
Week 8 Lectures: Sections 4.6 and 4.7

Linearly dependent vectors: The vectors v1 through vk are linearly dependent if and
only there is a non-trivial linear combination (at least one non-zero coefficient) which
produces the 0 vector. Example: (1, 2), (1, 3), (1, 4), and (1, 5) are linearly dependent in
R2 because

3 · (1, 2)− 5 · (1, 3) + 1 · (1, 4) + 1 · (1, 5) = 0.

Theorem: If m > n, then any m vectors in Rn are linearly dependent.

Proof: Start with our example above. These are 4 vectors in R2, and they are linearly
dependent. We can actually prove that they are linearly dependent without producing the
coefficients: Solving

a · (1, 2) + b · (1, 3) + c · (1, 4) + d · (1, 5) = 0,

we see that there must be exactly 2 equations (because there are 2 coordinates) and there
are exactly 4 variables (a, b, c and d). So we get a system of 2 equations in 4 variables
in which the constants on the right-hand side are both 0. In principle, if we set up the
augmented matrix and row-reduce, there will have to be at least two non-leading variables.
These can take on the value 1, so these are the non-zero coefficient we are looking for.

In detail:
a + b + c + d = 0

2a + 3b + 4c + 5d = 0
[

1 1 1 1
2 3 4 5

∣∣∣∣
0
0

]
→

[
1 1 1 1
0 1 2 3

∣∣∣∣
0
0

]
.

In general, the argument is this: Given v1 through vm in Rn, the equation

α1v1 + α2v2 + · · ·+ αmvm = 0

leads to n equations (because there are n coordinates in each vector) for the m variables
α1 through αm. Since m > n, the augmented matrix when row-reduced will have at most
n leading terms, leaving at least m − n > 0 non-leading terms. We can set non-leading
terms equal to 1, and these are the non-zero coefficients we are looking for.

The meaning of linear dependence: Let v1 through vk be linearly dependent. Let
V = span{v1, . . . , vk}. Then there we can discard one of the vectors vi without changing
the span.

Example: Above, we showed that (1, 2), (1, 3), (1, 4) and (1, 5) are linearly dependent.
Moreover, we showed that

3 · (1, 2)− 5 · (1, 3) + 1 · (1, 4) + 1 · (1, 5) = 0,
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which implies that

(1, 3) =
3
5
(1, 2) +

1
5
(1, 4) +

1
5
(1, 5).

Therefore
(1, 3) ∈ span{(1, 2), (1, 4), (1, 5)}.

This implies

span{(1, 2), (1, 3), (1, 4), (1, 5)} = span{(1, 2), (1, 4), (1, 5)}.

Reason: it is clear that

span{(1, 2), (1, 4), (1, 5)} ⊆ span{(1, 2), (1, 3), (1, 4), (1, 5)}.

We also know that

(1, 2), (1, 3), (1, 4), (1, 5) ∈ span{(1, 2), (1, 4), (1, 5)}.

Therefore
span{(1, 2), (1, 3), (1, 4), (1, 5)} ⊆ span{(1, 2), ((1, 4), (1, 5)}.

It should be clear that we can continue to eliminate vectors until we boil it down to
some minimal subset. To continue with our example, we discarded (1, 3), leaving (1, 2),
(1, 4), (1, 5). These three must still be linearly dependent, because these are 3 vectors in
R2. In fact, we have

1 · (1, 2)− 3 · (1, 4) + 2 · (1, 5) = (0, 0),

(1, 2) = 3 · (1, 4)− 2 · (1, 5),

therefore
(1, 2) ∈ span{(1, 4), (1, 5)}.

Hence

span{(1, 2), (1, 3), (1, 4), (1, 5)} = span{(1, 2), (1, 4), (1, 5)} = span{(1, 4), (1, 5)}.

Note that the vectors (1, 4) and (1, 5) are NOT linearly dependent. This leads us to the
following definition:

Linearly independent vectors: A set of vectors v1 through vk such that the only
solution to

α1v1 + α2v2 + · · ·+ αkvk = 0

is α1 = α2 = · · · = αk = 0.

To continue with our running example, we started with

V = span{(1, 2), (1, 3), (1, 4), (1, 5)}
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and boiled this down to
V = span{(1, 4), (1, 5)}.

The set of vectors {(1, 4), (1, 5)} is linearly independent. This gives rise to the following
definition:

Basis for a subspace: A set of vectors which span the subspace and which are linearly
independent.

A basis for the subspace V in our running example is the set {(1, 4), (1, 5)}. A subspace
can have many different bases. Another basis for our V is the set {(1, 2), (1, 3)}. It turns
out that every basis for a subspace has the same size.

Theorem: Let V be a subspace. Then every finite basis for V has the same size.

Proof: Suppose that v1 through va is one basis for V , and that w1 through wb is another
basis for V , where a < b. We will obtain a contradiction as follows:

Since v1 through va is a basis for V , we know that

V = span{v1, . . . , va}.

Therefore every vector in V is a linear combination of v1 through va. In particular, each
wi is. We can write

w1 = α11v1 + α12v2 + · · ·+ α1ava,

w2 = α21v1 + α22v2 + · · ·+ α2ava,

· · ·
wb = αb1v1 + αb2v2 + · · ·+ αbava.

We will now create vectors in Ra using these coefficients:

x1 = (α11, α12, · · · , α1a),

x2 = (α21, α22, · · · , α2a),

· · ·
xb = (αb1, αb2, · · · , αba).

Since these are b > a vectors in Ra, we know they must be linearly dependent. Therefore
there is a solution to

β1x1 + β2x2 + · · ·+ βbxb = 0

in which at least one of the coefficients βi 6= 0. However, we can see that

β1w1 + β2w2 + · · ·+ βbwb = 0.

This is impossible, because w1 through wb are linearly independent. Therefore we cannot
have two different sized bases.
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Dimension of a subspace: The size of any basis for the subspace.

Our space V = span{(1, 2), (1, 3), (1, 4), (1, 5)} has dimension 2.

Dimension of Rn: Must be n, because a basis for Rn is (1, 0, . . . , 0), (0, 1, 0, . . . , 0), ...,
(0, 0, . . . , 1).

Dimension of any subspace V of Rn: must be ≤ n. Reason: Suppose v1 through vk

is a basis for V . Then dim(V ) = k. We know that if k > n then the vectors v1 through vk

are linearly dependent. Therefore k ≤ n.

Theorem: If v1 through vk are linearly independent and v 6∈ span{v1, . . . , vk}, then v1

through vk+1 are linearly independent, where vk+1 = v.

Proof: Suppose
α1v1 + α2v2 + · · ·+ αk+1vk+1 = 0.

We wish to prove that all the coefficients are equal to zero. We know that αk+1 must be
equal to zero, otherwise we could solve for vk+1 in terms of v1 through vk, which contradicts
our hypothesis that v 6∈ span{v1, . . . , vk}. Therefore

α1v1 + α2v2 + · · ·+ αkvk = 0,

which implies that all the other coefficients are zero since v1 through vk are linearly inde-
pendent.

Theorem: Let v1 through vn be linearly independent vectors in Rn. Then they form a
basis for Rn. In particular, they span Rn.

Proof: Suppose
span{v1, . . . , vn} 6= Rn.

Then we can find v 6∈ span{v1, . . . , vn}, which implies that v1 through vn+1 are linearly
independent in Rn, where vn+1 = v. Contradiction. Therefore

span{v1, . . . , vn} = Rn.

Theorem: Let vn through vn be vectors which span Rn. Then they must be linearly
independent.

Proof: We have
Rn = span{v1, . . . , vn}.

If v1 through vn are not linearly independent, then we know that we can continue to throw
some of them away without changing the span until we boil down to a minimal set which
is linearly independent. We can then say

Rn = span{v1, . . . , vk}

where v1 through vk are linearly independent and k < n. This says that Rn has dimension
k < n. Contradiction. Therefore v1 through vn must be linearly independent.
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Method for constructing a basis for a subspace V of Rn: Choose v1 6= 0 in V .
If V = span{v1}, then v1 forms a basis for V since one non-zero vector creates a linearly
independent set. Otherwise, we can choose v2 6∈ span{v1}. Then we know that v1 and
v2 are linearly independent. If V = span{v1, v2}, then v1 and v2 form a basis for V . If
V 6= span{v1, v2}, then we can choose v3 6∈ span{v1, v2}. Keep on going, enlarging our
set of linearly independent vectors in V . This process has to stop, because the maximum
number of linearly independent vectors we can find in Rn is n. So when we stop we have

V = span{v1, . . . , vk},
and v1 through vk form a basis for V . Note that this proof implies dim(V ) ≤ n.

Identification of a subspace of dimension k with Rk: Let V be a subspace with
dimension k. Then it has a basis v1 through vk, and these vectors span V . If w ∈ V , then
there are unique coefficients α1 through αk such that

w = α1v1 + · · ·+ αkvk.

Reason: suppose
w = β1v1 + · · ·+ βkvk

is another representation of w. Equating, we obtain

α1v1 + · · ·+ αkvk = β1v1 + · · ·+ βkvk,

(α1 − β1)v1 + · · ·+ (αk − βk)vk = 0,

which implies α1 − β1 = · · · = αk − βk = 0 by linear independence. Therefore αi = βi for
all i.

Theorem: If V ⊆ W are subspaces and W has dimension n, then dim(V ) ≤ n.

Proof: We can identify W with Rn. Under this identification, V can be regarded as a
subspace of Rn. Therefore it must have dimension ≤ n.

Theorem: Let V ⊆ W be subspaces, and assume dim(W ) = n. If dim(V ) = n then
V = W .

Proof: Suppose V 6= W . Then there is a vector w in W which does not belong to V . If
v1 through vn form a basis for V , then v1 through vn+1 are linearly independent in W ,
where vn+1 = w. Set V ′ = span{v1, . . . , vn+1}. Then V ′ ⊆ W and dim(V ′) = n + 1 > n.
This contradicts the previous theorem. Therefore V = W .

Using the ideas above, we can also prove that if V is a subspace of dimension n
and v1 through vn are vectors in V , then they span V if and only if they are linearly
independent. We proved this for V = Rn. If all we know is dim(V ) = n, then we can
make the identification of V with Rn and proceed from there.

Exercises:

Section 4.6, 3bd, 4bf, 6bc, 10b, 11bd, 14bc

Section 4.7: 3cd, 6ceg, 7, 14, 15bd, 17bce, 20bd
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