distinct vertices in a simple graph G.
Then the maximum number of edge-disjoint st paths is equal to the minimum
number of edges in an st separating set.

Proof: It is clear that any st separating set of edges must have at least as
many edges as there are edge-disjoint paths between s and t. So we must
have to show that the minimum number of edges is less than or equal to the
maximum number of paths.

Create a network N from G as follows: Add two new vertices S and T .
Create a directed edge S → s with capacity ∞ and a directed edge t → T
with capacity ∞. For every edge pq in G, create a directed edge p → q and
a directed edge q → p, capacities equal to 1. Find a flow in this network
with flow(S, V ) = capacity(P,Q). If we remove all pq edges from G, we will
separate s from t in G. Moreover, the number of pq edges in G is equal
to the capacity of (P,Q) in N . Hence the minimum number of edges in an
st-separating set of G is less than or equal to capacity(P, Q). On the other
hand, the capacity of (P, Q) is equal to the flow, and this flow defines edge-
disjoint paths from s to t in N . These do not, however, define edge-disjoint
st path in G, so we need to be careful here. The lemma below shows that
we can use the edge-disjoint st paths in N to define non-overlapping edge-
disjoint st paths in N , which correspond to edge-disjoint st paths in G. So
the minimum number of edges in an st-separating set of edges in G is less
than or equal to the maximum number of edge-disjoint st paths in G.
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Lemma: Every collection of k edge-disjoint st paths in N gives rise to a
collection of k non-overlapping edge-disjoint paths in N .

Proof: We have a collection of edges defining k paths. We will reduce
the total number of overlapping edges to zero by deleting some edges and
redistributing the rest. Find two intersecting paths P and Q, and let x be the
first vertex encountered on path Q on an overlapping edge, and let y be the
first vertex encountered on Q after leaving a consecutive block of overlapping
edges. Modify the two paths in question as follows: Take P from s to y, then
take Q from y to t. Also, take Q from s to x, then take P from x to t. We
have discarded the shared edges joining x to y. Now keep on going until no
more overlapping edges.

Notation: κe(s, t) is the minimum number of edges whose removal separates
s and t in a simple graph.

Lemma: Let G be a simple graph and s 6= t in G. Then κe(s, t) is equal to
the maximum flow(s, V ) in the network obtained by adding S → s, t → T ,
and introducing the usual capacities of 1 and ∞.

Proof: We must have κe(s, t) ≥ the maximum number of edge-disjoint st
paths, hence κe(s, t) ≥ the minimum size of an st cut, hence κe(s, t) ≥
the minimum capacity of an st cut, hence κe(s, t) ≥ the maximum flow.
Note that if f produces maximum flow and generates minimal cut (P, Q),
then removing all the (p, q) edges separates s and t, hence there is an st-
separating set of edges of size capacity(P,Q), hence size flow(S, V ), hence
κe(s, t) ≤ flow(S, V ). So these two values are equal.

Corollary 13.3.12: Let s be an arbitrary vertex in a simple graph G. Then

κe(G) = min
t∈VG−{s}

{flowst(s, V )}

where flowst(s, V ) is maximum flow in a network with S → s, t → T , and
the usual capacities.

Proof: It suffices to show that

κe(G) = min
t∈VG−{s}

{κe(s, t)}.

Let t 6= s be given. Then removing κe(s, t) edges separates s from t, hence
separates G, hence

κe(G) ≤ κe(s, t).
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This proves that
κe(G) ≤ min

t∈VG−{s}
{κe(s, t)}.

Suppose it is possible to disconnect G by removing j < mint∈VG−{s}{κe(s, t)}
vertices. Then removing these j vertices separates s from some other vertex
t0, hence κe(s, t0) ≤ j < κe(s, t0). Contradiction. Therefore we cannot have
strict inequality.

Consequence: We can calculate κe(G) algorithmically using this – see Al-
gorithm 13.3.1.

Using Network Flows to Prove the Vertex Forms of Menger’s The-
orem

The idea is to force internally disjoint paths. This can be done by introducing
bottleneck edges with capacity 1. Let S and T be source and target. After
every non-ST vertex x introduce xB and x → XB. Replace every edge xy
by xB → y. Now prove the vertex forms of Menger’s Theorems in the same
way we proved the edge forms (leave as exercise). Also, we can develop an
algorithm for computing κv(G) by computing the max flow in the network
defined by two non-adjacent vertices and then computing the minimum of
these values (leave as exercise).

Section 13.4: Matchings, Transversals, and Vertex Covers

Matchings

Let G be a graph. A matching in a graph is a subset of edges which do not
share endpoints.

Maximum Matching in a bipartite graph: a matching with maximal number
of edges.

Application: see Application 13.4.1, page 561.

Theorem 1: Given a bipartite graph G(X,Y ), form network by adding
source S and target T , directing edges from S to X, X to Y , and Y to T ,
and setting k(e) = 1 in all cases. Then there is a one-to-one correspondence
between matchings and flow assignments, and the size of a matching is equal
to the value of the corresponding flow.

Proof: Let M be a matching in G(X, Y ). Assign a flow value of 1 to
all corresponding edges in the network. Assign flows out of S and into T
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accordingly to preserve conservation of flow. Get flow with value equal to
|M |. Conversely, given a flow assignment, the G(A,B) edges with positive
flow cannot share endpoints, so gives rise to a matching. Hence the one-to-
one correspondence.

Transversals

Transversal of a collection of sets {A1, . . . , Ar}: a vector (a1, . . . , ar) such
that ai ∈ Ai for each i and ai 6= aj whenever i 6= j. Also called a SDR
(system of distinct representatives).

Application: see Application 13.4.3, page 564.

X-saturated matching in a bipartite graph G(X,Y ): a matching M in which
every vertex in X belongs to an edge in M .

Theorem 2: There is a one-to-one correspondence between transversals
of {A1, . . . , Ar} and X-saturated matchings in the bipartite graph G(X, Y ),
where X = {Al, . . . , Ar}, Y = A1 ∪ · · · ∪ Ar, and there is an edge between
x ∈ X and y ∈ Y iff y ∈ x.

Proof: Transversals correspond to matching edges.

Method for finding a transversal: form G(X, Y ) as in the theorem, then
find a maximal flow with flow value |X|, if possible. Use the method out-
lined in Theorem 1 to construct the corresponding matching, and used the
correspondence described in Theorem 2 to construct the transversal.

Theorem 3 (Hall’s Theorem): Let G(X,Y ) be a bipartite graph. Then
G(X, Y ) has an X-saturated matching if and only if for each W ⊆ X there
are at least |W | vertices incident to W in G(X,Y ), i.e. |N(W )| ≥ |W |.
Proof: Assume G(X, Y ) has an X-saturated matching M . Given W ⊆ X,
every vertex of W lies in a different edge of M , so there have to be at least
|W | neighbors of W in G(X, Y ).

Conversely, suppose for each W ⊆ X there are at least |W | neighbors of W
in G. Form the network as in Theorem 1. We will show that the minimal
cut-capacity of the network is |X|, which implies that there is a flow f with
|f | = |X|, which can be used to construct a matching of size X which is
therefore X-saturated.

First, note that the capacity of the cut ({S}, V \{S}) is |X|, so the minimal
capacity is ≤ |X|. Now let (P, Q) be a minimal vertex cut. To finish the
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proof, we will show that capacity(P,Q) ≥ |X|, hence capacity(P, Q) = |X|.
Write P = {S}∪P0 and Q = {T}∪Q0. The capacity of (P, Q) is the number
of edges from S into Q0 plus the number of edges from P0 into Q0 plus the
number of edges from P0 into T , or 〈S,Q0〉 + 〈P0, Q0〉 + 〈P0, T 〉 for short.
This is clearly equal to

〈S,Q0 ∩X〉+ 〈P0 ∩X, Q0 ∩ Y 〉+ 〈P0 ∩ Y, T 〉.

Some simplifications:

1.
〈S, Q0 ∩X〉 = |Q0 ∩X|.

2.

〈P0 ∩X, Q0 ∩ Y 〉 ≥ |Q0 ∩N(P0 ∩X)| = |N(P0 ∩X)| − |P0 ∩N(P0 ∩X)| ≥

|N(P0 ∩X)| − |P0 ∩ Y | ≥ |P0 ∩X| − |P0 ∩ Y |.

3.
〈P0 ∩ Y, T 〉 = |P0 ∩ Y |.

Therefore
capacity(P, Q) ≥ |Q0 ∩X|+ |P0 ∩X| = |X|.

Graph Factorizations

A factor of a graph is a subgraph that includes all vertices in its edges. A k-
regular graph is a graph in which every vertex has degree k. A k-factorization
of a graph G = (V,E) is a partition of E into k-regular 1-factors of G. For ex-
ample, a 1-factorization of the complete bipartite graph K({1, 2, 3}, {4, 5, 6})
is {E1, E2, E3}, where E1 = {{1, 4}, {2, 5}, {3, 6}}, E2 = {{1, 5}, {2, 6}, {3, 4}},
E3 = {{1, 6}, {2, 4}, {3, 5}}.
Theorem 4 (König’s 1-Factorization Theorem): Every k-regular bi-
partite graph G(X, Y ) is 1-factorable when k ≥ 1.

8



Proof: By induction on k. When k = 1, G(X,Y ) is a collection of vertex-
disjoint edges and is its own 1-factor. Now assume every k-regular bipartite
graph G(X, Y ) has a partition into k 1-factors. Let G(X, Y ) be a (k + 1)-
regular bipartite graph. We will show that G(X, Y ) has an X-saturated
matching M and that |X| = |Y |. Then M is a 1-factor and

H(X,Y ) = G(X,Y )−M

is a k-regular bipartite graph. By the induction hypothesis, the edges of
H(X, Y ) can be partitioned into k 1-factors, which implies that the edges of
G(X, Y ) can be partitioned into k + 1 1-factors.

We will prove that G(X,Y ) has an X-saturated matching M using Hall’s
theorem. Let W ⊆ X be given. Consider the collection of edges from W to
N(W ). Keeping track of the endpoints in W , there are k|W | edges from W
to N(W ). Keeping track of the endpoints in N(W ), there are ≤ k|N(W )|
edges from W to N(W ). Therefore k|W | ≤ k|N(W )|, which implies that
|W | ≤ |N(W )|. Hence by Hall’s theorem there is an X-saturated matching
M . This of course implies that |X| ≤ |Y | (or we could just say that |X| ≤
|N(X)| ≤ |Y |). A similar argument shows that |Y | ≤ |X|. Therefore |X| =
|Y | and we have our X-saturated matching M . //

Theorem 5 (Petersen’s 2-Factorization Theorem): Every 2k-regular
graph G is 2-factorable when k ≥ 1.

Proof: Write G = (V, E) where V = {v1, . . . , vn}. Without loss of generality
G is connected. Then it has a closed Euler trail C which traverses each edge
of G exactly once. Regard this as sequence of directed edges e1, e2, . . . , er.
Write ei = vαi

→ vβi
. The tail of ei is vαi

and the head of ei is vβj
. Then each

vertex of G appears as tail vertex exactly k times and as a head vertex ex-
actly k times. Let H(X, Y ) be the bipartite graph with vertex partition X =
{x1, . . . , xn} and Y = {y1, . . . , yn}, where there is an edge {xi, yj} in H(X, Y )
iff there is an edge vi → vj in C. Then H(X, Y ) is k-regular and has a fac-
torization into k 1-factors. Consider the 1-factor {x1, yσ(1)}, . . . , {xn, yσ(n)},
where σ is a permutation of {1, . . . , n}. Then in C we have, for any j ≤ n,
the directed cycle vj → vσ(j) → vσ2(j) → · · · → vj. Therefore the edges in G
corresponding to the edges in {x1, yσ(1)}, . . . , {xn, yσ(n)} can be partitioned
into distinct cycles and form a 2-factor of G. The 2-factors of G generated
in this way do not share edges since C traverses each edge of G exactly once,
and every edge of G appears in a 2-factor since it appears in C, therefore the
1-factorization of H(X, Y ) induces a 2-factorization of G. //
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Vertex Covers

A vertex cover of a graph G is a set of vertices C such that every edge of
G has at least one endpoint in C. In other words, every edge of G can be
“seen” by every vertex in C. A minimum vertex cover is a cover of minimum
size.

Lemma: Let M be any matching (collection of vertex-disjoint edges) in G,
and let C be any cover of C. Then |M | ≤ |C|.
Proof: Every edge of M has an endpoint in C. Let M1 be the edges which
have 1 endpoint in C, and let M2 be the edges which have 2 endpoints in C.
Since the edges of M do not share vertices, the total number of vertices in
C which appear as endpoints in M is equal to |M1|+ 2|M2|. Therefore

|C| ≥ |M1|+ 2|M2| ≥ |M1|+ |M2| = |M |.

Corollary: Whenever |M | = |C| in G, M is a maximum matching and C is
a minimum vertex cover.

Proof: Let M1 be maximum matching and let C1 be a minimum cover.
Then

|M | ≤ |M1| ≤ |C1| ≤ |C|.
Since |M | = |C|, this implies |M1| = |M | and |C1| = |C|. Therefore M is
maximum and C is minimum.

Theorem 6 (König 1931): Let G(X, Y ) be a bipartite graph. Then |M | =
|C| is attainable.

Proof: The proof in the textbook is not correct, to put it mildly. Here is
a correct proof: Let C = CX ∪ CY be a minimum size vertex cover, where
CX ⊆ X and CY ⊆ Y . Let A = G(CX , Y − CY ) denote the subgraph of
G(X, Y ) consisting of edges from CX to Y −CY , and let B = G(X −CX , Y )
denote the subgraph of G(X, Y ) consisting of edges from X − CX to Y . If
we can find a CX-saturated matching of A and a CY -saturated matching of
B, then the union of these will be a matching of G(X,Y ) of size |CX ∪ CY |.
We need only verify |W | ≤ |NA(W )| for all W ⊆ CX and |W | ≤ |NB(W )|
for all W ⊆ CY , then invoke Hall’s Theorem. By symmetry it will suffice to
prove the former condition only.

Consider W ⊆ CX . We claim that C ′ = (CX\W ) ∪NA(W ) ∪ CY is a vertex
cover of G(X, Y ). To see this, let {x, y} be an arbitrary edge in G(X,Y ). If
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x ∈ CX\W or y ∈ NA(W ) or y ∈ CY then {x, y} has an endpoint in C ′. It
is not possible to have x ∈ W and y 6∈ NA(W ) and y 6∈ CY by definition of
NA(W ). It is also not possible to have x 6∈ CX and y 6∈ NA(W ) and y 6∈ CY

because CX∪CY is a cover of G(X, Y ). This exhausts the possibilities. So C ′

is a cover of G(X, Y ). As such, |C ′| ≥ |C| by minimality of C. This implies
|NA(W )| ≥ |W |. So we are done.

0-1 Matrices and the König-Egerváry Theorem

Theorem 7 (König-Egerváry 1931): Let A be a 0-1 matrix. Then the
maximum number of 1s in A, no two of which lie in the same row or column,
is equal to the minimum of rows and columns that together contain all the
1s in A.

Proof: We need a bipartite graph model in which matchings correspond to
1s which do not share rows or columns and in which covers correspond to rows
and columns that see all 1s. The rows and columns seem to be acting as ver-
tices, and it is natural to form a bipartite graph G({r1, . . . , rj}, {c1, . . . , ck})
with an edge from ri to cj if and only if aij = 1. A matching corresponds to
a collection of 1s, no two of which lie in the same row or column. A vertex
cover corresponds to a collection of rows and columns that see all the 1s.
Now apply Theorem 6.

Application: See the application to the Bottleneck Problem, Application
13.3.4, page 569.

11


