Math 223 Exam 3 Topics

Note: Be sure you can parameterize simple curves (line segments, circles, graphs of functions).

1. Evaluate a triple integral in spherical coordinates, given a geometric description of the region of integration. See Section 12.7. For practice, do problems 19-27.
2. Evaluate the line integral of a scalar field $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. See Section 13.2 and Formula 3, page 732. This line integral can be used to compute the length, mass, and center of mass of a wire. For practice, do problems 1-10.
3. Evaluate the line integral of a vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. See Section 13.2 and Formula 13, page 738. This line integral can be used to compute the work done by the vector field along a curve. For practice, do problems 26-28 and 35-37.
4. Decide if a vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is conservative or not. If so, find a scalar field $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $F=\nabla f$ and use it to evaluate the line integral of F over a path. See Section 13.3 and Theorem 2, page 742. Practice by doing problems 3-18.
5. Use Green's Theorem to evaluate the line integral of a vector field F : $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about a simple closed positively oriented curve. The problem may be an applied one, in which you use Green's Theorem to calculate an area. See Section 13.4. For practice, do problems 1-20.
