Show all work.

1. Let

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

be the power series solution to the initial value problem

$$
y^{\prime \prime}-x y=0, \quad y(0)=1, y^{\prime}(0)=1 .
$$

Compute $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5}.
2. Consider the differential equation

$$
(H) \quad x^{2} y^{\prime \prime}+x^{2} y^{\prime}+20 y=0
$$

(a) Explain why $x=0$ is a regular singular point of (H)
(b) Find the two values of r such that $y=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n}$ is a solution to (H). You need only solve the indicial equation, not find the coefficients c_{n}.
3. Find the general solution to the following system of linear equations using the operator method. Your final answer should have only two arbitrary constants in it.

$$
\begin{aligned}
x^{\prime}-3 y & =-6 e^{t} \\
y^{\prime}+3 x & =2 e^{t}
\end{aligned}
$$

4. Use the matrix method (guess $\left[\begin{array}{l}x \\ y\end{array}\right]=e^{m t}\left[\begin{array}{l}P \\ Q\end{array}\right]$ etc) to find the general solution to system of linear equations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
6 & -0.5 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

