
Week 6 Lectures

Sections 7.5, 7.6

Section 7.5: Surface Area of Revolution

Surface Area of Cone: Let C be a circle of radius r. Let Pn be an n-sided
regular polygon of perimeter pn with vertices on C. Form a cone Cn of slant
length l by glueing together n iscoseles triangles with sides of length l, l, pn

n
.

Given that each triangle has area 1
2
pn
n

√
l2 − p2n

4n2 , the total surface area of the

cone is 1
2
pn

√
l2 − p2n

4n2 . The cone Cn is an approximation of the right circular

cone corresponding to a circle of radius r and slant length l. Given that

lim
n→∞

1

2
pn

√
l2 − p2n

4n2
= πrl,

the surface area of the cone with circular base is πrl.

Surface Area of Conic Frustrum: To obtain the surface area of a conic
frustrum with slant length l and radii r and R, imagine subtracting two
cones, the small one with slant length l1 and radius r1, and the large one
with slant length l2 and radius r2. Then the net surface area is πr2l2−πr1l1.
Given the relationships

l1
l2

=
r1
r2

and
l2 − l1 = l,

the net surface area (after simplification) is πl(r1 + r2).

Surface Area of Revolution: Let y = f(x) be a curve from x = a to x = b.
Rotating about the x-axis yields a surface of revolution. Approximating the
curve by line segments with slope f ′(xi), we obtain conic frustrums with slant
length

√
1 + f ′(x∗i )

2∆x and radii f(xi−1) and f(xi). Summing, we obtain the
approximation

N∑
i=1

π
√

1 + f ′(x∗i )
2(f(xi−1) + f(xi))∆x.
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Using the further approximation f(xi−1) + f(xi)) ≈ 2f(x∗i ), we obtain the
Riemann sum

N∑
i=1

2πf(x∗i )
√

1 + f ′(x∗i )
2∆x.

This yields

surface area =

∫ b

a

2πf(x)
√

1 + f ′(x)2 dx.

For example, using f(x) = x2

2
, x ∈ [0, 1], we obtain∫ 1

0

x2
√

1 + x2 dx =

∫ π
4

0

tan2 θ sec3 θ dθ =

∫ π
4

0

sec5 θ − sec3 θ dθ =

∫ π
4

0

(sec6 θ − sec4 θ) cos θ dθ =

∫ √
2

2

0

1

(1− u2)3
− 1

(1− u2)2
du =

I3(u)− I2(u)|
π
4
0 =

1

16

(
6
√

2− log
(

2
√

2 + 3
))

.

Homework: Section 7.5, problems 7, 9, 11, 13, 25.

Section 7.6: Applications to Physics and Engineering

Things that can be measured:

distance (d), time (t), mass (m).

Things that can be calculated:

area (A), velocity (v), acceleration (a), force (F ), pressure (P ), work (W ).

English Units:

d ft, t sec, v ft/sec, a ft/sec2, F lbs, P = F/A lbs/ft2, W = Fd ft-lbs.

Metric Units:

d m, t sec, m kg, v m/sec, a m/sec2, F = ma N, P = F/A N/m2,
W = Fd J.

Note that N is short for netwons (kg m/sec2) and J is short for Joules
(newton-meters or kg m2/sec2).

Constants:

2



Gravity near earth causes constant acceleration of 32 ft/sec2 and 9.8 m/sec2.

Water has weight density 62.5 lbs/in3 and mass density 1000 kg/m3.

Work calculations:

If you lift an object of weight 23 ounces (force) through 75 inches (distance),
then the work done is

W = Fd =
23

16
· 75

12
= 8.98 ft lbs.

If you lift an object of mass 700 g through 250 cm, the work done is

W = Fd = mad =
700

1000
· 9.8 · 250

100
= 17.15 J.

A Variable Work Calculation: Example 3, page 400. A 200 pound rope
that is 100 feet long is suspended from the top of a building. Find the work
done in pulling up the rope to the top of the building, discounting other
forces.

Solution: Think of the rope as being partitioned into N pieces of length
∆x feet. We will calculate the work done to lift each segment, then add.

Each segment weighs 2∆x pounds, and the ith segment from the top is lifted
through x∗i feet, so the 2x∗i ∆x foot pounds of work is done, for a total of

N∑
i=1

2x∗i ∆x

foot pounds. Since x∗i is varying in [0, 100], the exact amount the work is

W =

∫ 100

0

2x dx

foot-pounds.

The Leaky Bucket Problem: Imagine that the rope above is supporting
a bucket of 50 gallons of water, that an empty bucket weighs 10 pounds,
that we pull up the bucket at a rate of 10 feet per second, and that at the
moment we start pulling the bucket leaks water at a rate of 2 gallons per
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second. Calculate the work done in pulling up the rope and the bucket and
the water in the bucket.

Solution: We will just calculate the amount of work to pull up the bucket
and the water in it, then add to the previous answer. It will take 10 seconds
to pull up the bucket. Think of time as being partitioned into N subintervals
of ∆t seconds. We will calculate the work done in each subinterval of time.

From time ti to time ti+1 we have lifted the bucket 10∆t feet. Choosing any
t∗i in this interval, the bucket and water weighs approximately 10 + 50 −
2t∗i = 60 − 2t∗i pounds, so in this time interval we have done approximately
(600− 20t∗i )∆t foot-pounds of work. Total approximate work done is

N∑
i=1

(600− 20t∗i )∆t.

Since t∗i is varying in [0, 10], the exact amount of work done is

W =

∫ 10

0

600− 20t dt.

Pumping Water out of a Tank Formed by a Volume of Revolution:
Imagine that a tank of water is formed by revolving the region bounded by
y = x4 and y = 3 about the y-axis. The tank is filled with water, and the
water is to be pumped out. How much work does this take, assuming that
the units along the x and y axes are given in feet?

Solution: We will partition the tank into slices of width ∆y and calculate
the work done to pump each slice out. The slice that extends from yi−1
to yi can be approximated by a washer that has a thickness of ∆y feet,
a cross-sectional radius of approximately x∗i feet corresponding to a value
of y∗i ∈ [yi−1, yi], a cross-sectional area of approximately π(x∗i )

2 = π
√
y∗i

square feet, a volume of approximately π
√
y∗i ∆y cubic feet, and a weight of

62.5π
√
y∗i ∆y pounds. Since this slice is to be lifted 3 − y∗i feet, the work

done is
62.5π

√
y∗i (3− y∗i )∆y

foot-pounds. Total approximate work done is

N∑
i=1

62.5π
√
y∗i (3− y∗i )∆y
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foot-pounds Exact work done is

W =

∫ 3

0

62.5π
√
y(3− y) dy

foot-pounds

Example 4, page 400:
The tank is the volume of revolution formed by the line y = 2.5x. The
slice that extends from yi−1 to yi can be approximated by a washer that
has a thickness of ∆y meters, a cross-sectional radius of approximately x∗i
meters corresponding to a value of y∗i ∈ [yi−1, yi], a cross-sectional area of

approximately π(x∗i )
2 = π

(y∗i )
2

6.25
square meters, a volume of approximately

π
(y∗i )

2

6.25
∆y cubic meters, a mass of 1000π

(y∗i )
2

6.25
∆y kilograms, and represents a

force of 9800π
(y∗i )

2

6.25
∆y newtons. Since this slice is to be lifted 10 − y∗i feet,

the work done is

9800π
(y∗i )2

6.25
(10− y∗i )∆y

foot-pounds. Total approximate work done is

N∑
i=1

9800π
(y∗i )2

6.25
(10− y∗i )∆y.

Since y∗i varies in [0, 8], exact work done is

W =

∫ 8

0

9800π
y2

6.25
(10− y) dy

joules. We get the same answer as in the book.

Remark: We can use the same ideas for other shapes, so long as we can
approximate the typical slice of volume.

Hydrostatic Pressure: Consider a rectangular container that has base
area A square feet and depth d feet. When the containiner is filled with
water, the pressure on the base of the container from the weight of the water
above it is P = F/A. The weight of the water 62.5 pounds per cubic foot
times Ad cubic feet, which yields F = 62.5Ad. The area of the base is A
square feet. Hence the pressure is 62.5Ad

A
= 62.5d pounds per square foot.

5



If the container has base area A square meters and depth d meters, then
the mass of the water is Ad kg, the acceleration is 9.8 meters per square
second, hence force of the water on the base is F = 9.8Ad newtons, hence
the pressure on the base is 9.8Ad

A
= 9.8d newtons per square meter.

Hydrostatic pressure is regarded to be the same in all directions at any given
depth.

A Hydrostatic Force Problem:
A metal plate in the shape bounded by the curves y = x2 and y = 18 − x2
(dimensions are feet) is submerged in water so that the top is 10 feet below
water level. Calculate the total amout of hydrostatic force exerted by the
water against the plate.

Solution: Since hydrostatic pressure (pounds of force per square foot of
area) across a slice of the plate is the same, we will approximate the total
force on a given slice of the plate by multiplying the area of the slice by the
force per square foot, then add the result.

Segment each half of the plate into slices of width ∆y. Assuming the approx-
imate depth of the ith slice is 20− y∗i , the hydrostatic pressure on the plate
at a depth of 20− y∗i is 62.5(20− y∗i ) pounds per square foot. For y∗i ∈ [0, 9],
the slice can be approximated by a rectangle with length extending between
the corresponding x-coordinates on the curve y = x2, namely 2

√
y∗i , for an

area of 2
√
y∗i ∆y square feet and a force of

125(20− y∗i )
√
y∗i ∆y

pounds. For y∗i ∈ [9, 18], the slice can be approximated by a rectangle with
length extending between the corresponding x-coordinates on the curve y =
18 − x2, namely 2

√
18− y∗i , for an area of 2

√
18− y∗i ∆y square feet and a

force of
125(20− y∗i )

√
18− y∗i ∆y

pounds. Hence total force is

F =

∫ 9

0

125(20− y)
√
y dy +

∫ 18

9

(20− y)
√

18− y dy = 49, 500

pounds. In the second integral, make the substitution u = 18− y to simplify
the calculation.
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Center of mass: Say objects with masses m1 through mk and total mass M
are located at positions (x1, y1, z1) through (xk, yk, zk). The center of mass
of the collection of objects is defined to be (x, y, z) where

x =
m1

M
x1 + · · ·+ mk

M
xk,

y =
m1

M
y1 + · · ·+ mk

M
yk,

and
z =

m1

M
z1 + · · ·+ mk

M
zk.

Given, for simplicity, a two-dimensional region with uniform mass density and
bounded by the curves y = f(x) and y = g(x) over [a, b], we approximate the
region by rectangular slices and treat each rectangle as having mass equal to
the area of the rectangle concentrated in the center of the rectangle. This
yields

x ≈ f(x1)− g(x1)∆x

A
x1 + · · ·+ (f(xn)− g(xn))∆x

A
xn,

y ≈ (f(x1)− g(x1))∆x

A

f(x1) + g(x1)

2
+· · ·+(f(xn)− g(xn))∆x

A

f(xn) + g(xn)

2
.

Letting n→∞, we obtain

x =

∫ b

a
x(f(x)− g(x)) dx∫ b

a
f(x)− g(x) dx

,

y =

∫ b

a
f(x)2−g(x)2

2
dx∫ b

a
f(x)− g(x) dx

.

Note: If there is a mass density function ρ that varies with x-coordinate,
we can modify the formulas above suitably.

Theorem of Pappus: Rotate plane figure about axis. Volume of revolution
is area times distance centroid (center of mass assuming uniform density)
travels.

Homework: Section 7.6, Problems 9, 11, 13, , 27, 43, 53

7


