Show all work.

$$
\begin{gathered}
m x^{\prime \prime}+a x^{\prime}+k x=F(t) \\
v_{1}(x)=-\int^{x} \frac{F(t) y_{2}(t) d t}{a_{0}(t) W\left[y_{1}(t), y_{2}(t)\right]}, \quad v_{2}(x)=\int^{x} \frac{F(t) y_{1}(t) d t}{a_{0}(t) W\left[y_{1}(t), y_{2}(t)\right]} \\
v=\int \frac{\exp \left[-\int \frac{a_{1}(x)}{a_{0}(x)} d x\right]}{[f(x)]^{2}} d x
\end{gathered}
$$

1. Find a particular solution to the differential equation

$$
y^{\prime \prime}-y=e^{x}+\cos x
$$

2. Find the general solution to the Cauchy-Euler equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0 .
$$

3. Given that $y=x+1$ is a solution of

$$
(x+1)^{2} y^{\prime \prime}-3(x+1) y^{\prime}+3 y=0
$$

find a linearly independent solution by reducing the order.
4. A 16 pound weight is attached to the lower end of a coil spring suspended from a fixed support. The weight comes to rest in its equilibrium position, thereby stretching the spring 6 inches The weight is then pulled down 3 inches below its equilibrium position and released at $t=0$. The medium offers a resistance in pounds numerically equal to $10 x^{\prime}$, where x^{\prime} is instantaneous velocity in feet per second. Find the position and the velocity of the spring at time $t=1$.

