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Abstract— We perform a statistical analysis and describe the
asymptotic behavior of the frequency and size distribution ofδ-
occurrent, minimal δ-occurrent, and maximal δ-occurrent item-
sets occurring in random datasets across the entire spectrum of
δ. We also describe the probability distribution of the support of
an n-element itemset in a random dataset. Finally, we exhibit a
class of datasets with an exponential number of minimal unique
itemsets. We find that for small values ofδ relative to number
of transactions the size distribution of δ-occurrent itemsets
and maximal δ-occurrent itemsets can be approximated by
the binomial distributions b(L, 1

1+2δ ) and b(L, 1

2δ ), respectively,
where L is inventory size. The ratio of minimal δ-occurrent and
maximal δ-occurrent itemsets to the total number ofδ-occurrent
itemsets is low for small values ofδ and rapidly approaches 1
as δ approaches the number of transactions. We also prove
that the probability distribution of the support of an n-element
itemset in a random k-transaction dataset is binomial of type
b(k, 1

2n ).

Keywords: frequent itemsets, combinatorial properties,
statistics, average case analysis

I. I NTRODUCTION

Itemset mining is an important and well-studied branch of
data mining. There have been hundreds of papers as well
as workshops at conferences (e.g. FIMI’03 and FIMI’04
at IEEE ICDM’03 and IEEE ICDM’04) devoted to this
subject. Almost all of the research has focused onfrequent
itemset mining, but some recent attention has been given to
infrequentitemset mining [1]–[3].

Since frequent itemset mining has so many practical
applications such as finding association rules (cf. [4]–[7]),
much of the analysis has involved performing timing tests
on standard datasets. It would be helpful to have a more the-
oretical framework from which to assess algorithms. There
has been some research into complexity-theoretic issues of
mining frequent itemsets [1], [8], [9]. But these studies have
focused on issues such as #P-Completeness which is difficult
to use in practical analysis. It would be ideal to perform
average caserather thanworst caseanalysis to support the
abundance of experimental analysis available in the literature.

A missing ingredient necessary to conduct average case
analysis has been the understanding of the expected num-
ber of itemsets with specific properties (such as maximal
frequent) in a dataset of a specific size drawn uniformly
randomly from the collection of all binary matrices of that
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size. In this paper we present the asymptotic behavior of the
frequency and size distributions of three important categories
of itemsets:δ-occurrent, minimalδ-occurrent, and maximal
δ-occurrent. We also describe the probability distributionof
the support of ann-element itemset in a randomk-transaction
dataset. The rest of the paper is organized as follows. Section
II gives our basic data mining terminology. Section III
provides the statements of the main results. In Section IV
we prove those main results. In Section V we exhibit an
example of a class of datasets which has an exponential
number of minimal 1-occurrent itemsets. In Section VI we
give our conclusions.

II. DATA M INING TERMINOLOGY

Let I = {x1, x2, . . . , xL} be an inventory ofL items. An
itemsetis a subsetI ⊆ I. The cardinality of I, denoted by
|I|, is the number of items in the itemset. Ak × L dataset
D = {t1, t2, . . . , tk} consists of a set ofk transactionsof
the formti = (i, Ti), wherei is thetransaction identification
(tid) number ofti andTi is a subset ofI. We denote by|D|
the number of transactions in the dataset. Thesupport setof
an itemsetI with respect to the datasetD is

D(I) = {ti ∈ D : I ⊆ Ti}.

The supportof an itemsetI in datasetD is the cardinality
of the support set ofI. That is,SuppD(I) = |D(I)|. The
relative supportof an itemset, defined asSuppD(I)/|D|, is
a number between 0 and 1 inclusive.

The itemsetI is said to be:

δ-occurrent if SuppD(I) = δ
δ-frequent if SuppD(I) ≥ δ

δ-infrequent if SuppD(I) < δ

In addition, an itemset is:
minimalδ-occurrentif it is δ-occurrent and all of its proper

subsets are(δ + 1)-frequent;
minimal δ-infrequent if it is δ-infrequent and all of its

proper subsets are(δ + 1)-frequent;
maximal δ-occurrent if it is δ-occurrent and all of its

proper supersets areδ-infrequent; and
maximalδ-frequentif it is δ-frequent and all of its proper

supersets areδ-infrequent.

Example: Let I = {x1, x2, x3, x4, x5} and let D =
{t1, t2, t3, t4, t5, t6} be the6 × 5 dataset given by:

T1 = {},
T2 = {x1},
T3 = {x1, x2},
T4 = {x1, x2, x3},
T5 = {x1, x2, x3, x4},



T6 = {x1, x2, x3}.

The 3-occurrent itemsets are:

I1 = {x3},
I2 = {x1, x3},
I3 = {x2, x3},
I4 = {x1, x2, x3}.

All of these itemsets have support set{t4, t5, t6}. Itemset
I1 is minimal 3-occurrent and itemsetI4 is maximal 3-
occurrent.

We will representk×L datasets byk×L binary matrices,
where the entry in rowi, column j is 1 if and only if
transactionti contains itemxj . The example above can be
represented by the matrix

















0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 0 0
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We can see that there are2kL possible datasets of sizek,
drawn from an inventory of sizeL.

III. STATEMENT OF MAIN RESULTS

In Theorem 1 we give asymptotic bounds for the expected
number ofδ-occurrent, minimalδ-occurrent, and maximal
δ-occurrent itemsets in a randomk ×L dataset. In Theorem
2 we give asymptotic bounds for the expected size of a
δ-occurrent, minimalδ-occurrent, and maximalδ-occurrent
itemset in a randomk × L dataset. We also provide asymp-
totic bounds for the standard deviation of the expected sizeof
a δ-occurrent and maximalδ-occurrent itemset. In Theorem
3 we describe the probability distribution of the support of
an n-element itemset in a randomk-transaction dataset.

Theorem 1:Let I be an inventory of sizeL. Let Ωk,L be
the sample space consisting ofk ×L datasets ofI. Assume
that the events inΩk,L are equally likely. For eachδ ≥ 1 let
Xk,L,δ, Xmin

k,L,δ, andXmax
k,L,δ be the random variables onΩk,L

defined respectively as the number ofδ-occurrent, minimal
δ-occurrent, and maximalδ-occurrent itemsets of a dataset
D ∈ Ωk,L.

(1) For any fixedk, L, andδ ≥ 1,

E[Xk,L,δ] <

(

k

δ

)

(1 + 2−δ)L

and

E[Xmax
k,L,δ] <

(

k

δ

)

.

(2) For any fixed ratior > 0 and fixedδ ≥ 1, numerical
evidence suggests that

E[XrL,L,δ] = (1 − o(1))

(

rL

δ

)

(

1 + 2−δ
)L

and

E[Xmax
rL,L,δ] = (1 − o(1))

(

rL

δ

)

asL → ∞. The rate of convergence decreases asr increases
and asδ increases.

(3) For any fixedk, L, andδ ≥ 1,

e
− L

2δ
−1 <

E[Xmax
k,L,δ]

E[Xk,L,δ]
≤

E[Xmin
k,L,δ]

E[Xk,L,δ]
≤ 1.

Theorem 2:Let I be an inventory of sizeL. For eachk
and δ let Ωk,L,δ be the sample space consisting of ordered
pairs of the form(D, I), whereD is ak×L dataset ofI and
I is a δ-occurrent itemset ofD. Let Ωmin

k,L,δ and Ωmax
k,L,δ be

the sample spaces consisting of dataset-itemset pairs in which
the itemset is minimal and maximalδ-occurrent, respectively.
Assume that the events in these sample spaces are equally
likely. For eachk, L, andδ let Yk,L,δ be the random variable
on Ωk,L,δ defined by

Yk,L,δ(D, I) = |I|.
Let Y min

k,L,δ and Y max
k,L,δ be defined similarly onΩmin

k,L,δ and
Ωmax

k,L,δ.

(1) For any fixed ratior > 0 and fixedδ ≥ 1, numerical
evidence suggests that the probability distribution ofYrL,L,δ

can be approximated by a binomial distribution of the form
b(L, 1

1+2δ ). In particular, the mean is

E[YrL,L,δ] = (1 + o(1))
L

1 + 2δ

and the standard deviation is

σrL,L,δ = (1 − o(1))

√
L

2δ/2 + 2−δ/2

as L → ∞. The rate of convergence for each expression
decreases asr increases and asδ increases.

(2) For any fixed ratior > 0 and fixedδ ≥ 1, numerical
evidence suggests that the probability distribution ofY max

rL,L,δ

can be approximated by a binomial distribution of the form
b(L, 1

2δ ). In particular, the mean is

E[Y max
rL,L,δ] = (1 + o(1))

L

2δ

and the standard deviation is

σmax
rL,L,δ = (1 − o(1))

√

L(2−δ − 4−δ)

as L → ∞. The rate of convergence for each expression
decreases asr increases and asδ increases.

(3) For any fixedk, L, andδ ≥ 1,

1 ≤
E[Y max

k,L,δ]

E[Yk,L,δ]
< e

L

2δ
−1 .

Numerical evidence suggests thatE[Y min
k,L,δ] rapidly ap-

proachesE[Yk,L,δ] asδ → k.

Theorem 3:Let I be an inventory of sizeL. For each
k and n ≤ L let Ω

(n)
k,L be the sample space consisting of



ordered pairs of the form(D, I), whereD is ak×L dataset
of I andI is an itemset ofD of cardinalityn. Assume that
the events in these sample spaces are equally likely. LetZ

(n)
k,L

be the random variable onΩ(n)
k,L be defined by

Z
(n)
k,L(D, I) = SuppD(I).

Then the probability distribution ofZ(n)
k,L is binomial of the

form b(k, 1
2n ) with mean

E[Z
(n)
k,L] =

k

2n

and standard deviation

σ
(n)
k,L =

√

k(2−n − 4−n).

IV. PROOFS

The key to proving Theorems 1, 2, and 3 is contained
in Lemma 1, in which we count dataset-itemset pairs using
standard methods of enumerative combinatorics: the rear-
rangements formula, generating functions, and the principle
of inclusion-exclusion [10], [11]. We will prove Lemma
1 first, then use it to establish Theorems 1 through 3. In
Theorems 2 and 3 we refer to the binomial distribution. For
a reference, consult [12].

Lemma 1:Let I be an inventory of sizeL, and letI be a
fixed itemset of sizen drawn fromI. Let f(k, L, δ, n) denote
the number ofk×L datasets in whichI is δ-occurrent. Then

f(k, L, δ, n) =

(

k

δ

)

2(L−n)δ(2L − 2L−n)k−δ.

If fmin(k, L, δ, n) and fmax(k, L, δ, n) denote the number
of k × L datasets in whichI is minimal and maximalδ-
occurrent then

fmin(k, L, δ, n) =
(

k

δ

)

2(L−n)δ
n

∑

j=0

(−1)j

(

n

j

)

(2L − (j + 1)2L−n)k−δ

and

fmax(k, L, δ, n) = (1 − 2−δ)L−nf(k, L, δ, n).

A. Proof of Lemma 1

Assume thatI = {xs1
, xs2

, . . . , xsn
}. In order to count

all datasetsD in which I is δ-occurrent, we must count
all k × L binary matrices in which exactlyδ rows have
1s in columnss1, s2, ..., sn. There are2L types of row
which can appear in any binary matrix withL columns,
corresponding to the number of binary strings of lengthL.
There are2L−n row types which contain 1s in positions
s1 through sn, and we will label theseP1, P2, ..., P2L−n .
There are2L − 2L−n other row types, which we will label
Q1, Q2, ..., Q2L−2L−n . To construct all possible binary
matrices containing exactlyδ rows with 1s in columnss1

through sn, we will first choosepi copies ofPi for each
i ≤ 2L−n, then qi copies ofQi for eachi ≤ 2L − 2L−n,
requiring that

∑2L−n

i=1 pi = δ and
∑2L−2L−n

i=1 qi = k − δ,

then choose all possible rearrangements of these row types
within a k×L matrix, then sum over all possibilities. Using
the rearrangements formula, the total number is

∑

P

pi=δ

∑

P

qi=k−δ

k!

p1! · · · p2L−n !q1! · · · q2L−2L−n !
,

which we recognize ask! times the coefficient ofxδ in the
generating function(ex)2

L−n

times the coefficient ofxk−δ

in the generating function(ex)2
L−2L−n

, namely

f(k, L, δ, n) = k!
(2L−n)δ

δ!

(2L − 2L−n)k−δ

(k − δ)!
.

To compute fmin(k, L, δ, n), we must subtract from
f(k, L, δ, n) the total number of datasetsǫmin(k, δ, n) in
which I contains a subsetJ of size n − 1 which is also
δ-occurrent inD. This requires an inclusion-exclusion argu-
ment. If we denote byAi the set of all datasets in whichI
andI − {xsi

} areδ-occurrent, then

ǫmin(k, δ, n) = |A1 ∪ · · · ∪ An|.

The datasets inAe1
∩ · · · ∩ Aej

are those in which the
itemsetsI, I −{xse1

}, ..., I −{xsej
} are allδ-occurrent. As

above there are2L−n row typesP1 through P2L−n which
contain a 1 in positionss1 through sn. For eachi ≤ j
there are2L−n row types which have 1s in all positions
of {s1, . . . , sn} except sei

and a 0 in positionsei
, and

we must not choose any of these row types. There are
2L − (j + 1)2L−n remaining row types, which we will label
R1 throughR2L−(j+1)2L−n . To construct all possible binary
matrices representing datasets inAe1

∩ · · · ∩ Aej
, we will

first choosepi copies of Pi for each i ≤ 2L−n, then qi

copies ofRi for eachi ≤ 2L − (j + 1)2L−n, requiring that
∑2L−n

i=1 pi = δ and
∑2L−(j+1)2L−n

i=1 qi = k − δ, then choose
all possible rearrangements of these row types within ak×L
matrix, then sum over all possibilities. The total number is

|Ae1
∩ · · · ∩ Aej

| = k!
(2L−n)δ

δ!

(2L − (j + 1)2L−n)k−δ

(k − δ)!
.

This, combined with the inclusion-exclusion formula, yields
fmin(k, L, δ, n).

To compute fmax(k, L, δ, n), we must subtract from
f(k, L, δ, n) the total number of datasetsǫmax(k, L, δ, n) in
which I is contained in a supersetJ of size n + 1 which
is also δ-occurrent inD. This requires another inclusion-
exclusion argument. WriteIc = {xt1 , . . . , xtL−n

}. If we
denote byBi the set of all datasets in whichI andI ∪{xti

}
areδ-occurrent, then

ǫmax(k, L, δ, n) = |B1 ∪ · · · ∪ BL−n|.

The datasets inBe1
∩· · ·∩Bej

are those in which the itemsets
I, I ∪{xte1

}, ..., I ∪{xtej
} are allδ-occurrent, i.e. in which

I ∪ {xte1
, . . . , xtej

} is δ-occurrent. There are2L−n−j row
types with 1s in the positions of{s1, . . . , sn, te1

, . . . , tej
},

and we must chooseδ rows from among these types. There
are 2L − 2L−n row types which do not have 1s in all



the positions of{s1, . . . , sn}, and we must choosek − δ
rows from among these types. Summing over all possible
rearrangements as before we obtain

|Be1
∩ · · · ∩ Bej

| = k!
(2L−n−j)δ

δ!

(2L − 2L−n)k−δ

(k − δ)!
.

This, combined with the inclusion-exclusion formula, yields

ǫmax(k, L, δ, n) =

(

k

δ

) L−n
∑

j=1

(−1)j−1

(

L − n

j

)

(2L−n−j)δ(2L − 2L−n)k−δ.

Therefore
fmax(k, L, δ, n) =

(

k

δ

) L−n
∑

j=0

(−1)j

(

L − n

j

)

(2L−n−j)δ(2L − 2L−n)k−δ =

(

k

δ

)

2(L−n)δ(2L − 2L−n)k−δ
L−n
∑

j=0

(−1)j

(

L − n

j

)

(2−δ)j =

f(k, L, δ, n)(1 − 2−δ)L−n.

B. Proof of Theorem 1

E[Xk,L,δ] is the ratio of the number of dataset-itemset
pairs(D, I) in which I is δ-occurrent inD to the size of the
sample space, hence by Lemma 1 we have

E[Xk,L,δ] = |Ωk,L|−1
L

∑

n=0

(

L

n

)

f(k, L, δ, n) =

2−kL

(

k

δ

) L
∑

n=0

(

L

n

)

2(L−n)δ(2L − 2L−n)k−δ =

(

k

δ

) L
∑

n=0

(

L

n

)

2−nδ(1 − 2−n)k−δ <

(

k

δ

) L
∑

n=0

(

L

n

)

2−nδ =

(

k

δ

)

(1 + 2−δ)L.

Similarly, using

fmax(k, L, δ, n) = (1 − 2−δ)L−nf(k, L, δ, n),

we have

E[Xmax
k,L,δ] <

(

k

δ

) L
∑

n=0

(

L

n

)

(1 − 2−δ)L−n2−nδ =

(

k

δ

)

.

A plot of y = E[XrL,L,δ]/
(

rL
δ

)

(1 + 2−δ)L versusL for
various choices ofr and δ suggests thaty → 1 asL → ∞.
The rate of convergence decreases asr increases and asδ
increases. We illustrate this forr = .25, .5, 1, 2, 4 andδ = 1
in Figure 1.

A plot of y = E[Xmax
rL,L,δ]/

(

rL
δ

)

versusL for various
choices ofr andδ suggests thaty → 1 asL → ∞. The rate
of convergence decreases asr increases and asδ increases.
We illustrate this forr = .25, .5, 1, 2, 4 andδ = 2 in Figure
2.
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Fig. 1. y = E[XrL,L,1]
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Observe that everyδ-occurrent itemset of a dataset is
contained in exactly one maximalδ-occurrent itemset. The
reason for this is that if the support set of aδ-occurrent
itemset I is {te1

, . . . , teδ
}, then the maximalδ-occurrent

itemsetJ which has this support set is uniquely determined
by the equation

J =

δ
⋂

i=1

Tei
.

This implies
L

∑

n=0

(

L

n

)

fmax(k, L, δ, n) ≤
L

∑

n=0

(

L

n

)

fmin(k, L, δ, n)

for everyk, L, andδ. This, combined with

fmax(k, L, δ, n) = (1 − 2−δ)L−nf(k, L, δ, n)

and
(1 − 2−δ)L−n ≥ (1 − 2−δ)L > e

− L

2δ
−1 ,

proves part (3) of Theorem 1.

C. Proof of Theorem 2

By Lemma 1, there are
(

L
n

)

f(k, L, δ, n) dataset-itemset
pairs (D, I) in which |I| = n and I is δ-occurrent inD.
Therefore

|Ωk,L,δ| =
L

∑

n=0

(

L

n

)

f(k, L, δ, n)

and

P [Yk,L,δ = n] = |Ωk,L,δ|−1

(

L

n

)

f(k, L, δ, n).



We can computeE[Yk,L,δ] using these expressions. For
example,E[Y1000,100,1] = 33.3335 and E[Y1000,100,2] =
20.1366. See Figures 3 and 4 for a graph ofy =
E[Y1000,100,δ] versusδ for 3 ≤ δ ≤ 100.
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Fig. 3. y = E[Y1000,100,δ], 3 ≤ δ ≤ 20
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Fig. 4. y = E[Y1000,100,δ], 20 ≤ δ ≤ 1000

By Theorem 1 we can say that

|ΩrL,L,δ| = (1 − o(1))2rL2

(

rL

δ

)

(1 + 2−δ)L.

Therefore
P [YrL,L,δ = n] =

(1 + o(1))

(

L
n

)(

rL
δ

)

2(L−n)δ(2L − 2L−n)rL−δ

2rL2
(

rL
δ

)

(1 + 2−δ)L
.

Simplifying, this can be expressed in the form

P [YrL,L,δ = n] = (1+o(1))(1−2−n)rL−δ

(

L

n

)

pn(1−p)L−n

wherep = 1
1+2δ . This can be approximated byb(L, p), the

binomial distribution, by dropping the

(1 + o(1))(1 − 2−n)rL−δ

term. This yields approximations to the mean and standard
deviation ofYrL,L,δ for small values ofδ relative to number

of transactions:

E[YrL,L,δ] ≈
L

1 + 2δ

and

σrL,L,δ ≈
√

L

2δ/2 + 2−δ/2
.

To check the accuracy of these approximations we plotted

y = E[YrL,L,δ]

/

L

1 + 2δ

and

y = σrL,L,δ

/ √
L

2δ/2 + 2−δ/2

versusL for various values ofr and δ and observed that
in all casesy → 1 as L → ∞. The rate of convergence
decreases asr increases and asδ increases. See Figures 5
and 6 forr = .25, .5, 1, 2, 4 andδ = 1.
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Fig. 5. y = E[YrL,L,1]
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for r = .25, .5, 1, 2, 4
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Similarly, we have

P [Y max
rL,L,δ = n] =

(1 + o(1))

(

L
n

)(

rL
δ

)

2(L−n)δ(2L − 2L−n)rL−δ(1 − 2−δ)L−n

2rL2
(

rL
δ

) .

Simplifying, this can be expressed in the form

P [YrL,L,δ = n] = (1+o(1))(1−2−n)rL−δ

(

L

n

)

pn(1−p)L−n

where p = 1
2δ . This can be approximated byb(L, p), the

binomial distribution. This yields approximations to the mean



and standard deviation ofYrL,L,δ for small values ofδ
relative to number of transactions:

E[YrL,L,δ] ≈
L

2δ

and
σmax

rL,L,δ ≈
√

L(2−δ − 4−δ).

To check the accuracy of these approximations we plotted

y = E[Y max
rL,L,δ]

/

L

2δ

and

y = σmax
rL,L,δ

/

√

L(2−δ − 4−δ)

versusL for various values ofr and δ and observed that
in all casesy → 1 as L → ∞. The rate of convergence
decreases asr increases and asδ increases. See Figures 7
and 8 forr = .25, .5, 1, 2, 4 andδ = 2.
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To prove the inequality in part (3) of Theorem 2, we
combine

E[Y max
k,L,δ] =

∑L
n=0 n

(

L
n

)

fmax(k, L, δ, n)
∑L

n=0

(

L
n

)

fmax(k, L, δ, n)
<

∑L
n=0 n

(

L
n

)

f(k, L, δ, n)

(1 − 2−δ)L
∑L

n=0

(

L
n

)

f(k, L, δ, n)
= (1− 2−δ)−LE[Yk,L,δ]

with
(1 − 2−δ)−L < e

L

2δ
−1 .

Numerical evidence suggests that bothE[Y max
k,L,δ] and

E[Y min
k,L,δ] rapidly approachE[Yk,L,δ] as δ → k. See Figure

9 for an illustration of this whenk = 1000 andL = 100, in
which we superimposed the graphs of

y = E[Y min
1000,100,δ]/E[Y1000,100,δ]

and
y = E[Y max

1000,100,δ]/E[Y1000,100,δ]

for 1 ≤ δ ≤ 7.
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Fig. 9. Expected min, max itemset size ratios,k = 1000, L = 100

D. Proof of Theorem 3

This follows from

|Ω(n)
k,L| =

(

L

n

)

2kL

and

P [Z
(n)
k,L = δ] =

(

L
n

)

f(k, L, δ, n)

|Ω(n)
k,L|

=

(

k

δ

)

2−nδ(1 − 2−n)k−δ.

V. EXAMPLE OF A CLASS OFDATASETS WITH AN

EXPONENTIAL NUMBER OF M INIMAL UNIQUE ITEMSETS

For each positive odd integerL ≥ 3 let IL =
{x0, . . . , xL−1} be an itemset of sizeL and letDL denote
the L × L dataset constructed as follows:

DL = {t0, t1, . . . , tL−1}
where

T2i = T2i+1 = {x0, . . . , xL−1} − {x2i, x2i+1}
for 0 ≤ i ≤ L−3

2 and

TL−1 = {x0, . . . , xL−1}.
For example, the binary matrix which representsD5 is













0 0 1 1 1
0 0 1 1 1
1 1 0 0 1
1 1 0 0 1
1 1 1 1 1













.

The transactiontL−1 is contained in the support set of
every itemset. Therefore the 1-occurrent itemsets are those
that contain at least one item from{x2i, x2i+1} for each



0 ≤ i ≤ L−3
2 and an arbitrary subset of{xL−1}. There

are 2 × 3
L−1

2 = 2√
3
(
√

3)L 1-occurrent itemsets, exactly

2
L−1

2 = 1√
2
(
√

2)L of which are minimal 1-occurrent and
exactly 1 of which is maximal 1-occurrent. The average size
of a 1-occurrent itemset is

(

2 × 3
L−1

2

)−1
L−1

2
∑

j=0

(L−1
2

j

)

2j(2L − 1 − 2j) =
2

3
L − 1

6
,

all the minimal 1-occurrent itemsets have size1
2L − 1

2 , and
the unique maximal 1-occurrent itemset has sizeL.

VI. CONCLUSIONS

A. The expected number and size of maximal and minimal
δ-occurrent itemsets whenδ is small

For small values ofδ relative to k there are far fewer
minimal δ-occurrent itemsets and far fewer maximalδ-
occurrent itemsets than there areδ-occurrent itemsets per
randomk × L dataset, and the expected size of maximal
δ-occurrent itemsets is larger than the expected size of all
δ-occurrent itemsets by a factor of roughly1 + 2−δ. As
δ approachesk, the expected number and size of minimal
and maximalδ-occurrent itemsets rapidly approaches the
expected number and size of allδ-occurrent itemsets.

B. The variance of the expected size ofδ-occurrent and
maximalδ-occurrent itemsets for small values ofδ

Since the probability distributions of the expected size
of a δ-occurrent itemset and a maximalδ-occurrent itemset
in a random dataset are approximately binomial for small
values ofδ relative to number of transactions, we can say
that roughly 95% of allδ-occurrent itemsets will be of size
within two standard deviations of the mean for small values
of δ. For example, roughly 95% of all 1-occurrent itemsets
occurring in randomk×900 datasets will have size between
271 and 329, and roughly 95% of all maximal 1-occurrent
itemsets will have size between 420 and 480.

C. Mostδ-occurrent itemsets are the same size for largeδ

For relatively large values ofδ, the size distribution of a
δ-occurrent itemset is very tightly clustered about the mean.
For example, the expected size of a 200-occurrent itemset in
a 1000× 100 dataset is 2.000007, and the probability that a
200-occurrent itemset in a random1000×100 dataset has size
equal to 2 is 0.999993. So with a high degree of certainty
we should say that almost all 200-occurrent itemsets in a
random1000 × 100 dataset have size equal to 2.

D. Statistics onδ-frequent itemsets

Statistics onδ-occurrent itemsets yield statistics onδ-
frequent itemsets. For example, the probability that an item-
set of size 10 is 7-frequent in a random10000× 100 dataset
is found as follows: the mean support of a random itemset
of size 10 isµ = 9.76563 and the standard deviation is
σ = 3.12347, therefore thez-score corresponding to 7 is

z =
7 − µ

σ
= −0.885432.

Using a normal distribution with meanµ and standard
deviationσ to approximateb(10000, 1

210 ), we have

P [Z
(10)
10000,100 ≥ 7] ≈ P [z ≥ −0.885432] = 0.82.

E. For smaller δ there is higher variance of sizes and
expected numbers of itemsets

The expected number and size distribution ofδ occurrent
itemsets in any given dataset may be far from what is
predicted for a random dataset. Asδ decreases, the variance
increases. Consider theL×L datasetDL we constructed in
Section V above. There are2√

3
(
√

3)L 1-occurrent itemsets in
DL, which is exponentially larger than the expected value of
(1− o(1))L(1.5)L. There is 1 maximal 1-occurrent itemset,
compared with an expected value of(1−o(1))L. The average
size of a 1-occurrent itemset inDL is 2

3L− 1
6 , compared with

the expected value of(1+ o(1)) 1
3L. The unique maximal 1-

occurrent itemset has sizeL, compared with an expected
value of (1 + o(1)) 1

2L.
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