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Abstract

The Jacobian conjecture [Keller, Monatsh. Math. Phys., 1939] gives rise to a
problem in combinatorial linear algebra: Is the vector space generated by rooted
trees spanned by forest shuffle vectors? In order to make headway on this problem
we must study the algebraic and combinatorial properties of rooted trees. We prove
three theorems about the vector space generated by binary rooted trees: Shuffle
vectors of fixed length forests are linearly independent, shuffle vectors of nondegen-
erate forests relative to a fixed tree are linearly independent, and shuffle vectors
of sufficient length forests are linearly independent. These results are proved using
the acyclic digraph method for establishing that a coefficient matrix has full rank
[Singer, The Electronic Journal of Combinatorics, 2009]. We also provide an infinite
class of counterexamples to demonstrate the need for sufficient length in the third
theorem.

1 Introduction

Every since reading Doron Zeilberger’s paper “Toward a Combinatorial Proof of the Ja-
cobian Conjecture?” as a graduate student in the nineties [9], I have been thinking about
this question. Zeilberger proposed that the Joyal method of combinatorial species be
brought to bear on the problem [2]. Wright has formulated a combinatorial approach to
the Jacobian conjecture using trees [7], and I have formulated a slightly different version
using rooted trees [4]. See also [1] and [8]. What makes the combinatorial approach so
difficult is that one is attempting to prove a much stronger statement than the Jacobian
conjecture itself: individual weights of trees, which contribute terms to the inverse of a
polynomial system, are equal to zero. We don’t even know that the Jacobian conjecture
is true, let alone the truth of the combinatorial statements that would imply it. What is
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required here is a systematic study of the relevant combinatorial and algebraic properties
of trees.

In this paper I will describe the progress I have made in this regard, in particular The-
orems 5.3, 6.3, 7.15, and Example 8.1. The content of the theorems is that, in the vector
space generated by rooted binary trees, shuffle vectors of fixed length forests are linearly
independent; shuffle vectors of nondegenerate forests arising from a single tree are linearly
independent; and shuffle vectors of all sufficient length forests are linearly independent.
Example 8.1 provides an infinite number of counterexamples that demonstrate the need
for sufficient length. My toolkit includes the acyclic digraph method for proving that a
coefficient matrix has full rank [5].

To simplify the presentation we will deal with the quadratic case of the Jacobian con-
jecture only, which has the advantage of already having been proved true using algebraic
methods [6]. The general idea is that the formal inverse of a system of polynomials can be
expressed as an infinite sum of weights of rooted binary trees. We wish to prove that all
but a finite number of these weights are equal to zero. The jacobian condition implies that
certain linear combinations of tree weights are equal to zero, and the combinatorial task
is to show that all but a finite number of tree weights can be spanned by the zero linear
combinations. To this end we lift the problem statement from polynomials to trees. We
will spend a few paragraphs here to introduce some terminology and make our statements
more precise.

2 Rooted Binary Trees

Rooted binary trees are isomorphism classes of rooted trees in which each parent vertex
has two children. Each rooted binary tree with more than one leaf can be uniquely
represented in the form of a two-element multiset: T = {A, B}, where A and B are the
rooted binary trees whose roots are the children of the root of T . Since rooted binary trees
is a mouthful, from now on we will just say trees. We order trees recursively as follows:
the smallest tree is T1, the tree consisting of one leaf vertex and no edges. More generally,
if S and T are trees, S = {A, B}, T = {A′, B′}, A ≥ B, and A′ ≥ B′, then we say that
S > T if and only if S has more leaves than T or they have the same number of leaves
and (A, B) > (A′, B′) in lexicographic order.

Given this ordering we label the trees T1, T2, . . . in increasing order. The totally
symmetric trees in this list are

S0 = T1, S1 = {S0, S0}, ..., Sk = {Sk−1, Sk−1}.

We have
S0 = T1, S1 = T2, S2 = T4, S3 = T26,

and so on. We associate with each tree Ti a non-commuting variable ti, and we associate
with each word ti1 . . . tik the expresson tree(ti1 . . . tik) defined recursively by

tree(ti) = {T1, Ti}
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and
tree(ti1ti2 . . . tik) = {tree(ti1ti2 . . . tik−1

), Tik}.
For example we have

tree(t1) = S1, tree(t1t2) = S2, tree(t1t2t4) = S3.

The first eight trees are depicted in Figure 2.1. The root vertices are filled.

Figure 2.1: T1, T2, T3, T4, T5, T6, T7, T8

Given a rational finite linear combination∑
i1,...,ik

qi1,...,ikti1 · · · tik

we define
tree(

∑
i1,...,ik

qi1,...,ikti1 · · · tik) =
∑

i1,...,ik

qi1,...,iktree(ti1 · · · tik),

implicitly defining a rational vector space PB consisting of polynomials in the noncommut-
ing variables t1, t2, . . . , and another rational vector space VB with basis B = {T1, T2, . . . }.
To compete the description of tree as a linear operator on PB we define

tree(q) = qT1

for all q ∈ Q and extend by linearity to all polynomials. The tree operator is not injective:
for example, we have tree(t1t1) = tree(t2) = t3.

Let te1 · · · tek
be a word in the variables t1, t2, . . . . The shuffle polynomial corresponding

to this word is the symmetric function

〈te1 · · · tek
〉 =

∑
σ∈Sk

teσ(1)
· · · teσ(k)

.

The shuffle vector in VB corresponding to the word te1 · · · tek
is

S(te1 · · · tek
) = tree(〈te1 · · · tek

〉). (2.1)

For example, we have

S(t1t1t2) = tree(〈t1t1t2〉) = tree(2t1t1t2 + 2t1t2t1 + 2t2t1t1) =

2T6 + 2T7 + 2T8.
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3 Jacobian Conjecture

In [4] I show that given a system of polynomials

(F1, . . . , Fn) = (x1 −H1, . . . , xn −Hn) ∈ C[x1, . . . , xn]n,

each polynomial Hi homogeneous of total degree 2, there is a linear mapping

φ : VB → C[x1, . . . , xn]n

with the property that if we set

(G1, . . . , Gn) =
∑
T∈B

φ(T )

then we have
Gi −Hi(G1, . . . , Gn) = xi

for 1 ≤ i ≤ n, where B is the set of rooted binary trees. The expressions G1, . . . , Gn are
formal power series in the variables x1, . . . , xn, and if T is a tree with v leaves then φ(T )
is a vector of polynomials each homogeneous of total degree v. The quadratic case of
the Jacobian conjecture states that if the determinant of the jacobian of the polynomial
system (F1, . . . , Fn) is equal to a non-zero complex number then each Gi is a polynomial
of finite degree. The combinatorial problem is to show that φ(T ) = 0 for all trees T with
sufficiently many leaves. The fact that the jacobian determinant is a non-zero constant
and the polynomial system (H1, . . . , Hn) is homogeneous implies that the jacobian matrix
of the latter system is nilpotent of index n.

This has the following combinatorial significance: assuming (∂Hi

∂xj
)δ = 0, for each triple

of words (x1 · · ·xa, y1 · · · yδ, z1 · · · zb) we have

φ(tree(x1 · · ·xa · 〈y1, . . . yδ〉 · z1 · · · zb)) = 0.

So one way to supply a combinatorial proof of the quadratic case of the Jacobian conjecture
is to show that every binary tree with a sufficient number of leaves can be expressed as a
linear combination of shuffle vectors of the form

tree(x1 · · ·xa · 〈y1 · · · yδ〉 · z1 · · · zb).

I was able to do this for all rooted binary trees with at least seven leaves under the
assumption that δ = 3 ([4], Theorem 5.3). The ordering of trees I have described above
played a key role in the proof.
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4 The Acyclic Digraph Method

In the next three sections we will present three theorems which describe conditions under
which the shuffle vectors S(te1 · · · tek

) defined in Equation 2.1 above are linearly indepen-
dent in VB. Each theorem sheds a little light on algebraic and combinatorial properties
of trees that may one day prove useful for proving the Jacobian conjecture (the quadratic
case, at any rate). The theorems are presented in the order corresponding to the length
of time it took me to prove them (ten minutes, one week, two years) and, I think, in order
of increasing importance. We will use the acyclic digraph method to prove each theorem
[5], restating Definition 2.1, Definition 2.3, and Theorem 2.11 from that paper for easy
reference:

Definition 4.1. Let A = (aij) be a real m × n matrix. The matrix A gives rise to
an edge-labeled digraph GA = (VA, EA), with vertex set VA = {v1, . . . , vn} and for all
(j, i, k) ∈ [n] × [m] × [n] a directed edge (vj, i, vk) from vj to vk labeled i if and only if
aijaik 6= 0.

Definition 4.2. Let A = (aij) be a real m×n matrix with no zero columns, and let GA be
the associated edge-labeled digraph as in Definition 4.1. For each column j ≤ n we define
Rj = {i ≤ m : aij 6= 0}. Since A has no zero columns, every set Rj is non-empty. Given
a row selection function r : VA → {1, . . . ,m} which satisfies r(vj) ∈ Rj for all j ≤ n we
form the row selection subgraph Gr = (VA, Er) of GA with vertex set VA and edge set

Er = {(v, i, v′) ∈ EA : i = r(v)}.

The acyclic digraph method provides a criterion whereby a coefficient matrix has full
rank:

Theorem 4.3. Let A = (aij) be a m× n matrix over the reals with no zero columns, let
GA be the associated edge-labeled directed graph described in Definition 4.1, let

r : VA → {1, . . . ,m}

be a row-selection function which satisfies r(vj) ∈ Rj for all j ≤ n, and let Gr be the row
selection subgraph of GA defined by r described in Definition 4.2. If Gr has no directed
cycles of length ≥ 2 then the rows chosen by the row-selection function r are linearly
independent.

5 Shuffles of Fixed Length Forests

The main result of this section is Theorem 5.3. Preliminaries:
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Definition 5.1. Let t1, t2, . . . be the sequence of non-commuting variables referenced in
Section 2. We order the variables by t1 < t2 < . . . and order words (products of variables)
according to lexicographic order of variables. The largest rearrangement of a word w is w.
If w = w then we say that w is ordered. We also say that 1 < w for all words w.

Lemma 5.2. Let x and y be words in t1, t2, . . . of length k ≥ 1, and assume that x is
ordered. If tree(x) = tree(y) then x ≤ y.

Proof. By induction on k. When k = 1 we have x = y. Assume the property is true
for words of length k. Consider x and y of length k + 1. Write x = te1te2 · · · tek+1

and
y = tf1tf2 · · · tfk+1

with tree(x) = tree(y) and e1 ≥ e2 ≥ · · · ≥ ek+1. Then we have equality
of the multisets {tree(te1 · · · tek

), Tek+1
} and {tree(tf1 · · · tfk

), Tfk+1
}. If ek+1 = fk+1 then

tree(te1 · · · tek
) = tree(tf1 · · · tfk

),

hence by the induction hypothesis te1 · · · tek
≤ tf1 · · · tfk

, hence

x = te1te2 · · · tek+1
≤ tf1 · · · tfk

tfk+1
≤ y.

But if ek+1 6= fk+1 then
Tfk+1

= tree(te1 · · · tek
) > Te1

by virtue of the fact that Tfk+1
has more vertices than Te1 , hence fk+1 > e1, hence

x < y.

Theorem 5.3. For each k ≥ 1 the shuffle vectors in the set

{S(w) : w is an ordered word of length k}

are linearly independent in VB.

Proof. Let k ≥ 1 be given. It will suffice to restrict ourselves to ordered words w such
that tree(w) has v leaves. Having fixed k and v, let X1 < X2 < · · · < Xp be the list
of trees with v leaves and let w1 < w2 < · · · < wq be the list of ordered words yielding
trees with v leaves. Let A = (aij) be p × q matrix in which each column j contains the
coefficients of S(wj) expanded in terms of the ordered basis X1, . . . , Xp. Construct GA as
in Definition 4.1. We define our row selection function

r : {w1, . . . , wq} → {X1, . . . , Xp}

via
r(wj) = tree(wj),
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naming the vertices w1, . . . , wq instead of v1, . . . , vq and naming the edge labels X1, . . . , Xp

instead of 1, . . . , p. We will show that Gr has no non-trivial cycles, hence the coefficient
matrix has rank q and the shuffle vectors are linearly independent.

The non-loop edges in Gr are of the form (wi, tree(wi), wj) where wi and wj are distinct
ordered words and tree(wi) appears in the support of S(wj). So we have

tree(wi) = tree(σ(wj))

for some rearrangement σ(wj) of wj. By Lemma 5.2 we have wi ≤ wj. Since the words
are distinct, we have wi < wj. Hence the vertices encountered along walks in Gr using
non-loop edges strictly increase, which implies Gr has no non-trivial cycles.

6 Nondegenerate Shuffles of a Tree

The main result of this section is Theorem 6.3. Preliminaries:

Definition 6.1. Let w = te1 · · · tek
be a word in the variables t1, t2, . . . . If k ≥ 1 then

we write F (w) = Te1 + · · ·+ Tek
and interpret this as a multiset of trees rather than as a

vector in VB. We refer to F (w) as a forest of tree(w). If w = 1 then we set F (w) = 0 and
interpret this as the empty multiset. If F and G are forests of trees then we interpret F +G
as multiset union (addition of multiplicities) and F ⊆ G as multiset inclusion (every tree
in F occurs in G with equal or greater multiplicity). We order forests by F (u) < F (v) if
and only if u < v. A forest F is degenerate if F = kT for some positive integer k and
tree T .

Every forest of a tree T arises in the following way: Let v be an arbitrary leaf vertex
in T . Then there is a unique path in T from v to the root vertex. Let v0, v1, . . . , vr be
the sequence of vertices encountered along this path in order of occurrence, where v0 = v
and vr is the root vertex. Let wi be the sibling of vi for 0 ≤ i ≤ r − 1 and let Tei

be the
subtree of T rooted at wi. Then T = tree(te0 · · · ter−1) and Te0 + · · ·+ Ter−1 is a forest of
T .

Proposition 6.2. Let T be a tree and let F be a non-degenerate forest of T . Then there
exists a tree φ(T, F ) 6= T such that F is a forest of φ(T, F ) and no larger forest of T is a
forest of φ(T, F ).

Proof. In summary, the construction is this: let T = tree(tkatbw) and F = F (tkatbw) where
a 6= b. Then

φ(T, F ) =



tree(tbt1w) a = 1, k = 1

tree(t1tbt
k−1
1 w) a = 1, k ≥ 2

tree(tbt
k
aw) a ≥ 2.
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We will prove the theorem by induction on i where T = Ti among the set of rooted binary
trees. The smallest tree with a non-degenerate forest is T4 = tree(t1t2) and there is only
one forest of T4, namely T1 + T2. We set φ(T4, T1 + T2) = tree(t2t1) = T5. Now assume
the statement of the Proposition is true of all trees T ′ satisfying T4 ≤ T ′ < T and let F
be a non-degenerate forest of T . Write T = {A, B} and assume without loss of generality

F = FA + B (6.1)

where FA is a forest of A. We will organize the argument by the following cases: FA = T1;
FA = kT1 for some k ≥ 2; FA = kC for some k ≥ 1 and C > T1; FA is non-degenerate.
We will write A = Ta and B = Tb.

Case 1: FA = T1. Since F is non-degenerate, B 6= T1. Since T = tree(t1tb) = {T2, B}, the
forests in T are T1 + B = F and FB + T2 where FB is a forest of B. Since B ≥ T2 and B
is larger than any tree in FB, F is the largest forest in T . Hence φ(T, F ) = tree(tbt1) =
{tree(tb), T1} 6= T has the required properties. See Figure 6.1.

B

B

Figure 6.1: Case 1 Shuffle

Case 2: FA = kT1 for some k ≥ 2. Since F is non-degenerate, B 6= T1. Since T =
tree(tk1tb), the forests of T are of two types: those containing B and those containing
tree(tk1). Set φ(T, F ) = tree(t1tbt

k−1
1 ) 6= T . The only forest of φ(T, F ) that contains B is

F . The only forest of φ(T, F ) that could conceivably contain tree(tk1) is FB +(k−1)T1+T2

for some forest FB of B, and this forest is no greater than F = B + kT1. Hence φ(T, F )
has the required properties. See Figure 6.2.

B

B
.
.
.

.

.
.
.

Figure 6.2: Case 2 Shuffle

Case 3: FA = kC for some k ≥ 1 and C > T1. This forces B 6= C. Write C = Tc. Then
we have T = tree(tkc tb). There are two types of forest in T other than F = kC +B: those
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that contain tree(tic) for some i ≥ 1, and FC + (k − 1)C + B for some forest FC of C.
The latter is smaller than F . Let us set φ(T, F ) = tree(tbt

k
c ). The only forest in φ(T, F )

other than F that could conceivable contain tree(tic) for some i ≥ 1 is FB + T1 + kC for
some forest FB of B, and this forest is no greater than F . Hence φ(T, F ) has the required
properties. Figure 6.3 illustrates this case when k ≥ 2.

B

.
.
.

B

.
.
.

C

C

C

C

Figure 6.3: Case 3 Shuffle

Case 4: FA is non-degenerate. We will use the induction hypothesis to create a tree A′ 6= A
such that FA is the largest forest of A that belongs to A′, then set φ(T, F ) = {A′, B}.
See Figure 6.4. Let G > F be a second forest in T . We will argue by contradiction that
G cannot be a forest of φ(T, F ). Supposing G is also a forest of φ(T, F ), there are four
subcases to run down:

B BA A

Figure 6.4: Case 4 Shuffle

Case 4.1: G = F ′
A + B for some forest F ′

A of A and G = F ′′
A′ + B for some forest F ′′

A′ of
A′. This implies both that F ′

A > FA and that F ′
A is a forest of A′, contrary to hypothesis.

So this case cannot occur.

Case 4.2: G = F ′
A + B for some forest F ′

A of A and G = F ′′
B + A′ for some forest F ′′

B of B.
This yields

F ′
A + B = F ′′

B + A′.

Since B 6∈ F ′′
B, we must have B = A′ and F ′

A = F ′′
B. Hence F ′

A > FA and F ′
A is a forest in

A′, contrary to hypothesis. So Case 4.2 is ruled out.

Case 4.3: G = F ′
B + A for some forest F ′

B of B and G = F ′′
A′ + B for some forest F ′′

A′ of
A′. This yields

F ′
B + A = F ′′

A′ + B.
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Since A 6∈ F ′′
A′ we must have B = A. Given that F = FA + B and that G > F , this yields

F ′
B > FA. But we also have F ′

B = F ′′
A′ , making F ′

B a forest in both A and A′ which is
larger than FA. Since this is contrary to hypothesis, Case 4.3 cannot occur.

Case 4.4: G = F ′
B + A for some forest F ′

B of B and G = F ′′
B + A′ for some forest F ′′

B of B.
This yields

F ′
B + A = F ′′

B + A′.

Since A 6= A′, we must have A ∈ F ′′
B. This implies A < B. Comparing F = FA + B to

G = F ′
B + A we see that every tree in G is strictly less than B, which implies F > G,

contrary to hypothesis. So this case is impossible.

Having shown that G cannot exist, φ(T, F ) has the desired properties.

Theorem 6.3. Let T ≥ T4 be given. Then the shuffle vectors in the set

{S(w) : tree(w) = T and w is nondegenerate}

are linearly independent.

Proof. Let w1 < · · · < wq be the non-degenerate words which satisfy tree(w) = T . We
wish to prove that the vectors S(w1), . . . , S(wq) are linearly independent. Let X1 < · · · <
Xp be the list of trees with the same number of leaves as T . Let A = (aij) be p × q
matrix in which each column j contains the coefficients of S(wj) expanded in terms of the
ordered basis X1, . . . , Xp. Construct GA as in Definition 4.1. We define our row selection
function

r : {w1, . . . , wq} → {X1, . . . , Xp}
via

r(wi) = φ(T, F (wi))

where φ(T, F (wi)) is a tree which contains F (wi) and no larger forest of T , the existence
of which is guaranteed by Proposition 6.2. We will show that Gr has no non-trivial cycles,
which implies A has rank q and that the shuffle vectors are linearly independent.

The non-loop edges in Gr are of the form (wi, φ(T, F (wi)), wj) where wi and wj are
distinct words and φ(T, F (wi)) appears in the support of both S(wi) and S(wj). This
implies that F (wi) and F (wj) are both forests of φ(T, F (wi)), and by 6.2 this implies
F (wi) ≥ F (wj). Since wi and wj are distinct words generating T , they cannot be re-
arrangements of each other by Lemma 4.2 of [4]. Therefore F (wi) > F (wj). Hence
F (v1) > F (v2) > · · · along every walk along non-loop edges in Gr from vertex v1 to v2 to
..., which implies that Gr has no non-trivial cycles.

Corollary 6.4. Let T be an arbitrary tree on v vertices. Then the shuffle vectors in the
set

{S(w) : tree(w) = T and w 6= tv−1
1 }

are linearly independent.
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Proof. Extend the vertex set of GA in the proof of Theorem 6.3 to include all instances
of w where T = tree(w) and F (w) is degenerate and w 6= tv−1

1 . Extend the row selection
function by defining r(w) = T in each instance. Then Gr cannot contain any non-loop
edges of the form (wi, r(wi), t

j
a) where F (wi) is non-degenerate because otherwise r(wi)

is in the support of S(tja) = j!T , forcing r(wi) = T , contradicting φ(T, F (wi)) 6= T . The
only conceivable contribution to a non-trivial cycle in Gr must therefore be of the form
(tja, T, tkb ), which implies that T = tree(tja) = tree(tkb ) where a 6= b. This can only occur if
a = 1 or b = 1, which is forbidden.

7 Shuffles of Sufficient Length Forests

The main result of this section is Theorem 7.15. Preliminaries:

Definition 7.1. A forest of trees F has sufficient length if and only F = F (w) for some
word of length d, where tree(w) has ≤ 2d leaves.

Definition 7.2. The set of totally symmetric rooted binary trees is S = {S0, S1, . . . },
where S0 = T1 and for k ≥ 1, Sk = {Sk−1, Sk−1}. We denote by sk the variable tn such
that Sk = Tn, hence s0 = t1, s1 = t2, s2 = t4, s3 = t26, etc.

Definition 7.3. Let F be a forest of trees and let k be a positive integer. Then symk(F ) =
seb

· · · se1 where Se1 + · · ·+ Seb
is the maximal subforest of F such that ei ≤ k − i− 1 for

each i. If F does not contain any totally symmetric trees of height ≤ k − 2 then we set
symk(F ) = 1.

Definition 7.4. Let F be a forest of trees and let k be a positive integer. The kth tree
label for F is

treeLabelk(F ) = tree(pmt),

where p, m, and t are words in t1, t2, . . . defined as follows:

p =

{
1 S0 6∈ F

s0 · · · sa−1 a is maximal such that
∑a−1

i=0 Si ⊆ F,

t = symk(F − F (p)),

and
m = max{w : F (w) = F − F (p)− F (t)}.

We will use the notation pk(F ) = p, mk(F ) = m, and tk(F ) = t. We will describe
the subtrees of treeLabelk(F ) corresponding to tk(F ) as tail trees and the subtrees of
treeLabelk(F ) corresponding to mk(F ) as middle trees. The symmetric consolidation of
F is tree(p), which is equal to s0 if p = 1 and sa if p = s0 · · · sa−1. By construction of p,
the symmetric consolidation of F cannot belong to F .
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Example 7.5. Let F = 2T1 + 2T2 + T3 + T26 = 2S0 + 2S1 + T3 + S3. Then

p3(F ) = s0s1,

t3(F ) = s0s1,

m3(F ) = s3t3,

treeLabel3(F ) = tree(s0s1s3t3s0s1).

The symmetric consolidation of F is tree(s0s1) = s2. See Figure 7.1.

Figure 7.1: treeLabel3(2T1 + 2T2 + T3 + T26)

Definition 7.6. Let T be a rooted binary tree. The number of symmetry dots in T is
given by the statistic

symDots(T ) =

{
1 T = T1

symDots(A) + symDots(B) + χ(T ∈ S) T = {A, B}.

Given a tree T , the symDot statistic marks each vertex of T which is the root of a totally
symmetric subtree of T with a dot, then counts the dots.

The symmetry dots of the tree in Figure 7.1 are depicted in red in Figure 7.2.

Definition 7.7. Let F be a forest of trees and let k be positive integer. We define the kth

Z-statistic of F to be triple

Zk(F ) = (symDots(treeLabelk(F )), tk(F ), treeLabelk(F )).

Since integers, words, and trees each have their own ordering, we can order such triples
using lexicographic order.
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Figure 7.2: Symmetry Dots

Definition 7.8. Let w = te1 · · · tek
be a word in the variables t1, t2, . . . . If te1 6= s0 then

the symmetric prefix of w is symFix(w) = 1. But if te1 = s0 then the symmetric prefix of
w is symFix(w) = s0 · · · sa−1, where a ≥ 1 is the maximum integer such that tei

= si−1

for 1 ≤ i ≤ a.

Lemma 7.9. Let u = te1 · · · tek
be a word in t1, t2, . . . . Then

symDots(tree(u)) =
n∑

i=1

symDots(Tei
) + deg(symFix(u)) + 1.

Proof. Let T be an arbitrary rooted binary tree and let x be an arbitrary leaf vertex of
T . Let x0, . . . , xr be the vertices encountered in T along the path from x0 = x to the root
vertex xr. For 0 ≤ i ≤ r − 1 let yi be the sibling of xi. For an arbitrary vertex x in T let
T (x) denote the subtree of T rooted at x and let σ(x) = χ(T (x) ∈ S). Then we have

symDots(T ) =
r−1∑
i=0

symDots(T (yi)) +
r∑

i=0

σ(xi).

If σ(xa) = 1 for some a ≥ 0 then σ(xb) = 1 for 0 ≤ b ≤ a, and if σ(xa) = 0 for some a ≤ r
then σ(xb) = 0 for all a ≤ b ≤ r. We always have σ(x0) = 1.

Now consider T = tree(u). Then there is a leaf vertex x of T such that if x0, . . . , xr

are the vertices encountered in T along the path from x0 = x to the root vertex xr and
if yi is the sibling of xi for each i ≤ r − 1, then we have T (yi) = Tei

for each i. The
observations in the previous paragraph imply that

r∑
i=0

σ(xi) = 1 + deg(symFix(u)),

and the formula for symDots(tree(u)) is a consequence of this.
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Lemma 7.10. Let F be a forest of trees and assume sa appears in mk(F ) for some
a ≤ k − 2. Then sa also appears in tk(F ).

Proof. The word tk(F ) is constructed by first deleting from F the largest run of totally
symmetric trees, then forming the largest subforest of the form Se1 + · · · + Seb

from the
remaining subforest G, where ei ≤ k − i − 1 for each i. Suppose sa does not appear in
tk(F ). Then either k − a − 1 > b or Sek−a−1

< Sa. Since sa appears in mk(F ), Sa must
appear in G. But Se1 + · · ·+ Seb

can be made larger by adding Sa to it (if k− a− 1 > b)
or replacing Sek−a−1

by Sa, and this contradicts the construction of tk(F ). Therefore in
fact sa must appear in tk(F ).

Lemma 7.11. Let F < G be forests of sufficient length, each appearing in trees on v
leaves where 2k−1 + 1 ≤ v ≤ 2k. Then treeLabelk(F ) 6= treeLabelk(G).

Proof. Suppose in fact that treeLabelk(F ) = treeLabelk(G) = T . Then we can identify
two distinct leaf vertices x and y in T that give rise to F and G, respectively. Each vertex
defines a path to the root vertex of T . Suppose these paths intersect in the vertex z. Let
the subtree of T rooted at z be Z = {X, Y } and assume that x appears as a leaf of X
and that y appears as a leaf in Y . See Figure 7.3. We can now say that F = FX + Y + H
and G = FY + X + H, where FX is the forest of X defined by x, FY is the forest of Y
defined by Y , and H = F −FX − Y = G−FY −X. The assumption that F < G implies
that X > Y .

X Y

Η.
.
.

z

Figure 7.3: Path Intersection in Lemma 7.11

The tails tk(F ) and tk(G) are constructed in such a way that all leaf vertices of subtrees
of T corresponding to them have height ≤ k−1 as vertices of T . Since F and G are forests
of sufficient length in a tree with at least 2k−1+1 vertices, both x and y are leaves of height
≥ k in T . Hence X is a middle tree of G and Y is a middle tree of F and all tail trees of F
and G fall in H. We claim as a consequence of this that Y is a totally symmetric tree. If
Y is not totally symmetric then it is not the symmetric consolidation of G. If we therefore
write Y = {Y1, Y2}, where y appears in Y1, then by construction of treeLabelk(G) we must
have X ≤ Y2 since both are middle trees of G. This contradicts X > Y . Therefore Y
must be totally symmetric and the consolidation of the symmetric run in G is Y . This
implies that Y 6∈ H, therefore Y ≥ Sk−1 as a middle tree of F by Lemma 7.10. Since
X > Y and v ≤ 2k, this is impossible. Therefore treeLabelk(F ) 6= treeLabelk(G).
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Lemma 7.12. Let x, y, and z be words in t1, t2, . . . . Assume tree(x) < tree(y). Then
tree(xz) < tree(yz).

Proof. By induction on the length of z. The base case, length zero, is trivial. Assume the
lemma is true for length k. Let z be a word of length k + 1, and write z = z0ti. By the
induction hypothesis, tree(xz0) < tree(yz0), therefore

tree(xz) = {tree(xz0), Ti} < {tree(yz0), Ti} = tree(yz).

Lemma 7.13. Let w be a non-trivial word in t1, t2, . . . . Let u and v be words in t1, t2, . . . .
Then tree(uwv) ≤ tree(uwv).

Proof. By Lemma 7.12 it suffices to prove this for v = 1. We will proceed by induction
on the length of w. The statement is true for length 1. Now consider length k ≥ 2. Write
w = te1te2 · · · tek

. Let a be the maximal index such that ea is minimal in {e1, e2, . . . , ek}.
There are two cases to consider: a = k and a < k.

Case 1. If a = k, write w = w0tek
. By the induction hypothesis tree(uw0) ≤ tree(uw0),

therefore by Lemma 7.12 we have

tree(uw) = tree(uw0tek
) ≤ tree(uw0tek

) = tree(uw).

Case 2. If a < k then ea < ek. Write w = xteaytek
. We have

tree(uxtea) = {tree(ux), Tea} < {tree(ux), Tek
} = tree(uxtek

),

hence by Lemma 7.12
tree(uxteay) < tree(uxtek

y).

We also have
Tek

< tree(uxtek
y).

Therefore
tree(uw) = {tree(uxteay), Tek

} < {tree(uxtek
y), Tea}.

By the induction hypothesis,

tree(uxtek
y) ≤ tree(uxtek

y).

Therefore

{tree(uxtek
y), Tea} ≤ {tree(uxtek

y), Tea} = tree(uxtek
ytea) = tree(uw).

Hence tree(uw) < tree(uw).
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Proposition 7.14. Let F and G be distinct forests in trees with v leaves, 2k−1 + 1 ≤ v ≤
2k. If G is a forest of treeLabelk(F ) then Zk(G) > Zk(F ).

Proof. Write
T = treeLabelk(F ) = tree(pmt),

T ′ = treeLabelk(G) = tree(p′m′t′),

where p = pk(F ), m = mk(F ), t = tk(F ), p′ = pk(G), m′ = mk(G), and t′ = tk(G) are
constructed as in Definition 7.4. Let w = pmt. Since G is a forest of T , there must exist
a rearrangement w′ of p′m′t′ such that T = tree(w′).

By the tree label construction, symFix(p′m′t′) = p′ ≥ symFix(w′), and by Lemma 7.9
this implies symDots(T ′) ≥ symDots(T ). Moreover p′ > symFix(w′) implies symDots(T ′) >
symDots(T ), which in turn implies Zk(G) > Zk(F ). So we can assume without loss of
generality that p′ = symFix(w′) and symDots(T ′) = symDots(T ).

Write m = tec · · · te1 where ec ≥ · · · ≥ e1. By construction of T , every leaf vertex in
subtrees of T corresponding to tk(F ) has height ≤ k − 1 in T . Since tree(p) is a totally
symmetric tree, every leaf vertex of T originating in the subtree tree(p) gives rise to the
forest F . Hence G must be generated by a leaf vertex y corresponding to the subtree
Tei

of T , one of the middle trees of F . This implies that if x is the leaf vertex in T that
gives rise to F , then the paths from x and y to the root of T intersect in the parent, z, of
the root of Tei

. See Figure 7.4. Therefore F (t), the tail trees in the treelabel for F , is a
subforest of G.

.
.
.

Τei

.
.
.

tree(p)

z

Figure 7.4: Path Intersection in Proposition 7.14

We claim that F (t) is a subforest of G−F (p′). The reason for this is that there cannot
be a symmetry dot at z for one of two reasons: If i < c then the subtree of T rooted at
the sibling of the root of Tei

contains Tec ≥ Tei
as a proper subtree, and if i = c then

there cannot be a symmetry dot at z because Tec 6= tree(p) (otherwise tree(p) cannot be
the symmetric consolidation of F ). Hence F (t) ⊆ G − F (p′). This implies that t′ ≥ t
by construction of t′ = tk(G). If t′ > t then combined with symDots(T ′) = symDots(T )
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we have Zk(G) > Zk(F ). So we can assume without loss of generality that both p′ =
symFix(w′) and t′ = t. The latter equality implies t′ = t.

We can now now write w′ = p′σ(m′)t′ where σ(m′) is a rearrangement of m′ and
m′ = σ(m′). Therefore

T ′ = tree(p′m′t′) ≥ tree(p′σ(m′)t′) = T

by Lemma 7.13. Since T ′ 6= T by Lemma 7.11, we must in fact have T ′ > T . Combined
with symDots(T ′) = symDots(T ) and t′ = t this implies Zk(G) > Zk(F ).

Theorem 7.15. The shuffle vectors in the set

{S(w) : F (w) is a forest of sufficient length}

are linearly independent.

Proof. Fix k ≥ 1 and 2k−1 + 1 ≤ v ≤ 2k. It will suffice to restrict our attention to shuffle
vectors of trees with v leaves. Let w1 < · · · < wq be the list of words in t1, t2, . . . which
generate the distinct shuffle vectors of sufficient length on v leaves. We wish to prove that
the vectors S(w1), . . . , S(wq) are linearly independent. Let X1 < · · · < Xp be the list of
trees with v leaves. Let A = (aij) be p × q matrix in which each column j contains the
coefficients of S(wj) expanded in terms of the ordered basis X1, . . . , Xp. Construct GA as
in Definition 4.1. We define our row selection function

r : {w1, . . . , wq} → {X1, . . . , Xp}

via
r(wi) = treeLabelk(F (wi))

where treeLabelk(F (wi)) is the tree having F (wi) as one its forests as constructed in
Definition 7.4. We will show that Gr has no non-trivial cycles, which implies A has rank
q and that the shuffle vectors are linearly independent.

The non-loop edges in Gr are of the form

(S(wi), T, S(wj))

where F (wi) and F (wj) are distinct forests of sufficient length and

T = treeLabelk(F (wi))

appears in the support of both S(wi) and S(wj). This implies that F (wi) and F (wj) are
both forests appearing in T . By Proposition 7.14, we must have Zk(F (wi)) < Zk(F (wj)).
Hence the Zk-statistic of the multisets represented by the vertices strictly increases along
every walk using non-loop edges in Gr, which implies that Gr has no non-trivial cycles.
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Figure 8.1: Insufficient Length Forests, Same Tree Label

8 Sufficient Length is Necessary

We have used the acyclic digraph method to prove that our coefficient matrices in The-
orems 5.3, 6.3, and 7.15 have full rank. Essentially what we are doing is arguing that
one can find a square submatrix of full rank which is permutationally equivalent to an
upper-triangular matrix with non-zero entries along the diagonal. This method is suffi-
cient for proving full rank, but not necessary, because there are matrices which do not
meet this condition that have full rank. But the method is necessary if we do not wish
to sully our hands with the actual coefficients and instead just deal with the distribution
of zero and non-zero entries. Sufficient length is used in Theorem 7.15 to guarantee that
treeLabelk is injective on forests of length ≥ k when the forests appear in trees with v
vertices, 2k−1 + 1 ≤ v ≤ 2k, and this is necessary to avoid cycles of length 2 in Gr. There
are an infinite pair of forests F < G of length k − 1 which violate this condition when
k ≥ 3:

Example 8.1. Let Ta be a tree with v′ vertices, 2 ≤ v′ ≤ 2k−1 + 1. Let

T = tree(tas1 · · · sk−2),

F = S1 + · · ·+ Sk−2 + Ta,

G = S0 + S2 + · · ·+ Sk−2 + tree(ta).

Then T has v leaves, 2k−1 + 1 ≤ v ≤ 2k, and

treeLabelk(F ) = T = treeLabelk(G).

In Figure 8.1 we illustrate this construction for k = 4, Ta = T2 = S1. The forests
F = 2S1 + S2 and G = S0 + T3 + S2 have the same treelabel. F originates from the blue
vertex and G originates from the green vertex. The treelabel has 9 vertices, hence neither
F nor G has sufficient length.
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