Week 8 Lectures: Sections 4.6 and 4.7

Linearly dependent vectors: The vectors v_{1} through v_{k} are linearly dependent if and only there is a non-trivial linear combination (at least one non-zero coefficient) which produces the 0 vector. Example: $(1,2),(1,3),(1,4)$, and $(1,5)$ are linearly dependent in \mathbf{R}^{2} because

$$
3 \cdot(1,2)-5 \cdot(1,3)+1 \cdot(1,4)+1 \cdot(1,5)=0 .
$$

Theorem: If $m>n$, then any m vectors in \mathbf{R}^{n} are linearly dependent.
Proof: Start with our example above. These are 4 vectors in \mathbf{R}^{2}, and they are linearly dependent. We can actually prove that they are linearly dependent without producing the coefficients: Solving

$$
a \cdot(1,2)+b \cdot(1,3)+c \cdot(1,4)+d \cdot(1,5)=0,
$$

we see that there must be exactly 2 equations (because there are 2 coordinates) and there are exactly 4 variables (a, b, c and d). So we get a system of 2 equations in 4 variables in which the constants on the right-hand side are both 0 . In principle, if we set up the augmented matrix and row-reduce, there will have to be at least two non-leading variables. These can take on the value 1, so these are the non-zero coefficient we are looking for.

In detail:

$$
\begin{gathered}
a+b+c+d=0 \\
2 a+3 b+4 c+5 d=0 \\
{\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 0 \\
2 & 3 & 4 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 3 & 0
\end{array}\right] .}
\end{gathered}
$$

In general, the argument is this: Given v_{1} through v_{m} in \mathbf{R}^{n}, the equation

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{m} v_{m}=0
$$

leads to n equations (because there are n coordinates in each vector) for the m variables α_{1} through α_{m}. Since $m>n$, the augmented matrix when row-reduced will have at most n leading terms, leaving at least $m-n>0$ non-leading terms. We can set non-leading terms equal to 1 , and these are the non-zero coefficients we are looking for.

The meaning of linear dependence: Let v_{1} through v_{k} be linearly dependent. Let $V=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$. Then there we can discard one of the vectors v_{i} without changing the span.

Example: Above, we showed that $(1,2),(1,3),(1,4)$ and $(1,5)$ are linearly dependent. Moreover, we showed that

$$
3 \cdot(1,2)-5 \cdot(1,3)+1 \cdot(1,4)+1 \cdot(1,5)=0
$$

which implies that

$$
(1,3)=\frac{3}{5}(1,2)+\frac{1}{5}(1,4)+\frac{1}{5}(1,5) .
$$

Therefore

$$
(1,3) \in \operatorname{span}\{(1,2),(1,4),(1,5)\} .
$$

This implies

$$
\operatorname{span}\{(1,2),(1,3),(1,4),(1,5)\}=\operatorname{span}\{(1,2),(1,4),(1,5)\} .
$$

Reason: it is clear that

$$
\operatorname{span}\{(1,2),(1,4),(1,5)\} \subseteq \operatorname{span}\{(1,2),(1,3),(1,4),(1,5)\}
$$

We also know that

$$
(1,2),(1,3),(1,4),(1,5) \in \operatorname{span}\{(1,2),(1,4),(1,5)\} .
$$

Therefore

$$
\operatorname{span}\{(1,2),(1,3),(1,4),(1,5)\} \subseteq \operatorname{span}\{(1,2),((1,4),(1,5)\} .
$$

It should be clear that we can continue to eliminate vectors until we boil it down to some minimal subset. To continue with our example, we discarded $(1,3)$, leaving $(1,2)$, $(1,4),(1,5)$. These three must still be linearly dependent, because these are 3 vectors in \mathbf{R}^{2}. In fact, we have

$$
\begin{gathered}
1 \cdot(1,2)-3 \cdot(1,4)+2 \cdot(1,5)=(0,0) \\
(1,2)=3 \cdot(1,4)-2 \cdot(1,5)
\end{gathered}
$$

therefore

$$
(1,2) \in \operatorname{span}\{(1,4),(1,5)\} .
$$

Hence

$$
\operatorname{span}\{(1,2),(1,3),(1,4),(1,5)\}=\operatorname{span}\{(1,2),(1,4),(1,5)\}=\operatorname{span}\{(1,4),(1,5)\} .
$$

Note that the vectors $(1,4)$ and $(1,5)$ are NOT linearly dependent. This leads us to the following definition:

Linearly independent vectors: A set of vectors v_{1} through v_{k} such that the only solution to

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0
$$

is $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0$.
To continue with our running example, we started with

$$
V=\operatorname{span}\{(1,2),(1,3),(1,4),(1,5)\}
$$

and boiled this down to

$$
V=\operatorname{span}\{(1,4),(1,5)\} .
$$

The set of vectors $\{(1,4),(1,5)\}$ is linearly independent. This gives rise to the following definition:

Basis for a subspace: A set of vectors which span the subspace and which are linearly independent.

A basis for the subspace V in our running example is the set $\{(1,4),(1,5)\}$. A subspace can have many different bases. Another basis for our V is the set $\{(1,2),(1,3)\}$. It turns out that every basis for a subspace has the same size.

Theorem: Let V be a subspace. Then every finite basis for V has the same size.
Proof: Suppose that v_{1} through v_{a} is one basis for V, and that w_{1} through w_{b} is another basis for V, where $a<b$. We will obtain a contradiction as follows:

Since v_{1} through v_{a} is a basis for V, we know that

$$
V=\operatorname{span}\left\{v_{1}, \ldots, v_{a}\right\}
$$

Therefore every vector in V is a linear combination of v_{1} through v_{a}. In particular, each w_{i} is. We can write

$$
\begin{gathered}
w_{1}=\alpha_{11} v_{1}+\alpha_{12} v_{2}+\cdots+\alpha_{1 a} v_{a}, \\
w_{2}=\alpha_{21} v_{1}+\alpha_{22} v_{2}+\cdots+\alpha_{2 a} v_{a}, \\
\cdots \\
w_{b}=\alpha_{b 1} v_{1}+\alpha_{b 2} v_{2}+\cdots+\alpha_{b a} v_{a} .
\end{gathered}
$$

We will now create vectors in \mathbf{R}^{a} using these coefficients:

$$
\begin{gathered}
x_{1}=\left(\alpha_{11}, \alpha_{12}, \cdots, \alpha_{1 a}\right), \\
x_{2}=\left(\alpha_{21}, \alpha_{22}, \cdots, \alpha_{2 a}\right), \\
\cdots \\
x_{b}=\left(\alpha_{b 1}, \alpha_{b 2}, \cdots, \alpha_{b a}\right) .
\end{gathered}
$$

Since these are $b>a$ vectors in \mathbf{R}^{a}, we know they must be linearly dependent. Therefore there is a solution to

$$
\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{b} x_{b}=0
$$

in which at least one of the coefficients $\beta_{i} \neq 0$. However, we can see that

$$
\beta_{1} w_{1}+\beta_{2} w_{2}+\cdots+\beta_{b} w_{b}=0 .
$$

This is impossible, because w_{1} through w_{b} are linearly independent. Therefore we cannot have two different sized bases.

Dimension of a subspace: The size of any basis for the subspace.
Our space $V=\operatorname{span}\{(1,2),(1,3),(1,4),(1,5)\}$ has dimension 2.
Dimension of \mathbf{R}^{n} : Must be n, because a basis for \mathbf{R}^{n} is $(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots$, $(0,0, \ldots, 1)$.

Dimension of any subspace V of \mathbf{R}^{n} : must be $\leq n$. Reason: Suppose v_{1} through v_{k} is a basis for V. Then $\operatorname{dim}(V)=k$. We know that if $k>n$ then the vectors v_{1} through v_{k} are linearly dependent. Therefore $k \leq n$.
Theorem: If v_{1} through v_{k} are linearly independent and $v \notin \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$, then v_{1} through v_{k+1} are linearly independent, where $v_{k+1}=v$.

Proof: Suppose

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k+1} v_{k+1}=0 .
$$

We wish to prove that all the coefficients are equal to zero. We know that α_{k+1} must be equal to zero, otherwise we could solve for v_{k+1} in terms of v_{1} through v_{k}, which contradicts our hypothesis that $v \notin \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$. Therefore

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0
$$

which implies that all the other coefficients are zero since v_{1} through v_{k} are linearly independent.

Theorem: Let v_{1} through v_{n} be linearly independent vectors in \mathbf{R}^{n}. Then they form a basis for \mathbf{R}^{n}. In particular, they span \mathbf{R}^{n}.

Proof: Suppose

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} \neq \mathbf{R}^{n}
$$

Then we can find $v \notin \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$, which implies that v_{1} through v_{n+1} are linearly independent in \mathbf{R}^{n}, where $v_{n+1}=v$. Contradiction. Therefore

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\mathbf{R}^{n} .
$$

Theorem: Let v_{n} through v_{n} be vectors which span \mathbf{R}^{n}. Then they must be linearly independent.

Proof: We have

$$
\mathbf{R}^{n}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} .
$$

If v_{1} through v_{n} are not linearly independent, then we know that we can continue to throw some of them away without changing the span until we boil down to a minimal set which is linearly independent. We can then say

$$
\mathbf{R}^{n}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}
$$

where v_{1} through v_{k} are linearly independent and $k<n$. This says that \mathbf{R}^{n} has dimension $k<n$. Contradiction. Therefore v_{1} through v_{n} must be linearly independent.

Method for constructing a basis for a subspace V of \mathbf{R}^{n} : Choose $v_{1} \neq 0$ in V. If $V=\operatorname{span}\left\{v_{1}\right\}$, then v_{1} forms a basis for V since one non-zero vector creates a linearly independent set. Otherwise, we can choose $v_{2} \notin \operatorname{span}\left\{v_{1}\right\}$. Then we know that v_{1} and v_{2} are linearly independent. If $V=\operatorname{span}\left\{v_{1}, v_{2}\right\}$, then v_{1} and v_{2} form a basis for V. If $V \neq \operatorname{span}\left\{v_{1}, v_{2}\right\}$, then we can choose $v_{3} \notin \operatorname{span}\left\{v_{1}, v_{2}\right\}$. Keep on going, enlarging our set of linearly independent vectors in V. This process has to stop, because the maximum number of linearly independent vectors we can find in \mathbf{R}^{n} is n. So when we stop we have

$$
V=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}
$$

and v_{1} through v_{k} form a basis for V. Note that this proof implies $\operatorname{dim}(V) \leq n$.
Identification of a subspace of dimension k with \mathbf{R}^{k} : Let V be a subspace with dimension k. Then it has a basis v_{1} through v_{k}, and these vectors span V. If $w \in V$, then there are unique coefficients α_{1} through α_{k} such that

$$
w=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} .
$$

Reason: suppose

$$
w=\beta_{1} v_{1}+\cdots+\beta_{k} v_{k}
$$

is another representation of w. Equating, we obtain

$$
\begin{gathered}
\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}=\beta_{1} v_{1}+\cdots+\beta_{k} v_{k}, \\
\left(\alpha_{1}-\beta_{1}\right) v_{1}+\cdots+\left(\alpha_{k}-\beta_{k}\right) v_{k}=0,
\end{gathered}
$$

which implies $\alpha_{1}-\beta_{1}=\cdots=\alpha_{k}-\beta_{k}=0$ by linear independence. Therefore $\alpha_{i}=\beta_{i}$ for all i.

Theorem: If $V \subseteq W$ are subspaces and W has dimension n, then $\operatorname{dim}(V) \leq n$.
Proof: We can identify W with \mathbf{R}^{n}. Under this identification, V can be regarded as a subspace of \mathbf{R}^{n}. Therefore it must have dimension $\leq n$.

Theorem: Let $V \subseteq W$ be subspaces, and assume $\operatorname{dim}(W)=n$. If $\operatorname{dim}(V)=n$ then $V=W$.

Proof: Suppose $V \neq W$. Then there is a vector w in W which does not belong to V. If v_{1} through v_{n} form a basis for V, then v_{1} through v_{n+1} are linearly independent in W, where $v_{n+1}=w$. Set $V^{\prime}=\operatorname{span}\left\{v_{1}, \ldots, v_{n+1}\right\}$. Then $V^{\prime} \subseteq W$ and $\operatorname{dim}\left(V^{\prime}\right)=n+1>n$. This contradicts the previous theorem. Therefore $V=W$.

Using the ideas above, we can also prove that if V is a subspace of dimension n and v_{1} through v_{n} are vectors in V, then they span V if and only if they are linearly independent. We proved this for $V=\mathbf{R}^{n}$. If all we know is $\operatorname{dim}(V)=n$, then we can make the identification of V with \mathbf{R}^{n} and proceed from there.

Exercises:

Section 4.6, 3bd, 4bf, 6bc, 10b, 11bd, 14bc
Section 4.7: 3cd, 6ceg, 7, 14, 15bd, 17bce, 20bd

