Section 3.1: Nonseparable Graphs

Cut vertex of a connected graph G: A vertex $x \in G$ such that $G - x$ is not connected.

Theorem 3.1, p. 57: Every connected graph G with at least 2 vertices contains at least 2 non-cut vertices.

Proof: By strong induction v. Clear for $v = 2$. For $v > 2$, true if there are no cut vertices. If x is a cut vertex, write $G = x + G_1 + G_2 + \cdots + G_k$. Each single-vertex G_i is a non-cut vertex. Each non-trivial G_i has at least two non-cut vertices, one of which is non-adjacent to x; the other one is a non-cut vertex of G. Hence there are at least k non-cut vertices. \qed

Nonseparable graph: Connected, at least 2 vertices, and no cut vertices.

Theorem: Let G be a connected graph with 3 or more vertices. The following statements are equivalent:

1. For each (x, y) in $V \times V$ there is a cycle C_{xy} that contains both x and y.
2. G is in separable.
3. For each $(e, f) \in E \times E$ there is a cycle C_{ef} that contains both e and f.

Proof: (1) implies (2): Let $x \in V$ be given. For each y, z in $G - x$ there is a C_{yz} in G that contains both y and z. Since C_{yz} yields two internally disjoint yz paths, the removal of x disconnects at most one of these, leaving a yz path in $G - x$. Hence $G - x$ is connected. Since G has at least 2 vertices, G is nonseparable.

(2) implies (3): Suppose G is inseparable. Let $(e, f) \in E \times E$ be given. We will show that there is a cycle through both e and f by strong induction on the shortest distance d between a vertex in e and a vertex in f.

If $d = 0$ and e and f have the same endpoints x and y, let z be a third vertex, let P_x be a xz path in $G - y$, and let P_y be an yz-path in $G - x$. Let y_0 be the vertex along P_y closest to P_y that belongs to P_x. An xy path Q that excludes the edge xy is to follow P_x to y_0, then follow P_y back to y. The desired cycle is $Q + xy$.

If $d = 0$ and e and f share a single endpoint x, let y and z be the other two endpoints. Then $P_{yz} + zx + xy$ is a cycle through e and f where P_{yz} is a yz-path in $G - x$.

1
If \(d > 0 \), write \(e = xy \) and \(f = XY \) and assume without loss of generality that \(d(x, X) \) is the shortest distance between \(e \) and \(f \). Let \([x, X]\) be a geodesic with last edge \(ZX \). Then \(d(xy, ZX) < d(xy, XY) \), and there is a cycle \(C \) through \(xy \) and \(ZX \). Let \(R \) be the shortest path in \(G - X \) from \(Y \) to a vertex in \(C \). Then \(R \) is internally disjoint from \(C \), otherwise there is a shorter path to \(C \). Follow \(R \) from \(Y \) to \(C \), then \(C \) to \(X \) in the direction that passes through \(xy \) first, then take the edge from \(X \) to \(Y \). This is a cycle incorporating \(e \) and \(f \). See the figure below.

(3) implies (1): Let \(x \) and \(y \) be vertices in \(G \). Since \(G \) is connected, there are edges \(e \) and \(f \) containing \(x \) and \(y \). The cycle \(C_{ef} \) contains both \(x \) and \(y \). The cycle \(C_{ef} \) contains both \(x \) and \(y \). □

Block: Maximal nonseparable subgraph \(B \) of a connected graph \(G \), in the sense that \(B \) is not the proper subgraph of any nonseparable subgraph of \(G \).

Remark: The next theorem proves among other things that the blocks of a connected graph partition the edges of the graph. After the next few results we will describe an efficient method for finding the blocks in a graph.

Theorem (elementary properties of blocks):

(1) Distinct blocks have at most one vertex in common.

(2) Every nonseparable subgraph is a subgraph of unique block.

(3) A vertex is a cut vertex if and only if it belongs to two or more blocks.

Proof:

(1) If \(x \in B \cap C \) and \(y \in B \cap C \) and \(x \neq y \) then removing any \(v \in B \cup C \) leaves \(B - v \) and \(C - v \) connected and leaves either \(x \) or \(y \) intact in \((B \cup C) - v\). Hence \(B \cup C \) is inseparable, which forces \(B = C \) by maximality. So distinct blocks cannot share two vertices.
(2) First observe that when H is a non-separable subgraph of G, so is $G[H]$, the subgraph induced by V_H. Now let W be a subset of V of maximum size such that $V_H \subseteq W$ and $G[W]$ is nonseparable. We claim that $G[W]$ is a block. If not, it is a proper subgraph of a nonseparable subgraph K, hence of the nonseparable subgraph $G[K]$, which is impossible since $|W| < |V_K|$.

To prove uniqueness, suppose H is a subgraph of blocks B and C. Since H has an edge xy, B and C both contain x and y. Since blocks cannot share more than one vertex, $B = C$.

(3) Let $x \in B \cap C$ where $B \neq C$. Since $B = G[V_B]$ and $C = G[V_C]$, $V_B \nsubseteq V_C$ and $V_C \nsubseteq V_B$ by maximality of blocks. Hence we can choose $b \in B - C$ and $c \in C - B$, and we must have $b \neq x$ and $c \neq x$. If x is not a cut vertex, then $G - x$ is connected, hence there is a b, c path P that excludes x. However, this makes $B \cup P \cup C$ nonseparable (see diagram below), a contradiction. Therefore x is a cut vertex.

 Conversely, if x is a cut vertex, write $G - x = G_1 + G_2 + \cdots + G_k$. Then for each i there is an edge xx_i where $x_i \in G_i$. Let B_i be the block containing xx_i. Then $B_i - x$ is connected and must be a subgraph of G_i since it contains x_i. Hence the B_i are distinct and x lives in k distinct blocks.

\begin{flushright}
\textbf{Theorem (recognizing a block decomposition, version I):} Let G_1, \ldots, G_r be a collection of non-separable subgraphs of a connected graph G that partitions the edge set of G. If every cycle of G is a subgraph of some G_i, then G_1, \ldots, G_r is the block-decomposition of G.

\textbf{Proof:} Let B be a block of G. If B consists of a single edge then $B \subseteq G_i$ for some i, hence by maximality $B = G_i$. If B contains more than one edge, fix one edge e, and let i be the unique index such that $e \in G_i$. Then for every other edge f of B there is a cycle C_{ef} that contains both e and f. Since C_{ef} is a subgraph of some G_j and $e \in G_j$, $j = i$. Therefore every edge of B is a subgraph of G_i, which implies that B is a subgraph of G_i, which implies $B = G_i$. \hfill \square
\end{flushright}
Fundamental Cycles: Let G be connected and let T be a spanning tree of G. For each edge xy in G but not in T, there is a unique xy path P_{xy} in T. $P_{xy} + xy$ is called a fundamental cycle with respect to T.

Theorem (recognizing a block decomposition, version II): Let G_1, \ldots, G_r be edge-disjoint non-separable subgraphs of a connected graph G. If T is a spanning tree of G and every fundamental cycle of T is a subgraph of some G_i then G_1, \ldots, G_r is the block-decomposition of G.

Proof: We will prove that every cycle C is a subgraph of G_i for some i by induction on $|C - T|$. By the previous theorem, this implies that G_1, \ldots, G_r is the block-decomposition of G.

1. $|C - T| = 1$: C is a fundamental cycle with respect to T and is a subgraph of some G_i.
2. $|C - T| > 1$: Fix $ab \in C - T$. Write $C = abx_1 \cdots x_na$.

Let $P = ay_1 \cdots y_m b$ be a path in T. There are two cases to consider.

- **Case 1:** $\{y_1, \ldots, y_m\} \cap \{x_1, \ldots, x_n\} = \emptyset$. Then two cycles in G are $D = ay_1 \cdots y_m ba$ and $E = ay_1 \cdots y_m bx_1 \cdots x_n$.

Since D is a fundamental cycle, D is a subgraph of some G_i. Since $|E - T| = |C - T| - 1$,

E is a subgraph of some G_j by the induction hypothesis. Since D and E share the edge ay_1, $G_i = G_j$. Therefore $C \subseteq G_i$.

![Diagram](image-url)
Case 2: \(\{y_1, \ldots, y_m\} \cap \{x_1, \ldots, x_n\} \neq \emptyset \). Let \(i \) be least such that \(y_i = x_j \) for some \(j \). Then
\[
D = ay_1 \cdots y_ix_{j+1} \cdots x_na
\]
and
\[
E = ay_1 \cdots y_ix_{j-1} \cdots x_1ba.
\]
Since \(T \) is acyclic, there has to be a non-tree edge in \(D \) that belongs to \(C \).
Since \(ab \not\in D \),
\[
1 \leq |D - T| < |C - T|.
\]
Since \(ab \in E \),
\[
1 \leq |E - T| < |C - T|.
\]
As in Case 1, this implies \(C \) is a subgraph of some \(G_i \).

\[
\[
\]
\]

\[
\]

Remark: The complete graph \(K_n \) has roughly \(2^n \) cycle subgraphs but only roughly \(\frac{n^2}{2} \) fundamental cycles, so the second version of this theorem is much more efficient than the first.

Theorem (gluing nonseparable subgraphs): If \(G \) is a connected graph, \(C \) is a cycle in \(G \), and \(H_e \) is a non-separable subgraph containing \(e \) for each edge \(e \) in \(C \), then the graph union \(H = \bigcup_{e \in C} H_e \) is non-separable.

Proof: Let \(x \) be an arbitrary vertex in \(H \). We must show that \(H - x \) is connected. Let \(a \) and \(b \) be vertices in \(H - x \). Then \(a \) is a vertex in \(H_e - x \) and \(b \) is a vertex in \(H_f - x \) for some \(e \) and \(f \). Let \(e_x \) be one of the endpoints of \(e \) not equal to \(x \), and let \(f_x \) be one of the endpoints of \(f \) not equal to \(x \). By non-separability of \(H_e \) and \(H_f \), there is an \(ae_x \) path in \(H_e - x \) and a \(bf_x \) path in \(H_f - x \). Since \(e_x \) and \(f_x \) belong to \(C - x \) and \(C - x \) is connected,
Algorithm for finding the blocks in a graph: Let T be a spanning tree. Let L_0 be the list of K_2 subgraphs (edges) of G. Then L_0 partitions the edges of G into non-separable subgraphs. Having defined the edge partition L_{i-1}, consisting of nonseparable subgraphs containing fundamental cycles T_{e_i} through $T_{e_{i-1}}$, let T_{e_i} be the i^{th} fundamental cycle. Form the union H_i of all the subgraphs in L_{i-1} that have an edge in common with T_{e_i}, and let L_i be the set consisting of H_i and the remaining elements of L_{i-1}. Then L_i partitions the edges of G into non-separable subgraphs, and the fundamental cycles T_{e_1} through T_{e_i} each belong to some subgraph in L_i. Keep on going, running through all r fundamental cycles. Then L_r is the block decomposition of G.

Example: Apply this algorithm to the graph on 60 (Figure 3.2).

Block-cut graph: Let G be a connected graph with cut vertices x_1, \ldots, x_a and blocks B_1, \ldots, B_b. Form the bipartite graph with vertices

$$x_1, \ldots, x_a, B_1, \ldots, B_b$$

and an edge of the form x_iB_j if and only if $x_i \in B_j$.

Lemma: Let G be a connected graph with at least two vertices, let $k \geq 1$ be given, and let $x_0, x_1, \ldots, x_{k+1}$ be a path in G in which none of the vertices x_1 through x_k is a cut vertex. Then there is a block of G containing x_0 through x_{k+1}.

Proof: For each $i \in \{1, \ldots, k+1\}$ let B_i be a block containing the edge $x_{i-1}x_i$. Then for $1 \leq i \leq k$, $x_i \in B_i \cap B_{i+1}$, hence $B_i = B_{i+1}$ for $1 \leq i \leq k$. This implies $B_1 = \cdots = B_{k+1}$. Call this common block B. Then B contains x_0 through x_{k+1}.

Lemma: Let G be a connected graph with at least two vertices. Then for every pair of blocks A and B, and every path P that begins in a non-cut vertex $a \in A$ and ends in a non-cut vertex $b \in B$, there is an AB walk W_P in the block-cut graph that contains every cut vertex appearing among the internal vertices of P.

Proof: By strong induction on the number of cut vertices internal to P. If there are none, then P belongs in a single block C. Since a and b belong to unique blocks, $A = C = B$. So we can set $W_P = A$. Assume that W_P can be
constructed when P contains up to k internal cut vertices. Now consider P with $k + 1$ internal cut vertices. Let x be any of these, and say that x belongs to block C. Then P decomposes into walks $Q = P[a, x]$ and $R = P[x, b]$, and each has $\leq k$ internal cut vertices. By the induction hypothesis there is an AC walk W_Q and a CB walk W_R in the block-cut graph that contains the internal cut vertices of Q and R. The walk W_Q, x, W_R is the desired AB walk in the block-cut graph.

Corollary: The block-cut graph is connected.

Proof: Given blocks A and B, choose a non-cut vertex $a \in A$ and a non-cut vertex $b \in B$, and choose an ab path P. Then W_P is an AB walk in the block-cut graph. Given a cut vertex x and a block B, pick a block A that x belongs to, then follow the edge from x to A and the walk from A to B in the block-cut graph to obtain a walk from x to B in the block-cut graph. Given a cut vertex x and cut vertex y, walk from x to A, then from A to B, then from B to y in the block-cut graph, where x is in block A and y is in block B.

Theorem: The block-cut graph is a tree.

Proof: We’ve proved connectivity above. Next, suppose there is a cycle in the block-cut graph of the form

$$x_0, B_0, x_1, B_1, \ldots, x_n, B_n, x_0.$$

Since every pair of consecutive cut-vertices along this cycle live in the same block, there is a path joining them in that block. Concatenating these paths yields a closed walk in G, which yields a cycle C in G. Glueing together the blocks contributing edges to C yields a nonseparable subgraph which (1) lives in a single block B and (2) has edges from at least two different paths. This is impossible, because B contains edges from two different paths, hence two different blocks, a contradiction. So there cannot be a cycle in the block-cut graph.

Remark: It is possible for two vertices a and b in a connected graph to be joined by a path containing no internal cut vertices and another path with an internal cut vertex. Just consider the graph with a cycle through a, b, x and a fourth edge xc. But when a and b are in different blocks, this cannot happen, as the corollary below shows.
Corollary: Let G be a connected graph with at least two vertices, and let a and b be vertices in different blocks of G. Then the internal vertices of every path ab walk P of G contains the same subset of cut vertices of G.

Proof: Given any ab path x_0, x_1, \ldots, x_r in G, let B_i be a block containing the edge $x_{i-1}x_i$ for $1 \leq i \leq r$. Then there is a walk in the block-cut graph from B_1 through B_r that contains all the cut vertices among x_1, \ldots, x_{r-1}. If there is a second path ab path y_0, y_1, \ldots, y_s, it yields a second block-cut graph C_1, \ldots, C_s, defined similarly. If $B_1 = C_1$ and $B_r = C_s$, we obtain two B_1B_r walks in the block-cut graph with different internal vertex sets, which implies a cycle in the block-cut graph, which is impossible. If $B_1 \neq C_1$ and $B_r = C_s$, we obtain two aB_r walks in the block-cut graph with internal vertex sets, which yields another contradiction. The other two cases also yield a contradiction. Therefore every ab path in G contains the same internal vertices that are cut vertices.

Lemma: Let G be a connected graph and let a and b be distinct vertices in G. If a and b do not live in the same block then G has a cut vertex x such that a and b are in different connected components of $G - x$.

Proof: Let P be an ab path. Then P contains at least one internal vertex x that is a cut vertex, otherwise a and b live in the same block. Hence every ab path contains x. Therefore a and b live in different components of $G - x$. □

Theorem 3.9, p. 61: When G is a connected graph with at least two vertices, every central vertex lives in the same block of G.

Proof: Let a and b any pair of vertices that do not live in the same block. We will show that at least one of them is noncentral. Let x be a cut vertex such that a and b are in different connected components of $G - x$. Let z be a vertex in G farthest from x. z cannot be simultaneously in the component of $G - x$ containing a and the component of $G - x$ containing b. If z is not in the same component as a, then since $d(z, a) = d(z, x) + d(z, x)$, $ecc(a) \geq d(z, a) > d(z, x) = ecc(x)$, which implies that a is not central. Similarly if z is not in the same component as b then b is not central. □

End block: A block containing exactly one cut vertex, i.e. having degree 1 in the block-cut graph.

Theorem 3.7, p. 60: Every connected graph containing cut vertices has at least two end blocks.
Proof: The block-cut graph has at least two leaves, i.e. degree 1 vertices. These must be blocks, because cut vertices have degree at least two. □

Theorem 3.8, p. 61: Let G be a connected graph with cut vertices. Then G contains a cut-vertex such that at most one of the blocks it belongs to is not an end block.

Proof: Let B be a leaf in the block-cut graph. Let x be the unique cut-vertex it is adjacent to in the block-cut graph. This is the desired cut-vertex. □