
Graphs and Digraphs

Ideas about what to cover, what to skip, and why: Cover Chapter
1 (Introduction to Graphs), Chapter 2 (Trees and Connectivity), Chapter 4
(Digraphs), Chapter 5 (The Automorphism Group of a Graph), Chapter 6
(Planar Graphs), Chapter 8 (Vertex Colorings), Chapter 12 (Extremal Graph
Theory). Reason: Interesting, and I know something about them. Skipped
chapters: let students pick something to study and present in class. If we still
have time and I need to present more material, do Polya counting. Another
possibility: the probabilistic method. (Note: In Fall 2013 I skipped Chapter
5 and had just enough time to get through the following topics in Chapters 6,
8, and 12: Euler’s formula and applications, Kuratowski’s Theorem, Brook’s
Theorem, and Ramsey Theory.)

Section 1.1: Graphs and Subgraphs

Theorem 1.4, p. 6: The sum of vertex degrees is twice the edges.

Proof: We have∑
v∈V

deg(v) =
∑
v∈V

∑
e∈E

χ(v ∈ e) =
∑
e∈E

∑
v∈V

χ(v ∈ e) =
∑
e∈E

2 = 2|E|.

Corollary 1.5, p. 7: Every graph has an even number of odd degree
vertices.

Proof: Reduce all terms mod 2. Then we have∑
v∈V

deg(v)≡1

1 ≡ 0.

This says that the number of odd-degree vertices is an even number.

Theorem 1.6, p. 9: Isomorphic graphs have same number of vertices, same
number of edges, and same vertex degree multiplicities.

Proof: Let G = (V,E) and H = (W,F ) and let φ : V → W be a graph
isomorphism between G and H. Since φ is bijective, |V | = |W |. Since φ
induces a bijective map φ′ : E → F , |E| = |F |. For each k ∈ ω define

Vk = {v ∈ V : deg(v) = k}

and
Wk = {w ∈ W : deg(w) = k}.
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We claim that φ(Vk) = Wk for each k. It suffices to show that deg(φ(v)) =
deg(v) for each v ∈ V . For v ∈ V we have

deg(φ(v)) =
∑
f∈F

χ(φ(v) ∈ f) =
∑
e∈E

χ(φ(v) ∈ φ′(e)),

so it suffices to show that φ(v) ∈ φ′(e) if and only if v ∈ e. Since both φ and
φ−1 are isomorphisms, it suffices to prove v ∈ e implies φ(v) ∈ φ′(e). But
this is true by definition: e = {v, v′} implies φ′(e) = {φ(v), φ(v′)}.
Theorem 1.7, p. 12: For integers r and n, there exists an r-regular graph
of order n if and only if 0 ≤ r ≤ n− 1 and {r, n} contains an even number.

Proof: If such a graph exists then it has an even number of odd degree
vertices. So if n is odd then it has an odd number of degree r vertices, forcing
r to be even. An upper bound on vertex degree is n− 1, so 0 ≤ r ≤ n− 1.

Conversely, let 0 ≤ r ≤ n − 1 be given. First assume that r = 2s. Let
V = {[0], . . . , [n− 1]} modulo n. If r = 0 we set E = ∅. For r ≥ 2 we set

N([k]) = {[k + 1], [k + 2], . . . , [k + s], [k − 1], [k − 2], . . . , [k − s]}.

We must verify that |N([k])| = r. So suppose [k+i] = [k+j] where i 6= j and
i, j ∈ {1, . . . , s,−1, . . . ,−s}. Then n|(i− j). However, |i− j| ≤ 2s = r < n,
forcing i = j.

Next assume r = 2s+ 1. We set

N([k]) = {[k + 1], [k + 2], . . . , [k + s+ 1], [k − 1], [k − 2], . . . , [k − s]}.

Now we have |i− j| ≤ 2s+ 1 = r < n, so again |N([k])| = r.

Theorem 1.8, p. 14: Let G be a bipartite graph. Then e ≤ v2

4
.

Proof: If the vertex partition has sizes a and v − a then

e ≤ a(v − a) =
v2

4
− (

v

2
− a)2 ≤ v2

4
.

Theorem 1.9, p.15: If G satisfies v ≥ 3 and e > v2

4
then G has a subgraph

isomorphic to K3.

Proof: If v = 3 and e > 9
4

then G ≡ K3. If v = 4 and e > 16
4

then
G ≡ K4 or G ≡ K4 − 12. Each of these has a subgraph isomorphic to K3. If
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there is a counterexample to the theorem then let G be one with the fewest
number of vertices. It must satisfy v ≥ 5. Let {x, y} be an edge. Then
N(x) ∩N(y) = ∅, which forces |N(x) ∪N(y)| = |N(x)| + |N(y)| ≤ |V | = v.
Now consider H = G− x− y. Note vH ≥ 3. We have

eH ≥ e− v ≥ v2

4
− v =

v2H
4

+ 1 >
v2H
4
,

which implies that H has a subgraph isomorphic to K3, which implies that
G does also. Contradiction. So there is no counterexample.

Section 1.3. Connected Graphs and Distance.

Walk: Sequence of vertices, consecutive pairs define edges.

Length of walk: The walk (v0, v1, . . . , vk) has length k.

Trail: Walk, distinct edges.

Path: Walk, distinct vertices.

Theorem 1.16, p.32: Every uv walk contains subsequence forming a uv
path.

Proof: Find a uv walk of minimal length among subsequences of the walk.
This cannot have a repeated vertex a, because if a, b, . . . , z, a appears in the
walk, we obtain a shorter one by excising a, b, . . . , z.

Theorem 1.17, p. 33: Let G be a graph with vertex set {1, . . . , n}. Let A
be its adjacency matrix. The number of ij walks of length k is the ij entry
of Ak.

Proof: By induction on k. Since the only walks of length 1 have same equal
endpoints, A0 counts walks of length 0. Now assume that Ak = (bij) counts
ij of length k. The number of ij walks of length k + 1 that pass through p
before arriving at j is bipapj, for a total of bi1a1j + · · ·+ binanj. This is the ij
entry in Ak+1.

Information from Ak: The number of walks of the form (i, j, i) is the
degree of i. Hence deg(i) = A2

ii. The number of walks of the form (i, j, k, i)
is twice the number of K3 subgraphs that i belongs to, and is also A3

ii.

Circuit: Closed trail.

Cycle: Closed trail which can be described as a path followed by an edge
to the first vertex.
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Girth: Smallest cycle length g(G) in a graph G.

Connected Graph: Every pair of vertices has a walk between them.

Connected Component of a Graph: A connected subgraph which is not
the proper subgraph of a connected subgraph. No vertex belong to two of
these. No edge can belong to two of these. Since every vertex and edge
belongs to a component, any graph is a disjoint union of components. The
number of these is k(G). Every connected subgraph is wholly contained in a
unique component: if H is connected and contains x in C1 and y in C2, then
every vertex in C1 has a walk to every vertex in C2 through H via x and y,
which implies C1 ∪ C2 ∪H is connected.

Distance between two vertices in a connected graph: d(u, v) = min-
imum length of uv paths. The distance function satisfies triangle inequality.

Theorem 1.18, p. 37: A non-trivial graph (v ≥ 2) is bipartite if and only
if it has no odd cycles.

Proof: Bipartite implies all even cycles: any path has to bounce back and
forth, then return. Conversely, suppose there are no odd cycles. It suffices to
show that each connected component is bipartite. If there are no edges, we’re
done. Otherwise, let {x, y} be an edge, set c(x) = 0 and c(y) = 1, and let W
be a subset of vertices of maximal size containing x and y such that G[W ] is
connected and has a proper 2-coloring which includes c(x) = 0 and c(y) = 1.
Then G[W ] has to be contained entirely in one connected component C of
G We claim that W = V (C), which implies that C is bipartite. Given
z ∈ V (C)\W , find a walk in C from x to z. Let z0 be the first vertex along
this walk that belongs to V (C)\W . Let NW (z0) be the set of neighbors of
z0 in W . By construction, NW (z0) 6= ∅. Write NW (z0) = N0 ∪ N1, where
c(x) = 0 for all x ∈ N0 and c(x) = 1 for all x ∈ N1. If one of these sets is
empty then G[W ∪{z0}] is connected and properly 2-colorable, contradicting
the maximality of W . So there must exist x0 ∈ N0 and x1 ∈ N1. Since G[W ]
is connected and properly 2-colored, there is a path of odd length from x0 to
x1. Appending z0, x0 to this path produces an odd cycle in G, contrary to
hypothesis. So in fact V (C)\W = ∅ and W = V (C).

Eccentrity of a vertex in a connected graph: e(v) = max{d(v, w) :
w ∈ V (G)}.

Diameter and Radius of a connected graph: diam(G) = max{e(v) :
v ∈ V (G)}, rad(G) = min{e(v) : v ∈ V (G)}.
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Peripheral, antipodal, central vertices: Peripheral vertices satisfy e(v) =
diam(G), antipodal vertices satisfy e(u) = e(v) = d(u, v), central vertices
satisfy e(v) = rad(G).

Theorem 1.19, p. 38: For a connected non-trivial graph G, rad(G) ≤
diam(G) ≤ 2rad(G).

Proof: rad(G) ≤ diam(G) is immediate. Now choose u, v such that d(u, v) =
diam(G). Let w be a central vertex. Then

d(u, v) ≤ d(u,w) + d(w, v) ≤ e(w) + e(w) = 2rad(G).

Center and Periphery of a graph: Cen(G) = G[central vertices] and
Per(G) = G[peripheral vertices].

Theorem 1.20, p. 39: Every G = Cen(H) for some H.

Proof: See the construction on p. 40.

Theorem 1.22, p. 40: A non-trivial graph G is the periphery of another
graph if and only if all or none of its vertices has eccentricity equal to 1.

Proof: If all vertices have eccentricity 1 then every vertex is peripheral,
so per(G) = G. If no vertex has eccentricity 1, form H = G ∨ K1. Then
G = per(H). Now assume that G has a vertex x with e(x) = 1 and a vertex
y with e(y) > 1. If G = per(H), then there is a vertex z ∈ V (G) such that
dH(x, z) = diam(H) > 1. This implies that z is not adjacent to x in G,
which contradicts e(x) = 1. So G 6= per(H) for any H.

Section 1.4: Multigraphs and Digraphs

Theorem 1.23: If D is a digraph of size m then∑
v∈V (G)

od(v) =
∑

v∈V (G)

id(v) = m.

Proof:

m =
∑

(a,b)∈V×V

χ((a, b) ∈ E) =
∑
a∈V

∑
b∈V

χ((a, b) ∈ E) =
∑
a∈V

od(a).

The other formula is proved the same way.
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Section 2.1: Nonseparable Graphs

Cut vertex: k(G− x) > k(G).

Theorem 2.1, p. 55: Every non-trivial connected graph G contains at
least 2 non-cut vertices.

Proof: Let x be a peripheral vertex. Suppose G−x is not connected. Write
G − x = G1 + G2 + · · · + Gk. Then x has an edge to at least one vertex xi
in each Gi. Let y be the eccentric vertex of x. Without loss of generality
y ∈ G1. Let P be an x1, y1 path in G1. Then x2, x0, P is path in G of length
≥ diam(G): contradiction. Hence no peripheral vertex is a cut vertex. Hence
y is also not a cut vertex.

Theorem 2.2, p. 56: A vertex x is a cut vertex of G if and only if there
exist two other vertices y and z in the same component such that all y, z
paths include x.

Proof: Let x be a cut vertex. Then it must be a cut vertex of some connected
component G. Write G = G1 + · · ·+Gk with x adjacent to xi ∈ Gi for each
i. There is no x1, x2 path in G − x, so every x1, x2 path in G includes x.
Conversely, let y and z be vertices in the same component G such that every
y, z path includes x. Then G−x has no y, z paths and so must have at least
two components, making x a cut vertex.

Nonseparable graph: At least 2 vertices and no cut vertices.

Theorem 2.3, p.57: In a nonseparable graph G of order ≥ 3, every pair of
vertices belongs to a cycle.

Proof: Let x, y be given. We will produce a cycle including them by in-
duction on d(x, y). When d(x, y) = 1, e = {x, y} is an edge in G. If G − e
is not connected then G − e = G1 + G2 is the component structure, and
one of these contains a third vertex z. Without loss of generality z ∈ G1.
This makes x a cut vertex: contradiction. Therefore G− e is connected and
there is an x, y path P that excludes e. Hence x and y belong to the cycle
C = P + e. For d(x, y) = k ≥ 2, let x0 = x, x1, . . . , xk = y be a path between
them. Then d(x, xk−1) = k − 1, so there is a cycle C containing x and xk−1
made up of two internally disjoint paths P and Q. Let R = (r0, r1, . . . , rj)
be an x, y path in G − xk−1. We have r0 = x ∈ P ∪ Q. Let i be maximal
such that ri ∈ P ∪ Q, and without loss of generality say that ri ∈ Q. Then
Q[x, ri] +R[ri, y] and P + {xk−1, y} are internally disjoint, therefore x and y
lie in the cycle formed by their union.
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Block: Maximal nonseparable subgraph of a graph.

Fact: if B 6= C are blocks in a graph then |V (B) ∩ V (C)| ≤ 1. Reason:
Suppose x, y ∈ B ∪ C. Then B ∪ C has a cut vertex z. But it can’t be x
because (B − x) ∩ C is connected through y, and similarly it can’t be any
vertex in B ∩C. If z ∈ B\C then (B − z) ∪C is connected, and if z ∈ C\B
then B ∪ (C − z) is connected. Hence there are no cut vertices in B ∪ C:
contradiction.

Fact: If B 6= C are blocks and V (B)∩ V (C) = {x}, then x is a cut vertex of
G. Reason: Let b ∈ V (B)\{x} and let c ∈ V (C)\{x}. If G− x is connected
then there is a b, c path P that excludes x. However, this makes B ∪ C ∪ P
nonseparable: contradiction.

Fact: If x is a cut vertex of a connected G then x belongs to at least two
blocks. Reason: Write G − x = G1 + G2 + · · · + Gk. For each i ≤ k
let xi ∈ V (Gi) be such that {x, xi} ∈ E(G). Let Bi be the unique block
containing {x, xi}. Since there is no path from xi to xj in G−x, (Bi∪Bj)−x
is not connected, hence Bi 6= Bj. Hence x belongs to at least k blocks.

Taken together, these facts say that the cut vertices are the vertices shared
by blocks and that no two blocks share more than one vertex.

Fact: if u and v belong to the same block B and if {u, v} is an edge in G,
then this belongs to B. Reason: If the edge falls in some block C different
from B, then the two blocks would share the vertices u and v: contradiction.
Hence for any subset W ⊆ V (B), G[W ] is a subgraph of B.

End block: A block containing exactly one cut vertex, i.e. intersecting
exactly one other block in a vertex.

Block-cut graph: Let G be a connected graph with cut vertices x1, . . . , xa
and blocksB1, . . . , Bb. Form the bipartite graph with vertices x1, . . . , xa, B1, . . . , Bb

and an edge of the form {xi, Bj} if and only if xi ∈ Bj.

Lemma: The block-cut graph is connected and acyclic.

Proof: By construction, every block has an edge to a cut vertex. So it
suffices to show that every pair of cut vertices has a path between them in
the block-cut graph. Let xi and xj be cut vertices. Let u0, u1, . . . , uk be a
path between them in G. Then each edge {ui, uj} belongs to a unique block.
Record the sequence of blocks corresponding to these edges. Every time there
is a change in block, the corresponding vertex in the sequence belongs to two
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blocks, so must be a cut vertex. Hence the blocks and cut vertices along the
way form a path in the block-cut graph.

Next, assume there is a cycle in the block-cut graph. Each transition x,B, x′

corresponds to at least one path Px,x′ ⊆ B. Choosing one path per transition
x,B,X ′ in the cycle, there is a closed walk beginning and ending at a cut
vertex x in G. Follow this walk starting at x and continuing as far along it
as possible through distinct vertices until we arrive at a vertex y via the edge
{y′, y}. If the next step in the walk is in the same path that gave rise to it,
then the next vertex cannot be y′. But if the next step in the walk is not in
the same path that gave rise to it, then again the next vertex cannot by y′

because no edge can belong to two blocks. Hence the next step returns to a
vertex previously encountered on the path from x to y. This gives rise to a
cycle. Hence the cycle edges belong to one block Bi. Therefore two different
paths contribute to this cycle. This implies that two different blocks Bj 6= Bk

contribute to this cycle. So there is an edge in Bi∩Bj and an edge in Bi∩Bk.
But either i 6= k or j 6= k, so there is a cycle edge that lives in two blocks.
Contradiction: an edge lives in only one block. Therefore there are no cycles
in the block-cut graph.

Fact: If x and y are vertices and P and Q are distinct xy paths, then P +Q
contains a cycle. Reason: Find the longest initial segment shared by P and
Q. The terminal vertex t cannot be y because the paths are distinct. The
paths converge at some point. Let c be the first vertex after y at which the
two paths converge. Then t and c have two internally disjoint paths between
them.

Fact: If x and y belong to different blocks B and B′ of a connected graph and
v is a cut vertex on any xy-path, then x and y belong to different connected
components of G− v. Reason: xy path implies unique BB′ path containing
v. So every xy path passes through v.

Theorem 2.7, p. 58: Every connected graph containing cut vertices has
at least two end blocks.

Proof: Let P be a path of maximal length in the block-cut graph. Let u be
an endpoint of P . Then u must have degree 1, otherwise it has an edge not
belonging to P to a vertex along P , forming a cycle: contradiction. Since
every cut vertex has degree ≥ 2 in the block-cut graph, u must be a block
and it must contain exactly one cut vertex, i.e. u is an end block. The other
endpoint of P must be another end block.
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Theorem 2.8, p. 59: Let G be a connected graph with cut vertices. Then
G contains a cut-vertex such that all (or all but one) of the blocks it lives in
is an end block.

Proof: Peripheral vertices of a tree are leaves. In the block-cut graph, leaves
are blocks, not cut-vertices. Let B be a peripheral vertex of the block-cut
graph, and let x be the vertex adjacent to it on the geodesic from B to an
eccentric vertex C of B. Since the block-cut graph is acyclic, x is adjacent to
exactly one block along the path. If x is adjacent to another block B′ then
it cannot be along the path. Since there is a path of length diam(G) from
B′ to C, B′ is a peripheral vertex and has degree 1, which makes it an end
block. So all but possibly one block that x is adjacent to is an end block.

Theorem 2.9: The center of a connected graph is a subgraph of a single
block.

Proof: It suffices to show that the central vertices belong to a single block.
Suppose not. Let c1 and c2 be central vertices in different blocks. Let P be
a path between them. Since the edges of P are wholly contained in blocks,
there has to be a consecutive pair of edges that lie in different blocks. The
vertex shared by these edges is neither c1 nor c2 and must be a cut vertex.
Call it v. By facts we have established above, there is no c1c2 path in G− v,
so c1 and c2 are in two different connected components of G − v. Now find
u ∈ G so that d(v, u) = e(v). Then u lives in a connected component
which must be different from, say, c2. Since every c2u path passes through
v, d(c2, u) = d(c2, v) + d(v, u) = d(c2, v) + e(v) > e(v). This contradicts the
centrality of c2. Therefore all central vertices belong to the same block.

Section 2.2: Trees

Bridge: edge e in graph G such that k(G− e) > k(G).

Theorem 2.10, p. 62: Let G be connected. e is a bridge edge iff e does
not belong to a cycle.

Proof: If e belongs to a cycle then it’s removal does not disconnect G so it is
not a bridge. Conversely, if e is not a bridge then G−e is connected, so there
is a path between the endpoints of e in G− e, forming a cycle containing e.

Tree: Connected graph, no cycles (all edges bridge edges).

Theorem 2.11, p. 64: A graph is a tree iff every pair of vertices is joined
by a unique path.
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Proof: Tree implies no cycles implies unique paths. Unique paths implies
no cycles implies tree.

Corollary 2.12, p. 65: Every nontrivial tree contains at least two leaves.

Proof: Peripheral vertices in a tree are leaves.

Theorem 2.13, p. 65: In a tree, m = n− 1.

Proof: By induction on n. True when n = 1. More generally, delete a leaf
vertex to drop down to induction hypothesis.

Theorem 2.14, p. 65: Skip.

Theorem 2.15, p. 66: Skip.

Corollary 2.16, p. 66: A forest of k trees satisfies m = n− k.

Proof: Adding k − 1 edges produces a tree with m = n− 1.

Theorem 2.17, p. 67: No cycles and m = n− 1 implies tree.

Proof: By Corollary 2.16, k = n−m = 1.

Theorem 2.18, p. 67: Connected and m = n− 1 implies tree.

Proof: Delete cycle edges until we have a tree. Then m = n−1, so no edges
were deleted.

Fact: Any connected collection of n edges encompassing n + 1 vertices is a
tree.

Proof: By induction on n. When n = 1, we have one edge and 2 vertices, so
a tree. Now assume n edges encompassing n+ 1 vertices is a tree. Consider
n + 1 edges encompassing n + 2 vertices. The vertex degree sum implies
that the sum of the n + 2 vertex degrees is 2n + 2. This implies that at
least one vertex degree is 1. Deleting this vertex from the graph on these
edges, we are left with n edges and n+ 1 vertices. These form a tree by the
induction hypothesis, so the entire collection is a tree since it is the addition
of a non-cycle edge.

Theorem 2.19, p. 67: Equivalent conditions for a tree.

Theorem 2.20, p. 67: If G is a graph with δ(G) ≥ k− 1, then G contains
an isomorphic copy of every tree on k vertices.

Proof: By induction on k. True for k = 1 and k = 2. More generally, let
k ≥ 3 with δ(G) ≥ k − 1. Given T with k vertices and k − 1 edges, delete

10



a leaf u and its edge {u, v}, producing T ′. There is a copy of T ′ in G. The
image of v in G has degree ≥ k − 1, yet at most k − 2 of the edges out of v
belong to T ′, so we can use one more to reproduce T .

Section 2.3: Spanning Trees

Theorem 2.23, p. 74: There are nn−2 trees of order n.

Proof: Given a tree on n vertices, do the following: find the smallest leaf x,
record the vertex y it is adjacent to, then delete x from the tree, producing
a smaller tree. Keep on going until there is a single edge left. Since there
are n− 1 edges, we produce n− 2 numbers. We will prove that the mapping
from trees to lists is bijective by induction on n ≥ 3. Hence the number of
trees is the number of lists, which proves the formula.

Base case: n = 3. Let the vertices be x1, x2, x3. Each tree on these is
determined by the central vertex. The tree with central vertex xi gets mapped
to xi, so the mapping is bijective for n = 3.

Now assume the mapping is bijective for a given n ≥ 3. Let S and T be trees
on vertex set {x1, . . . , xn+1}, and suppose L(S) = L(T ) = (y1, . . . , yn−1).
Let xs be the smallest leaf in S and let xt be the smallest leaf in T . Let
S ′ = S − xs and let T ′ = T − xt. Since L(S ′) = (y2, . . . , yn−1) = L(T ′), the
induction hypothesis yields S ′ = T ′. This accounts for all the vertices except
xs in S and xt in T , so xs = xt and S = T . Hence the map is injective.

We will now show that the map is surjective. Let (y1, . . . , yn−1) be a list in
the characters 1, . . . , n + 1. Let xa be the smallest character not appearing
on this list. Then (y2, . . . , yn−1) is the image of a tree T on the vertices
{x1, . . . , x̂a, . . . , xn+1} by the induction hypothesis. One of these vertices is

y1. Form the tree T̂ = T +{y1, xa}. We claim that T̂ produces (y1, . . . , yn−1).

It suffices to prove that xa is the smallest leaf in T̂ . The leaves of T̂ are xa
and L\{y1} where L denotes the set of leaves of T . But none of the leaves
of T appear in the list (y2, . . . , yn−1) by the way the list is generated. Since
xa is the smallest vertex not appearing in the list, xa is the smallest leaf.

The proof of this theorem suggests how to produce a tree giving rise to
a list (y1, . . . , yn−2) with elements from {x1, . . . , xn}: find the smallest xa
not in {y1, . . . , yn−2} and join to y1. Then find the smallest xb not in
(xa, y2, . . . , yn−2) and join to y2. Then find the smallest xc not in (xa, xb, y3, . . . , yn−2)
and join to y3. Keep on going. After we have found n − 2 edges, there are
two vertices not accounted for. Join these by an edge.

11



Spanning tree of a connected graph: a subgraph containing all the
vertices of the graph which is a tree.

Ways to form a spanning tree: Find n − 1 edges that form an acyclic
subgraph. Or: chop out cycle edges one by one. Example of the first method:
find a partition V0 ∪ V1 ∪ · · · ∪ Vk of the vertex set such that |V0| = 1 and
for all i ≥ 1 and x ∈ Vi there exists y(x) ∈ Vi−1 such that {x, y(x)} ∈ E.
The collection of edges {{x, y(x)} : x 6∈ V0} forms a spanning tree. Taking
V0 = {u} for an arbitrary u and Vi = {x ∈ V : d(x, u) = i} is one way to
produce this partition. Another example: pick an arbitrary edge e1. Having
chosen e1 through ek, if there are any vertices outside all these edges, pick
any edge ek+1 that contains a new vertex. (If the graph is connected, there
will have to be one.) Keep on going until n− 1 edges have been chosen.

Theorem 2.24, p. 75: Skip.

Proof of the Cauchy-Binet Theorem and the Matrix Tree Theorem

Cauchy-Binet Theorem: Assume p ≤ q. Let A = (aij) be an p×q matrix,
let B = (bij) be a q × p matrix, and write AB = C = (cij). Then

det(AB) = det(C1, . . . , Cp) = det(

q∑
i=1

bi1Ai, . . . ,

q∑
i=1

bipAi) =

∑
1≤i1,...,ip≤q

bi11 · · · bipp det(Ai1 , . . . , Aip) =

∑
1≤i1<i2<···<ip≤q

∑
σ∈Sp

biσ(1)1 · · · biσ(p)p det(Aiσ(1) , . . . , Aiσ(p)) =

∑
1≤i1<i2<···<ip≤q

∑
σ∈Sp

biσ(1)1 · · · biσ(p)p sgn(σ) det(Ai1 , . . . , Aip) =

∑
I∈([q]

p )

det(AI) det(BI)

where for a subset I of [q] of size p, AI is the submatrix of A using the p
columns from I and BI is the submatrix of B using the p rows from I.

Counting spanning trees: LetG be a graph with vertex set V = {x1, . . . , xn}
and edge set E = {e1, . . . , em} where m ≥ n− 1. Then the number of span-
ning trees of G is ∑

H∈( E
n−1)

χ(H is a spanning tree).

12



Given the resemblance of this formula to the Cauchy-Binet Theorem, it
should not be surprising that there is a determinant formula for this ex-
pression.

Matrix-Tree Theorem: Let

C = ((−1)χ(xi=min ej)χ(xi ∈ ej))

where 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m. Then the number of spanning trees is
det(CCT ).

Example:

G =

1 2

3 54

1

2

3

4 5

6

C =


−1 0 0 −1 0 0
1 −1 0 0 −1 0
0 0 −1 1 1 0
0 1 1 0 0 −1


det(CCT ) = 8

Spanning trees:

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

13



Proof of the Matrix-Tree Theorem: We have

det(CCT ) =
∑

I∈( [m]
n−1)

det(CI) det(CT
I ) =

∑
I∈( [m]

n−1)

det(CI)
2.

We will prove that

det(CI)
2 = χ({ei : i ∈ I} is a spanning tree)

for each I ∈
(
[m]
n−1

)
.

Let I ∈
(
[m]
n−1

)
be given. Name the corresponding edges f1, . . . , fn−1. Then

the ij-entry of CI is 0 if xi 6∈ fj and is ±1 if xi ∈ fj. These edges form a
spanning tree if and only if they are connected and encompass n vertices.

Case 1: {f1, . . . , fn−1} does not incorporate all n vertices. If xn is isolated
then each column of CI has a 1 and a −1 in it, so the sum of its columns
is the 0 vector, so its columns are linearly dependent and det(CI) = 0. If
some other vertex xk is isolated then row k in CI is the 0 vector, which again
implies det(CI) = 0.

Case 2: {f1, . . . , fn−1} encompasses all n vertices but is not connected. Each
component has at least two vertices. The sum of all the rows corresponding
to vertices in a component not containing n is 0, hence the rows are not
linearly independent and det(CI) = 0.

Case 3: {f1, . . . , fn−1} incorporates all n vertices and is connected. The
collection of edges forms a spanning tree. Clipping leaf vertices and edges,
we can permute the rows and columns of CI to produce a lower-triangular
matrix with ±1 in each diagonal entry. This implies det(CI) = ±1.

Minimum weight spanning tree: Spanning tree in connected graph
whose edge weights have minimum sum.

Kruskal’s Algorithm: Let G be a connected graph of order n with edge
weights. Choose an edge e1 of smallest possible weight. Having found the
acyclic collection of edges e1, . . . , ek, choose ek+1 of minimum weight that
extends the acyclic collection. Keep on going until no longer possible.

Theorem: Kruskal’s Algorithm produces a minimum weight spanning tree.

Proof: First note that when Kruskal’s algorithm terminates, all vertices
have been incorporated by connectedness. So the result is a spanning tree.

14



We will prove that {e1, . . . , ek} is a subset of a minimum weight spanning
tree Tk for each k using an induction argument.

Base Case: Let T be any minimum weight spanning tree. If includes e1, then
set T1 = T . If it doesn’t include e1, the subgraph T + e1 contains a cycle
of ≥ 3 edges. Delete f1, any one of these not equal to e1. By minimality of
weight(e1), weight(T + e1 − f1) ≤ weight(T ). Since T + e1 − f1 consists of
n− 1 edges and encompasses all vertices, it is a tree. So in fact T + e1 − f1
is a minimum weight spanning tree. We set T1 = T − e1 + f1.

Induction hypothesis: There exists a minimum weight spanning tree Tk that
contains the edges e1, . . . , ek.

We must now construct a minimum weight spanning tree Tk+1 that contains
e1, . . . , ek+1. If ek+1 ∈ Tk then we set Tk+1 = Tk. But if ek+1 6∈ Tk then
Tk + ek+1 contains a cycle. One of the edges in this cycle is ek+1. Since
the collection {e1, . . . , ek+1} is acyclic, one of the edges in the cycle cannot
be in this set. Call it fk+1. Then Tk + ek+1 − fk+1 is a spanning tree.
Since {e1, . . . , ek, fk+1} ⊆ Tk, the collection is acyclic. By the way ek+1 was
chosen by Kruskal’s Algorithm, weight(ek+1) ≤ weight(fk+1). Therefore
weight(Tk+ek+1−fk+1) ≤ weight(Tk). Hence Tk+ek+1−fk+1 is a minimum
weight spanning tree. We set Tk+1 = Tk + ek+1 − fk+1.

Prim’s Algorithm: Let G be a connected graph of order n with edge
weights. Choose an edge e1 of smallest possible weight. Having found the
acyclic collection of edges e1, . . . , ek, choose ek+1 of minimum weight among
all edges that introduce exactly one new vertex. Keep on going until no
longer possible.

Theorem: Prim’s Algorithm produces a minimum weight spanning tree.

Proof: Prim’s algorithm produces a spanning tree by the same argument
that Kruskal’s algorithm does. We will prove that {e1, . . . , ek} is a subset of
a minimum weight spanning tree Tk for each k using an induction argument.

Base Case: Same argument as in Kruskal’s Algorithm.

Induction hypothesis: There exists a minimum weight spanning tree Tk that
contains the edges e1, . . . , ek.

We must now construct a minimum weight spanning tree Tk+1 that contains
e1, . . . , ek+1. If ek+1 ∈ Tk then we set Tk+1 = Tk. But if ek+1 6∈ Tk then
Tk + ek+1 contains a cycle. One of the edges in this cycle is ek+1. As in
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the proof of Kruskal’s algorithm, we must chop out some fk+1 from this
cycle not in {e1, . . . , ek+1}. But we must take care that we can compare the
weights of ek+1 and fk+1. This requires that fk+1 have exactly one vertex
in common with {e1, . . . , ek}. Since the edge ek+1 includes a vertex x in
common with {e1, . . . , ek} and a vertex y not in common with {e1, . . . , ek},
the cycle it belongs to does also. Walking along the edges in the cycle in the
direction of x to y, we eventually encounter another edge with a vertex y′

not in {e1, . . . , ek} and a vertex x′ in {e1, . . . , ek}. This is the edge fk+1 that
we choose.

Section 2.4: Connectivity and Edge Connectivity

Vertex Connectivity: κ(G) = minimum number of vertices in a set S such
that G− S is disconnected or trivial.

Edge Connectivity: λ(G) = minimum number of edges in a set S such
that G− S is disconnected or trivial.

Bounds on connectivity: 0 ≤ κ(G), λ(G) ≤ n− 1.

Fact: κ(Kn) = n− 1. Reason: the removal of any vertex leaves a complete
graph. Hence one has to remove all but one vertex to achieve disconnected
or trivial.

Fact: Let F be a minimal edge cut of a connected graph G. Then G− F =
G1 + G2 is the component structure and F consists of all edges between G1

and G2. Reason: Write G − F = G1 + G2 + · · · + Gk. There has to be an
edge f ∈ F joining two connected components. Without loss of generality,
assume these components are G1 and G2. Then G1 + G2 + · · · + Gk + f is
connected, therefore k = 2 and f must join a vertex in G1 to a vertex in G2.
Since there can be no surviving edges between G1 and G2, F contains every
edge that exists between them in G.

Fact: Let G be connected and let U be a minimum vertex cut. Let G−U =
G1 + · · · + Gk be the component decomposition. Then for each Gi and uj
there is an edge of the form {gi, ui} for some gi ∈ Gi. Reason: This must
be true if |U | = 1. Now consider |U | ≥ 2. Let u ∈ U be given. Then
G − (U\{u}) is connected. Let xi ∈ Gi be given. There must be a path in
G − (U\{u}) to ui. The last edge out of Gi cannot be to any other Gj nor
to a vertex in U\{u}, hence must be to u. This edge is of the form {gi, u}.
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Fact: If a + b = c with a ≥ 1, b ≥ 1 then ab ≥ c− 1. Reason: ab− c + 1 =
ab − a − b + 1 = (a − 1)(b − 1) ≥ 0. So if k ≥ 1 and n − k ≥ 1 then
k(n− k) ≥ n− 1.

Theorem 2.28, p. 91: λ(Kn) = n− 1.

Proof: This is true when n = 1. Now consider n ≥ 2. Suppose S is a
minimal edge cut. Write G−E = G1 +G2. Then S = KV (G1),V (G2), therefore
n− 1 ≥ |S| = k(n− k) ≥ n− 1 where |G1| = k. Therefore |S| = n− 1.

Theorem 2.29, p. 92: For every graph G, κ(G) ≤ λ(G) ≤ δ(G).

Proof: We have κ(Kn) = λ(Kn) = δ(Kn) = n − 1. Now assume the graph
G is not complete. If it is disconnected then κ(G) = λ(G) = 0 and δ(G) ≥ 0.
Now assume that G is connected and not complete. Since G is not complete,
δ(G) ≤ n − 2 and this has to be an upper bound on λ(G). Let X be a
minimal edge cut. Then G−X = G1 +G2 is the component decomposition
and X consists of all edges between G1 and G2. If every vertex in G1 has an
edge with every vertex in G2 then |X| = k(n− k) ≥ n− 1, which contradicts
λ(G) ≤ n − 2. So in fact there is a vertex x1 ∈ G1 and a vertex x2 ∈ G2

such that {x1, x2} 6∈ G. We will choose one vertex per edge in X to create a
vertex cut.

Let {u1, u2} ∈ X be given. Then either u1 6= x1 or u2 6= x2. Choose the
first vertex that satisfies this condition. Deleting it eliminates this edge from
the graph but leaves the other vertex in place. When done, we have created
a vertex cut of size ≤ |X| since it leaves no edge between x1 and x2, so
κ(G) ≤ |X| = λ(G).

Theorem 2.30, p. 92: κ(G) ≤ 2m
n

.

Proof: Average vertex degree is 2m
n

, so κ(G) ≤ δ(G) ≤ 2m
n

.

Theorem 2.31, p. 93: For every cubic graph G, κ(G) = λ(G).

Proof: The formula is true if G is not connected: both parameters are zero.
Now assume connected. The formula is true if κ(G) = 3 since 3 = κ(G) ≤
λ(G) ≤ δ = 3. Now consider 1 ≤ κ(G) ≤ 2.

If κ(G) = 1: we need only find an edge cut of size 1. Let u be a cut vertex.
Then G−u = G1 +G2 or G1 +G2 +G3. One of these components must have
a single edge to u, giving rise to a bridge edge.
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If κ(G) = 2: Let {u, v} be an minimal vertex cut. We must find an edge cut
of size 2. Then G− u− v = G1 +G2 or G = G1 +G2 +G3. Considering the
possible cases, we can always find an edge cut of size 2.

Theorem 2.32, p. 93: Let G be a graph of order n and let 1 ≤ k ≤ n− 1.
If δ(G) ≥ n+k−2

2
then G is k-connected.

Proof: Let U be a vertex cut of size p. Let G − U = G1 + · · · + Gj be
the component decomposition. The smallest component has ≤ n−p

2
vertices,

which implies that n+k−2
2
≤ δ(G) ≤ n−p

2
− 1 + p. This forces p ≥ k.

Theorem 2.33, p. 94: A nontrivial graph G satisfies λ(G) ≥ k if and
only if, for every nonempty W ⊆ V , there are at least k edges joining W to
V −W .

Proof: Assume λ(G) ≥ k. Let W be given. If there were fewer than k edges
between W and V −W then you could disconnect the graph by removing
these edges. But this contradicts λ(G) ≥ k. So there have to be at least k
edges between W and V −W . Conversely, suppose the W condition holds.
Let U be a minimum vertex cut. Then G−U = G1+G2 and U consists of all
edges between G1 and G2. There must be at least k of these, so λ(G) ≥ k.

Theorem 2.34, p. 95: Let G be a connected graph. Then diam(G) = 2
implies λ(G) = δ(G).

Proof: Let F be a minimum edge cut. Then G − F = G1 + G2 and F
consists of all edges between G1 and G2. We need only show |F | ≥ δ(G).
Setting fu = number of edges in F with endpoint u, we have

|F | =
∑
u∈G1

fu.

Note that fu = deg(u)− (# edges from u into G1), hence

fu ≥ deg(u)− |G1|+ 1 ≥ δ(G)− |G1|+ 1.

This implies
|F | ≥ |G1|(δ(G)− |G1|+ 1).

We would like to show

|G1|(δ(G)− |G1|+ 1) ≥ δ(G).
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Rearranging, this is equivalent to

δ(G)(|G1| − 1) ≥ |G1|(|G1| − 1).

This will be true if |G1| = 1, and for |G1| > 1 we require that δ(G) ≥ |G1|.
Since we know that δ(G) ≥ |F |, we require that |F | ≥ |G1|. This will be
true if each fu ≥ 1. If some fu = 0, we can replace G1 with G2. Reason: for
each v ∈ G2 there is a path to u of length ≤ 2. The last edge connects two
vertices in G1 so the first edge connects v to a vertex in G1. This implies
fv 6= 0 for each v ∈ G2.

Section 2.5: Menger’s Theorem

uv separating set: Assuming u and v are not adjacent, a uv separating set
is a set of vertices S such that G−S leaves u and v in different components.
Denoting by suv the minimum size of a uv-separating set, we have suv ≤
deg(u), deg(v).

Fact 1: Let suv be the minimum number of vertices in a uv-separating set,
and let puv the maximum size of a collection of internally disjoint uv paths.
Then puv ≤ suv. Reason: For any collection of k internally disjoint uv paths,
every uv separating set must include at least one vertex from each path.
Hence k ≤ suv. This implies puv ≤ suv.

Fact 2: Let S be a minimal uv separating set. Then every uv path must
pass through some vertex of S (since S is separating) and for each x ∈ S
there is a uv path that passes through x (by minimality of |S|).
Fact 3: Every vertex in a minimal uv-separating set has degree ≥ 2 since it
lies on a uv-path.

Fact 4: Set S be a minimal uv-separating set. Then for each x ∈ S there is
a uv path such that x is the first vertex in S on the path. Reason: Suppose
x0 ∈ S is never first. Then removing all the vertices in S except x0 disrupts
all paths, which makes S−{x0} a uv-separating set, violating the minimality
of S.

Fact 5: Let S be a minimal uv-separating set in G and suppose x ∈ S. Let
s′uv be the size of a minimal uv-separating set in G− x. Then s′uv = suv − 1.
Reason: S − x is uv separating in G− x, hence s′uv ≤ suv − 1. Now suppose
s′uv < suv − 1. Let T be a uv-separating set in G − x. Removing T from G
eliminates all uv paths avoiding x and removing x eliminates the rest, hence
T +x is a uv-separating set in G which is too small. Therefore s′uv = suv−1.
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Fact 6: Let w 6= u, v be a vertex that does not belong to any minimal uv
separating set of G. Then suv = s′uv, where s′uv, where s′uv is the size of a
minimal uv separating set in G′ = G − w. Reason: let S be a minimal uv
separating set. Then it doesn’t contain w and is a uv-separating set in G−w.
This implies suv ≥ s′uv. Suppose that suv > s′uv. Let T be a uv-separating
set in G − w. If we remove T from G we leave only those uv-paths passing
through w, and if we next remove w we disrupt all uv paths in G. This
makes T +w a uv separating set in G, and its size implies that it is minimal.
Contradiction. Therefore suv = s′uv.

Fact 7: Let S be a minimal uv separating set. If P is a path in G− S with
endpoint u and Q is a path in G−S with endpoint v then V (P )∩V (Q) = ∅.
Reason: if they had a vertex in common then u and v belong to the same
component of G− S.

Fact 8: Let G be a graph containing vertices u 6= v. Let S be a minimal
uv-separating set. Then one of the following three scenarios must hold:

Scenario 1. S ∩ N(u) ∩ N(v) 6= ∅. (Corresponds to Case 1 of Menger’s
Theorem.)

Scenario 2. S 6⊆ N(u) and S 6⊆ N(v). (Corresponds to Case 3 of Menger’s
Theorem.)

Note that Scenarios 1 and 2 are not mutually exclusive.

Scenario 3. Neither Scenario 1 nor Scenario 2 hold. Hence S ⊆ N(u) and
S ∩ N(v) = ∅ or S ⊆ N(v) and S ∩ N(u) = ∅. (Corresponds to Case 2 of
Menger’s Theorem.)

Theorem 2.36, p. 98 (Menger’s Theorem): puv = suv.

Proof: By induction on m.

Base Case: m = 0: puv = 0 and suv = 0.

Induction hypothesis: for all graphs with < m edges, puv = suv for any u and
v in the graph.

Now let G be a graph with m edges and let u, v be two non-adjacent vertices
in G. There is nothing to prove if suv ≤ 1, so we will assume that suv ≥ 2.
We will exploit the induction hypothesis by deleting at least one edge from
the graph. We will organize the argument according to the three scenarios
described above.
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Case 1: G has a uv-separating set S of size suv that satisfies Scenario 1, i.e.
S∩N(u)∩N(v) 6= ∅. Choose x ∈ S adjacent to both u and v. Then S−x is a
minimal uv separating set in G′ = G−x and s′uv = suv−1. By the induction
hypothesis, p′uv = s′uv − 1. Let P1, . . . , Ps′uv−1 be internally disjoint uv paths
in G−x. Then P1, . . . , Ps′uv−1, (u, x, v) is a collection of suv internally disjoint
uv paths in G, which implies puv ≥ suv, which implies puv = suv.

Case 2: G has a uv-separating set S of size suv that satisfies Scenario 2:
S 6⊆ N(u) and S 6⊆ N(v). Define Hu to be the graph consisting of the
union of all paths in G − v originating from u that contain exactly one
vertex from S. By Fact 3, S ⊆ Hu. We also have Hu ⊆ G − v, hence
|E(Hu)| ≤ m− deg(v) ≤ m− suv.

Claim: |E(Hu)| < m − suv. For suppose |E(Hu)| = m − suv. This implies
deg(v) = suv, which implies E(Hu) = E(G− v). It also implies that N(v) is
another minimal uv-separating set. Choose w ∈ N(v)\S. Since deg(w) ≥ 2,
it belongs to an edge ww′ where w′ 6= v. This places ww′ ∈ E(Hu), which
places w on a path from u to S with exactly one vertex in S. Truncating
this path at w and appending the edge wv we obtain a uv path that avoids
S completely. Contradiction. Therefore |E(Hu)| < m− suv.

Now form the graph Gu by adjoining a new vertex u′ to Hu and joining each
x ∈ S to u′. Then |E(Gu)| < m.

Claim: suu′ = suv. We certainly have suu′ ≤ suv since S is a uu′ separating
set in Gu. To obtain suu′ ≥ suv it suffices to show that every uu′ separating
set in Gu is a uv separating set in G. If T is not a uv-separating set in G
then there is some uv path in G that avoids T , giving rise to a us path in
Hu avoiding T , giving rise to a uu′ path in Gu avoiding T . So the claim is
proved.

By the induction hypothesis, there exist suv internally disjoint uu′ paths in
Gu. This gives rise to suv paths in G, endpoints of the form u and some
s ∈ S, internally disjoint from S and sharing only the vertex u. We can
similarly form Hv and find suv paths in G, endpoints of the form v and some
s ∈ S, internally disjoint from S and sharing only the vertex v. These paths
intersect only in S, so they can be glued together to form suv internally
disjoint paths in G. Hence puv ≥ suv, which implies puv = suv.

Case 3: None of the uv-separating sets of G of size suv fall in Case 1 or Case
2. For each such S, either S ⊆ N(u) and S ∩ N(v) = ∅ or S ⊆ N(v) and
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S∩N(u) = ∅. Without loss of generality there exists a minimal uv-separating
set S of the first type: S ⊆ N(u) and S ∩N(v) = ∅. Let P = (u, x, y, . . . , v)
be a uv path of minimal length. Then y 6∈ N(u) by minimality of the length
of P . Let e be the edge {x, y}. Write G′ = G− e. Then s′uv ≤ suv.

Claim: s′uv = suv. Reason: Suppose s′uv < suv. Then S ′ ∪ {x} and S ′ ∪ {y}
are uv-separating sets which are minimal by virtue of their size. Therefore
S ′ ∪ {x} ⊆ N(u) and S ′ ∪ {y} ⊆ N(v). If z ∈ S ′ then z is a member of a
minimal uv-separating set which is adjacent to both u and v, which is not
permitted in Case 3. Hence S ′ = ∅, which forces suv = 1, which contradicts
suv ≥ 2. Hence the claim is true.

By the induction hypothesis, G′ has suv internally-disjoint uv-paths. Hence
G does also.

Theorem 2.37 (Whitney’s Theorem), p. 101: Let G be a non-trivial
graph. Then κ(G) ≥ k iff every pair of vertices in G, not necessarily non-
adjacent, has at least k internally-disjoint paths between them.

Proof: First assume that every pair of vertices has this property. Choosing
two vertices at random, we see that there are at least k + 1 vertices in the
graph, namely the 2 vertices and the internal vertices from k − 1 of the
internally-disjoint paths. Now let X be an arbitrary set of k − 1 vertices.
Then G−X has at least 2 vertices. Let a and b be vertices in G. At least 1
ab path survives, hence G−X is connected. This implies κ(G) ≥ k.

Conversely, suppose κ(G) ≥ k. Let u and v be vertices in G. If non-adjacent,
there are k internally disjoint paths joining them. If adjacent, then they are
non-adjacent in G′ = G − e. Hence there are κ(G′) internally-disjoint uv-
paths in G′, which yields κ(G′) + 1 internally disjoint paths between u and
v in G. We just need to verify that κ(G′) + 1 ≥ k. If κ(G′) + 1 < k then
κ(G′) ≤ k − 2, hence there is a set of vertices X with |X| ≤ k − 2 whose
removal leaves 1 vertex or a disconnected graph. Both are impossible: the
former implies G has ≤ k − 1 vertices, which is impossible, and the latter
implies X ∪ {x} is a separating set of G of size ≤ k − 1, which is also
impossible.

Corollaries 2.38, 2.39, 2.40, pp. 101 – 102: See exercises 3, 4, 5.

Theorem 2.41, p. 102: If G is k-connected and k ≥ 2, then every k
vertices of G lie in some cycle.
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Proof: Choose k arbitrary vertices v1, . . . , vk. Since the graph is 2-connected,
v1 and v2 lie in a common cycle C(2). So we have the base case of an induc-
tion argument. Assume that v1, . . . , vr lie on a common cycle C(r) for some
2 ≤ r < k.

Case 1: The cycle contains only the vertices v1, . . . , vr. Without loss of
generality they appear in this order along the cycle. By Corollary 2.39 there
are paths vr+1v1, vr+1v2, . . . , vr+1vr paths that share only the vertex vr+1. Let
C(r+1) be the v1vr path along the cycle followed by the vrvr+1 path followed
by the vr+1v1 path.

Case 2: The path from v1 to vr along the cycle does contain other vertices.
Let v0 be another vertex. Without loss of generality the vertices v0, v1, . . . , vr
appear in this order along the cycle. Use these vertices to partition the cycle
into subpaths [v0, v1), [v1, v2), . . . , [vr, v0). By Corollary 2.13 there are paths
vr+1v0, vr+1v1, . . . , vr+1vr paths that share only the vertex vr+1. Truncate
these at the moment they hit the cycle. By the pigeon-hole principle, two of
these paths fall in some subpath [vi, vi+1). Add these two paths to the cycle
structure and delete the subpath along the cycle where these paths meet the
cycle. In this way we don’t discard any of the vertices v1, . . . , vr and we
create a cycle C(r + 1) containing vr+1.

Section 4.1: Strong Digraphs

Definition: A digraph is strongly connected iff for each u 6= v there exists
a directed uv path.

Theorem 4.1, p. 149: Every directed uv walk gives rise to a directed
uv-path.

Proof: Cut out self-intersections.

Theorem 4.2, p.149: A digraph is strongly connected iff there exists a
closed directed walk through all the vertices.

Proof: If such a walk exists the graph is strongly connected. Conversely,
given a strongly connected digraph D, concatenate directed paths from each
vertex to the next to build the closed directed walk.

Theorem 4.3 (Robbin’s Theorem), p. 150: A nontrivial graph G has
a strongly connected orientation iff it has no bridge edges (λ(G) ≥ 2).

Proof: If G has a strongly-connected orientation then every edge lives in
a cycle (the directed paths between the endpoints are internally disjoint),
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hence no edge is a bridge edge. Now assume that G has no bridge edges. We
will construct the strong orientation.

Pick an edge at random. Its removal leaves a connected graph, so the edge
lives in a cycle. Orient the edges around the cycle uniformly. We have found a
strongly-orientable subgraph. We will show that for each strongly orientable
subgraph H 6= G there is a larger strongly orientable subgraph H ′. So we
can keep on enlarging until we produce a strong orientation of G.

If H contains all the vertices of G, we can toss in any missing edge and use
an arbitrary orientation to produce H ′.

If H does not contain all the vertices of G, Let u ∈ V (G)\V (H) be given.
By connectedness there is a path from H to u that meets H in exactly one
vertex. Let hv be the first edge. Then G − hv is connected, so it contains
a path P from v to H. Orient all the edges in hv + P in the same direction
and add them to H to produce a strongly connected H ′.

Definition: A connected digraph is Eulerian if there is a closed directed walk
through all edges used exactly once. More generally, a digraph is Eulerian if
each connected component is Eulerian.

Theorem 4.4, p. 151: Let D be a non-trivial digraph. Then D is Eulerian
(one can walk through all the edges of each connected component of the
underlying graph using directed edges) iff id(v) = od(v) for all vertices v.

Proof: If D is Eulerian you can start at any vertex v0 in a connected
component and walk around all the edges exactly once in the same direction,
ending at v0. As you go you can take a survey of the edges incident to each
vertex, and you will find that for each one in there is a corresponding one
out, determined by the closed Euler trail. When done you have accounted
for all the edges and proved id(v) = od(v) for all v.

Conversely, suppose the in-degree/out-degree condition holds. Then there
must be a directed cycle in the graph: find a directed path of maximal
length. The last out-degree must be at least one and so there must be a
directed edge from the last vertex to a vertex along the path. Truncating if
necessary we obtain a directed cycle. Now we have the basis of an induction
argument according to number of edges. If just 3 edges, done. If more than
this, start by finding a directed cycle C, then delete the edges to obtain D′

satisfying the same in-degree/out-degree condition. Then D′ is Eulerian trail
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by the induction hypothesis, and use C to glue together the Euler bits that
had contact with C.

Definition: An open Euler trail in a connected digraph is a walk through
all edges once that begins and ends at different vertices.

Theorem 4.5, p. 151: A connected digraph has an open Euler trail be-
tween u and v iff od(u) = id(u) + 1, id(v) = od(v) + 1, and for all other
vertices x, id(x) = od(x).

Proof: Exercise 9. (Add or subtract a directed edge between them, form
Eulerian digraph, modify.)

Theorem 4.6, p. 151: If a connected digraph D has two vertices u and v
such that, for some positive integer k, od(u) = id(u) + k, id(v) = od(v) + k,
and for all other vertices x, id(x) = od(x), then D contains k edge-disjoint
directed uv paths.

Proof: Correct the degree deficiencies by adjoining new vertices w1, . . . , wk
and directing v into each of these and directing each of these into u. The
result is Eulerian. Walk around the directed edges, finding k disjoint uv
directed walks which can be truncated to paths.

Definition: A Hamilton Cycle in a graph is a cycle that passes through all
n vertices.

Theorem 3.6, p. 119: If n ≥ 3 and deg(u) + deg(v) ≥ n for all non-
adjacent u, v then there is a cycle in the graph containing all the vertices
(Hamilton Cycle).

Proof: First, the graph must be connected: otherwise we could partition
the vertices into V1 and V2 with no edges between these sets, and the degree
of each vertex in V1 would be ≤ |V1| − 1 and the degree of each vertex in
V2 would be ≤ |V2| − 1 and we would violate the degree sum condition.
Secondly, any maximal path can be used to create a cycle, either by joining
the endpoints or using the degree-sum condition to do the same thing as in
the proof of Exercise 15, Section 1.3, p. 42. Thirdly, if the cycle created by a
maximal path did not incorporate all vertices then connectedness allows us
to glue an edge to this cycle and open the thing up to create a longer path:
contradiction. So there is a Hamilton Cycle.

Corollary 4.10, p. 153: If D is a digraph in which od(v) ≥ n/2 and
id(v) ≥ n/2 then there’s a directed Hamilton Cycle. (Of course, this implies
the graph is strongly connected.)
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Proof: For n = 2 and n = 3 there has to be a directed edge between every
pair of vertices. Now consider n ≥ 4. Then every out-degree is ≥ 2. Let Q
be a path of maximal length. Its endpoint has directed edges back to the
path, and since there are at least n/2 of these, we can find a cycle of length
at least n/2 + 1 (we did this before in Theorem 1.24, p. 50). Now let C be a
cycle of maximal length. Then it has at least n/2 + 1 edges. We would like
to argue that it has n edges. Say that it has < n edges. We will obtain a
contradiction.

There has to be a vertex not on the cycle. Let P be a path of maximal length
l edges (l+ 1 vertices) not intersecting C. Assume P begins with u and ends
with v. Since u has in-degree ≥ n/2 but at most n/2 − 2 of these edges
originate from P , there are a ≥ 2 vertices on C with an edge to u. Similarly,
since v has out-degree ≥ n/2, there are b ≥ 2 vertices on C on the other end
of edges directed out of v. Whenever there is an edge c1 → u where c1 ∈ C
there must be a gap of at least l+ 1 vertices along C to an edge of the form
v → c2 where c2 ∈ C, otherwise we can create a longer cycle by taking a
detour along P . So for each c→ u edge, the next vertex c′ cannot be part of
a v → c′ edge. Scoop up a− 1 vertices c that are not part of a v → c edge,
and scoop up l + 1 more of these between the last c → u edge and the first
v → c′ edge following it. We have found at least a + l vertices along C not
contributing to the out-degree of v.

Now we have some inequalities to manipulate: id(u) ≥ n/2 with a contribu-
tion of a edges into u from C leaves at least n/2−a edges into u from P (there
are no other vertices with edges into u by maximality of P ). Since P contains
l+1 vertices, this implies l ≥ n/2−a. Hence a+ l ≥ n/2. On the other hand,
we have identified a+ l vertices on C that do not contribute to the outdegree
of v, therefore n/2 ≤ od(v) ≤ n − 1 − (a + l) ≤ n − 1 − (n/2) = n/2 − 1.
Contradiction. Therefore C has n edges in it and is a directed Hamilton
Cycle.

Skip the material on Line Digraphs.

Section 4.3: Flows in Networks

Network: directed graph with source vertex having in-degree 0, target vertex
having out-degree 0, non-negative integer edge capacities.

Network flow: an edge function which respects capacities and satisfied con-
servation of flow: 0 ≤ f(xy) ≤ cap(xy) for each edge xy and, for all
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v ∈ V \{S, T}, ∑
xv∈E

f(xv) =
∑
vx∈E

f(vx).

Network cut: an ordered pair (P,Q) satisfying P,Q ⊆ V , S ∈ P , T ∈ Q,
P ∩Q = ∅.

Cut capacity:

cap(P,Q) =
∑

(p,q)∈(P×Q)∩E

cap(pq).

Flow across a cut:

flow(P,Q) =
∑

(p,q)∈(P×Q)∩E

f(pq).

Flow from one subset to another:

flow(X, Y ) =
∑

(x,y)∈(X×Y )∩E

f(xy).

Value of a flow: val(f) = flow({S}, V ).

The basic problem: find a flow of maximum value.

Lemma: For any flow f and for any cut (P,Q),

val(f) = flow(P,Q)− flow(Q,P ).

Corollary: for any flow f and for any cut (P,Q), val(f) ≤ cap(P,Q).

Theorem: when val(f) = cap(P,Q) occurs, val(f) is maximal among all
flows and cap(P,Q) is minimal among all cuts.

Proof: Let f ′ be given. val(f ′) ≤ cap(P,Q) = val(f). Let (P ′, Q′) be
given. cap(P,Q) = val(f) ≤ cap(P ′, Q′).

Theorem: Given any network, it is always possible to find a flow and a cut
satisfying val(f) = cap(P,Q).
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Proof: First, what would this look like? On the one hand, val(f) =
cap(P,Q), and on the other hand val(f) = flow(P,Q)− flow(Q,P ). Since
flow(P,Q) ≤ cap(P,Q) and flow(Q,P ) ≥ 0, we must have flow(P,Q) =
cap(P,Q) and flow(Q,P ) = 0.

Idea of the construction: start with any arbitrary flow f , then pump it up
as far as possible.

Method: Inspect any any semi-path from S to T , regardless of edge-directions.
Measure slack as the ability to increase flow up to capacity in the forward
direction and the ability to decrease flow down to zero in the backward direc-
tion. Find the minimum slack value and adjust all edges accordingly. This
pumps up the flow value and preserves conservation of flow.

A procedure for finding a path, which also detects when the flow is maximal:
label the vertex S with ∗. At present we have a partition of the vertex set
into labeled vertices P and unlabeled vertices Q. Given an edge pq with slack
s > 0, we label q with (p,+, s). Given an edge qp with slack s > 0, we label
q with (p,−, s). Continue labeling so long as positive slack is detected across
edges between P and Q in either direction. There are two possible outcomes.

1. T ends up with a label. We can backtrack through the labels all the way
to S and identify a semi-path along which to pump up the flow. Make it so.

2. T does not end up with a label. Consider what this says about (P,Q).

(a) S ∈ T .

(b) T ∈ Q.

(c) P ∪Q = V .

(d) P ∩Q = ∅.

(e) For any pq edge, slack is zero, hence flow(pq) = cap(pq).

(f) For any qp edge, slack is zero, hence flow(qp) = 0.

(g) val(f) = flow(P,Q)− flow(Q,P ) = cap(P,Q)− 0. Hence flow is maxi-
mal.

Turning the crank means label and halt with either 1 or 2. Every time we
halt with 1, we turn the crank again. We can only turn the crank a finite
number of times and end with 1, because the flow can only increase so much.
Eventually we end with 2.
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Theorem 4.37: Let u and v be distinct vertices in a digraph D. Then the
maximum number of edge-disjoint st paths is equal to the minimum number
of edges in an uv separating set.

Proof: Set puv equal to the maximum number of edge-disjoint uv paths and
set suv equal to the minimum number of edges in a uv-separating set. Let
P be a collection of puv edge-disjoint uv paths. Obviously no uv-separating
set can contain less than |P | edges, so suv ≥ puv. We need to prove somehow
that suv ≤ puv.

Create a network N from D by adding an edge Su and an edge vT . Assign
c(e) = 1 to all edges in D, and infinite capacity to Su and vT . By con-
servation of flow, every flow f in this network gives rise to an edge-disjoint
collection of val(f) uv paths. Now find a flow f and a cut (P,Q) in the net-
work satisfying val(f) = cap(P,Q). Since there is infinite capacity along Su,
u ∈ P . Since there is infinite capacity along vT and T 6∈ P , v 6∈ P . So every
uv path starts in P , ends in Q, and incorporates an edge in (P ×Q)∩E(D).
This makes (P ×Q) ∩ E(D) a uv-separating set in D. So

suv ≤ |(P ×Q) ∩ E(D)| = cap(P,Q) = val(f) ≤ puv.

Theorem 4.38: Let u and v be distinct vertices in a diagraph D such that
uv 6∈ E(D). Then the maximum number of internally disjoint uv paths in D
is equal to the minimum number of vertices in a uv separating set.

Proof: Set puv equal to the maximum number of internally disjoint uv paths
and set suv equal to the minimum number of edges in a uv-separating set.
We have to remove at least one vertex from each path in a collection of
internally-disjoint uv paths to separate u from v, so puv ≤ suv. We cannot
use the same network idea as before, however, because flows give rise to edge
disjoint paths that are allowed to share vertices.

The fix is to create create a new digraph D′, inserting a new vertex x′ (bottle-
neck vertex) for every original vertex, adding the new edge x′x, and replacing
every original edge xy by the edge xy′. Now create the network N by adding
Su′, vT , using unit capacities everywhere except for Su′, uu′, v′v, and vT .
Every flow corresponds to a collection of internally-disjoint uv paths in D′,
hence in D. So as before we can find a cut (P,Q) such that

|(P ×Q) ∩ E(D′)| = cap(P,Q) = val(f) ≤ puv.
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Each edge in (P × Q) ∩ E(D′) is of the form xy′ or x′y. Since the edges
are internally disjoint, the collection of unprimed vertices they contain is
distinct. Removing these vertices breaks all paths between u and v. Hence
we obtain a uv-separating set of edges of size |(P ×Q)∩E(D′)|, which yields

suv ≤ |(P ×Q) ∩ E(D′)| = cap(P,Q) = val(f) ≤ puv.

Skip Chapter 5: running short on time.

Chapter 6: Planar Graphs

Section 6.1: The Euler Identity

Planar graph: Can be drawn in plane with no crossing edges.

Planar graphs define regions. It turns out that all possible planar represen-
tations of a connected graph create the same number of regions.

Theorem 6.1, p. 225: For a connected planar graph, r = e− v + 2.

Proof: If the graph is a tree, there is one region, which satisfies the formula.
If the graph is not a tree, there is a cycle somewhere. Find a cycle of minimal
size. There will be no chords. Stuff everything inside this cycle (imagine
drawing the image on a rubber ball, then puncturing the ball inside the cycle
then tearing and spreading out flat. Things will deform but the number
of regions will remain the same). So without loss of generality the planar
representation can be described as a big cycle with stuff inside. Delete one
of the edges of the outer cycle. In the process, lose one interior region and
lose one edge. Keep on going until you obtain a tree. We have r′ = e′− v+ 2
in the tree, hence r = e− v + 2.

Theorem 6.3, p. 226: If a connected planar graph contains a cycle then
e ≤ 3v − 6.

Proof: Stuff everything inside the cycle as before. Now place 2 dots about
every edge near the middle. The dots are partitioned by region, and each
region is bounded by a cycle. So each region contributes at least 3 dots. So
the number of dots is ≥ 3r. On the other hand, the number of dots is 2e,
therefore 2e ≥ 3r. That is, 2e ≥ 3e− 3v + 6. This yields e ≤ 3v − 6.

Note: This theorem can be refined to incorporated the minimum size k of
a cycle. This yields (k − 2)e ≤ kv − 6. In particular, for bipartite graphs,
2e ≤ 4v − 6 so e ≤ 2v − 4.

30



K33 and K5 are non-planar: they have too many edges using the previous
theorems.

Corollary 6.6, p. 227: Every planar graph contains a vertex of degree
≤ 5.

Proof: Too many high-degree vertices implies too many edges to be planar.

Maximal Planar Graph: The addition of any edge creates a non-planar
graph. These objects must be connected. A tree cannot be maximal planar.
Hence a maximal planar graph can be stuffed inside a cycle, and the cycle
must have exactly 3 edges to it. Also, the interior regions are bounded by
3-cycles. This implies 2e = 3r, i.e. e = 3v − 6.

Nearly Maximal Planar: Can be stuffed inside a cycle. All interior cycles
are 3-cycles. The outer one doesn’t have to be a 3-cycle.

Theorem 6.8, p. 228: Maximal planar graphs with v ≥ 4 satisfy δ ≥ 3.

Proof: This follows from the fact that maximal planar graphs are 3-connected
(Exercise 6).

Skip pp. 229 – 232.

The Five Regular Polyhedra: See the description on page 221 and the
figures on page 223. These can be projected to the surface of a sphere, which
creates a connected plane graph with all vertex degrees the same and all
regions having the same number of edges. To prove that there are no others,
note that if degrees are d and bounding cycle lengths are L then 2e = vd = rL
by a dot counting argument. Combined with r − e+ v = 2 we obtain

2
e

L
− e+ 2

e

d
= 2

2

L
− 1 +

2

d
=

2

e

2

L
− 1 +

2

d
> 0

2

L
+

2

d
> 1

2d+ 2L > dL

(d− 2)(L− 2) = dL− 2d− 2L+ 4 < 4.
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Since d ≥ 3 and L ≥ 3 the only solutions to this inequality are

(d, L) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}.

Section 6.2: Planarity versus Nonplanarity

Kuratowski subgraph of a graph: A subgraph which can be described
as subdivision of K5 or K3,3 (interrupt edges by degree 2 vertices).

Petersen Graph: Satisfies e ≤ 3v − 6 but not (k − 2)e ≤ kv − 6 using
k = 5, hence non-planar. Circle-chord method yields a K33 configuration:
see illustration.

Branch and subdivision vertices in a Kuratowski subgraph: Branch
vertices are the original vertices of K5 and K33. Subdivision vertices are the
inserted vertices of degree 2.

Minimal non-planar graph: A non-planar graph such that every proper
subgraph is planar.

X-lobe of a graph G: Let X be subset of vertices of G and let Gi be a
connected component of G − X. An X-lobe of G is the induced subgraph
G[Gi +X].

Edge contraction: Let G be a graph and let e = {x, y} be an edge in G.
G · e is the graph obtained from G by shrinking the edge xy down to a point
z. In the process we lose the vertices x and y, gain the vertex (xy), and any
edge xv or yv in G becomes the edge (xy)v in G · e.
Example: The Petersen graph can be contracted down to K5. See illus-
tration. If G is planar then G · e is planar. So if some contraction of G is
nonplanar then G is nonplanar. Hence P is nonplanar.

Lemma 1: Let C be a cycle of a planar graph G. Then there is a way to
draw G so that the edges of C all border the infinite region.

Proof: Stuff everything inside as before.

Lemma 2: Every minimal non-planar graph G (all proper subgraphs planar)
is 2-connected.

Proof: First note that any minimal non-planar graph must be connected.
We must show that there are no cut-vertices.
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Suppose x is a cut vertex. Let G − x have components H1, . . . , Hk. Each
lobe G[Hi +x] is planar by minimality of G. Each non-tree among these can
be redrawn so that x is bordering the infinite region. Each tree among them
has x bordering the infinite region. These can be glued together to form a
planar representation of G. Contradiction. So there are no cut vertices.

Lemma 3: Suppose G − x − y is not connected. If G is non-planar then
adding the edge xy to some {x, y}-lobe of G yields a non-planar graph.

Proof: Let the components of G − x − y be H1, . . . , Hk. Suppose every
G[Hi + x+ y] + xy is planar. Draw each such configuration so that the edge
xy borders the infinite region. There is a way to glue all these things together
to create a planar graph, and this includes G as a subgraph. Contradiction.
So some G[Hi + x+ y] + xy is non-planar.

Lemma 4: If there exists a minimal example G of a non-planar graph with
no Kuratowski subgraph, then it is 3-connected.

Proof: G is a minimal non-planar graph. By Lemma 2 is G is 2-connected.
If G is not 3-connected then it has a minimal vertex cut {x, y}. Let the
connected components ofG−x−y beH1, . . . , Hk. Then wlogG[H1+x+y]+xy
is non-planar. Moreover, G[H1 + x + y] + xy has fewer elements than G,
therefore by minimality of G it contains a Kuratowski subgraph K. Since K
cannot be a subgraph of G, xy ∈ K and xy 6∈ G. Since {x, y} is a minimal
vertex cut, there is an edge from x to H2 and from H2 to y. Hence there is a
path P from x to y which is internally disjoint to G[H1 +x+ y] and hence to
K. We can replace the edge xy in K by the path P to create a Kuratowski
subgraph K − xy + P in G. Contradiction. Therefore G is 3-connected.

Lemma 5: Every 3-connected graph G with at least 5 vertices has an edge
e such that G · e is also 3-connected.

Proof: Suppose this edge cannot be found. Let G be 3-connected and let
e = xy be an edge in G. Since G · e is not 3-connected, it has a vertex cut
{u, v}. We claim that (xy) = u or (xy) = v.

Suppose in fact (xy) 6= u and (xy) 6= v. Then there must be some vertex in
(G ·e)−u−v with no path to (xy). Since G has v ≥ 5 vertices, there must be
some vertex in G−u− v with no path to x and no path to y. Contradiction.

So now we know that G · e has a separating set of the form {(xy), z}. This
creates a separating set {x, y, z}. Of all ways to choose the edge e = xy,
choose one which maximizes the vertices in the largest connected component
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of G−x−y− z. Since {x, y, z} is a minimal vertex cut of G, x, y and z have
edges to each component of G− x− y− z. So if H is the largest component
of G− x− y − z and H ′ is another component of G− x− y − z, we get the
diagram on page 249 of Douglas West’s textbook.

Let u be a neighbor of z in H ′. Let v be such that G has a separating set
{z, u, v}. To achieve a contradiction we will find a connected component of
G− z − u− v that is larger than H.

First note that G[H + x+ y − v] is connected: Consider the cases.

Case 1: v = x. Then G[H + y] is connected.

Case 2: v = y. Then G[H + x] is connected.

Case 3: v ∈ H. We know that G− z − v is connected. Given two vertices in
G[H + x+ y − v], find a path between them in G− z − v and shrink it to a
path in G[H + x+ y − v].

Now that we know that G[H + x+ y − v] is connected, it has to belong to a
connected component H ′′ of G−z−u−v which has at least as many vertices
as G[H + x+ y − v] and strictly greater vertices than H. Contradiction. So
yes, we can find e ∈ G such that G · e is 3-connected.

Lemma 6: If G · e has a Kuratowski subgraph then so does G.

Proof: Let K be a Kuratowski subgraph in G ·e. Write e = xy. If (xy) 6∈ K
then K is a Kuratowski subgraph of G. Now suppose (xy) ∈ K. If (xy) is
a subdivision vertex of K, let the edges it belongs to be u(xy) and (xy)v.
By considering the possibilities in G we can see that G has a Kuratowski
subgraph. If (xy) is a branch vertex of K and exactly one of the edges (xy)ui
in K corresponds to xui in G and the rest correspond to yui in G then x
is a subdivision vertex of a Kuratowski subgraph in G (or y if the roles of
x and y are reversed). The only remaining case is when K is a subdivision
of K5 and the four edges (xy)u1, (xy)u2, (xy)u3,(xy)u4 in K correspond to
xu1, xu2, yu3, yu4 in G. Writing the branch vertices of K as (xy), v1, v2, v3,
v4, there are paths joining each vi to vj as well as paths from x to v1 and
v2 and paths from y to v3 and v3, as well as the edge xy. Tossing the v1v2
path and the v3v4 path, we obtain a subdivision of K33 out of the remaining
paths, with branch vertices x, v3, v4 on the right and branch vertices y, v1, v2
on the left.

Lemma 7: If G does not have a Kuratowski subgraph and G·e is 3-connected
and planar, then G is planar.
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Proof: We know by Lemma 6 thatG·e does not have a Kuratowski subgraph.
Now draw a planar representation of G · e. Removing (xy), the remaining
graph is 2-connected. Therefore (xy) and the edges to its neighbors in G · e
are bounded by a cycle C. The vertices of C belong to G. The neighbors
of x and y in G belong to C. Let the neighbors of x be x1, . . . , xj in cyclic
order around C and let the neighbors of y be y1 . . . , yk in cyclic order around
C. Note that there could be some overlap among these sets of neighbors.
It is clear that G − x and G − y are planar since they are isomorphic to
subgraphs of G · e, and if x has ≤ 1 neighbors then we can insert y and its
edges to x, y1, . . . , yk to create a planar representation of G. Now assume
that x has at least 2 neighbors in C. We will consider the ways y1, . . . , yk
can be distributed around C.

Case 1: y has at least three neighbors z1, z2, z3 in common with x. Using
C we can create a K5 subdivision in G. Contradiction. So Case 1 cannot
happen.

Case 2: y shares at most two neighbors in common with x and the rest of
neighbors of y all fall between two consecutive neighbors xi, xi+1 of x. Then
we can insert y in the triangle formed by x, xi, and xi+1 and draw all the
edges out of y to create a planar representation of G.

Case 3: y shares at most two neighbors in common with x but the rest of the
neighbors of y do not fall between two consecutive neighbors xi, xi+1 of x. In
other words, y has neighbors z1 and z2 that alternate with neighbors xi and
xi+1 of x. Using C we can create a K3,3 subdivision in G. Contradiction. So
Case 3 cannot happen.

Theorem: Every graph that does not have a Kuratowski subgraph is planar.

Proof: If the theorem is false, then there is a minimal counterexample, G.
G is non-planar, does not have a Kuratowski subgraph, and by Lemma 4 G
is 3-connected. Since K4 and its subgraphs are planar, G must have at least
5 vertices. By Lemma 5, G has an edge e such that G · e is 3-connected. By
Lemma 6, G · e does not have a Kuratowski subgraph. By minimality of G,
G · e must be planar. By Lemma 7, G must be planar. Contradiction. So
the theorem is true.

Chapter 8: Vertex Colorings

A proper k-coloring of a graph is a function f : V → {c1, . . . , ck} such that
the endpoints of each edge receive different colors.
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The chromatic number of a graph, χ(G), is the smallest number of colors
needed to properly color the graph.

Some facts about χ(G): χ(Kn) = n. If H ⊆ G then χ(G) ≥ χ(H). A
non-trivial graph G is bipartite iff χ(G) = 2. χ(C2k) = 2 and χ(C2k+1) = 3.
χ(G + H) = max(χ(G), χ(H)). χ(G ∨ H) = χ(G) + χ(H). χ(G�H) =
max(χ(G), χ(H)) using c(g, h) = c(g) + c(h) mod the larger chromatic num-
ber.

Theorem 8.9, page 315: Let G be a graph with n vertices and indepen-
dence number α (maximum number of mutually non-adjacent vertices in G).
Then

n/α ≤ χ ≤ n− α + 1.

Proof: Given a proper χ-coloring, there are at most α vertices colored i.
So there are at most χα vertices. n ≤ χα implies n/α ≤ χ. Now find α
independent vertices and color them 1. This leaves n − α vertices to color,
and we can assign then n−α distinct colors other than 1. Hence χ ≤ 1+n−α.

Application: let’s say committees 1 through n are meeting at the Joint Meet-
ings in 50 minute time slots. We want to rent the fewest number of hotel
conference rooms by the hour to accommodate all the committees. Let G
be the graph with vertex set 1, 2, . . . , n and an edge between vertices i 6= j
if they cannot meet at the same time due to shared membership. Then an
assignment of suitable time slots to the committees is a proper coloring, and
the fewest number of time slots needed is χ(G).

Section 8.3: Bounds for the Chromatic Number.

Greedy algorithm for coloring a graph: Set c(v1) = 1. Having colored v1
through vi, assign vi+1 the smallest positive integer not assigned to any of its
neighbors among v1, . . . , vi.

Theorem 8.19, p. 330: The greedy coloring algorithm yields a proper
coloring, and the colors used are in the range {1, 2, . . . ,∆ + 1}.

Proof: We will show that vertices v1 through vi have no edge to a vertex of
the same color and each has a color ≤ ∆ + 1 by induction on i.

First, consider v1. It receives the color 1. Suppose it has an edge to vertex
vi. Then vi does not receive the color 1. Hence the base case is true.
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Now assume that none of the vertices v1 through vi have an edge to a vertex of
the same color, and assume that all these vertices are colored with a positive
integer ≤ ∆ + 1. Consider the vertex vi+1. Then it does not receive the color
of any of its neighbors among v1 through vi, and since the colors of each of
these are in [1,∆ + 1] but there are fewer than ∆ + 1 of these, it receives
a color in this range. If vi+1 has an edge to vj for some j > i + 1, then by
construction vj does not receive the same color as vi+1. Hence vertices v1
through vi+1 have the desired properties.

Note that we can strengthen this to say that if every vertex has at most
p lower-index neighbors then the greedy algorithm yields a proper coloring
with at most p+ 1 colors.

Theorem 8.22 (Brook’s Theorem), p. 331: If G is connected and is
not a complete graph and not an odd cycle then χ(G) ≤ ∆.

Proof: First suppose that G has a vertex of degree ≤ ∆−1. Call this vertex
vn. It has at most ∆ − 1 lower index neighbors. Now number its neighbors
arbitrarily using the highest possible indices. Since these have at least one
higher index neighbor, they can have at most ∆ − 1 lower index neighbors.
Keep on going. Now use Greedy Algorithm.

Now suppose that G is ∆ regular. We can assume ∆ ≥ 3, because ∆ = 2
implies G = C2n, which is 2-colorable. If it has a cut-vertex x, each x-lobe
has a vertex of degree ≤ ∆− 1 and can be ∆-colored. Permute the colors in
each component so that x is colored 1 in each, then glue together.

Now assume G is ∆ regular and has no cut vertices. Suppose we can find
a vertex x with two non-adjacent neighbors y and z so that G − y − z is
connected. Then it is possible to label the vertices v1, . . . , vn in such a way
that each vi up to vn−1 has at most ∆− 1 lower-indexed neighbors: Label x
with vn and label all the vertices except y and z using the vertex names v3
through vn as in the first paragraph. Now set y = v1, z = v2. Use greedy
coloring on the v1 through vn−1. Then v1 and v2 both get colored 1, so vn,
while it has ∆ neighbors, is adjacent to at most ∆− 1 colors. So vn can be
colored with a color in the range {1, 2, . . . ,∆}.
Finally, we have to show that the vertices x, y, z can be found. We have
assumed that κ(G) ≥ 2. Choose an arbitrary vertex a. Then κ(G− a) ≥ 1.
We will consider two cases.

Case 1: κ(G−a) ≥ 2. Since G is regular and not complete, a is not adjacent
to some vertex. This implies e(a) ≥ 2. Say d(a,A) ≥ 2. Let P = a, b, c, . . . , A
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be an a,A path of minimal length. Then a and c cannot be adjacent, other-
wise there is a shorter a,A path. We can set x = b, y = a, z = c.

Case 2: κ(G − a) = 1. Write G′ = G − a. Then G′ has a cut vertex, so at
least two blocks, so at least two end-blocks. Consider the path between them
in the cut-block graph: B1, x12, B2, x23, B3, . . . , xn−1,n, Bn. Deleting x12 from
G′ severs all connections between B1 and the rest of G′, so there must be an
edge from b1 ∈ B1 − x12 to a since G has no cut vertices. Similarly, there
must be an edge from bn ∈ Bn − xn−1,n to a. The vertices b1 and bn are not
adjacent, otherwise the edge between them would live entirely in one block
but have endpoints in two blocks. We can set x = a, y = b1, z = bn. This
works because G− a− b1− bn is connected and a has third edge which joins
it to G− a− b1 − bn.

Theorem 8.27 (The Gallai-Roy-Vitaver Theorem), p.337: If D is an
orientation of G then χ(G) ≤ L + 1 where L is the longest directed path
length in D. Equality is possible for some D.

Proof: Given an orientation D, let D′ be a maximal acyclic sub-digraph
with respect to number of elements. D′ contains all vertices of D. For each
vertex u let c(u) = length of longest directed path in D′ ending in u. Let
{u, v} be an edge in G. We must show c(u) 6= c(v). If u → v belongs to
D′ then c(u) < c(v). If u → v doesn’t belong to D′ then it’s addition to D′

creates a directed cycle, hence a path from v to u in D′. Hence c(v) < c(u).
So we have a proper coloring using colors in the range {0, 1, . . . , L}. This
implies χ(G) ≤ L+ 1.

Given a minimal coloring, orient the edges from smaller to larger color. Along
a path of length L edges one encounters 1+L different colors, so χ(G) ≥ 1+L.
Combined with χ(G) ≤ 1 + L we have χ(G) = 1 + L.

Coloring an infinite graph: LetG be a graph with vertex set {v0, v1, v2, . . . }.
Assume that every finite subgraph of G is k-colorable. Then G is k-colorable.

Proof: Note that if you can successfully k-color G[v0, v1, . . . , vn], you will
not necessarily be able to k-color G[v0, v1, . . . , vn+1] by using the same color
choices for v1, . . . , vn and choosing a color for vn+1: perhaps vn+1 is adjacent
to each color. So we have to proceed carefully.

Fix a color c0 for v0. Let Sn be the set of finite sequences of the form
(c0, c1, . . . , cn), where G[v0, v1, . . . , vn] can be properly k-colored with c(vi) =
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ci for 0 ≤ i ≤ n. Then Sn 6= ∅ for all n. For each c ∈ Sn set

S(c) = {d ∈
⋃
m≥n

Sm : (d0, d1, . . . , dn) = c}.

As we have argued above, it is possible that S(c) = ∅ for a given c. Since

S(c0) =
⋃
n≥0

Sn,

S(c0) is an infinite set. Since

S(c0) = {(c0)} ∪
k⋃
i=1

S(c0, i),

there exists c1 ≤ k such that S(c0, c1) is an infinite set. Since

S(c0, c1) = {(c0, c1)} ∪
k⋃
i=1

S(c0, c1, i),

there exists c2 ≤ k such that S(c0, c1, c2) is an infinite set. Keep on going.
Color G so that c(vi) = ci for each i ≥ 0. This is a proper coloring: Consider
the edge {vm, vn} where m < n. This edge belongs to G[v0, v1, . . . , vn], which
is properly k-colored by c(vi) = ci for 0 ≤ i ≤ n, hence c(vm) 6= c(vn).

Section 12.3: Ramsey Theory

2-coloring of Kn: an arbitrary assignment of the colors 0 and 1 to the edges
of Kn. The color of an edge e is denoted c(e).

Monochromatic clique of Kn: Let ω = (E, V ) be a clique of Kn. We say that
ω is i-chromatic if

|{e ∈ E : c(e) = i| ≤ 1.

In this definition we allow 1-vertex cliques to be monochromatic since they
have no edges.

Ramsey numbers: Let s ≥ 1 and t ≥ 1 be integers. If there exists a positive
integer n such that every 2-coloring of Kn contains a 0-chromatic s-clique or
a 1-chromatic t-clique then we say R(s, t) ≤ n and define R(s, t) to be the
minimum value of n such that R(s, t) ≤ n.
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Example: We have R(1, t) = 1 for all t ≥ 1.

Example: We also have R(2, t) = t. Reason: In any 2-coloring of Kt, either
we can find an edge colored 0 or all edges have been colored 1. HenceR(2, t) ≤
t. Also, the uniform 1-coloring of Kt−1 contains neither a K2 colored 0 nor a
Kt colored 1. Hence R(2, t) = t.

Example: If R(s, t) ≤ n if and only if R(t, s) ≤ n. Reason: Suppose every
2-coloring of Kn contains a 0-chromatic Ks or a 1-chromatic Kt. Let c be an
arbitrary 2-coloring of Kn. Then c is a 2-coloring of Kn, and a 0-chromatic
Ks using c yields a 1-chromatic Ks using c and a 1-chromatic Kt using c
yields a 0-chromatic Kt using c.

Theorem 12.17, page 512: For every s, t ≥ 1, R(s, t) is computable and,
for s, t ≥ 2,

R(s, t) ≤ R(s− 1, t) +R(s, t− 1).

Proof: Suppose that R(s − 1, t) and R(s, t − 1) are computable. Consider
an arbitrary 2-coloring of Kn where n = R(s − 1, t) + R(s, t − 1). We will
show that there is a 0-chromatic Ks or a 1-chromatic Kt in Kn. First, choose
a vertex v and define

V0 = {w ∈ V \{v} : c(wv) = 0}

and
V1 = {w ∈ V \{v} : c(wv) = 1}.

Then |V0| ≥ R(s− 1, t) or |V1| ≥ R(s, t− 1), because if both inequalities are
violated then the degree of v is no greater than n − 2 in Kn. Consider the
possibilities:

Case 1: |V0| ≥ R(s−1, t). Then there is a 0-chromatic Ks−1 in Kn[V0], which
yields a 0-chromatic Ks in Kn, or there is a 1-chromatic Kt in Kn[V0], which
yields a 1-chromatic Kt in Kn.

Case 2: |V1| ≥ R(s, t− 1). Then there is a 0-chromatic Ks in Kn[V0], which
yields a 0-chromatic Ks in Kn, or there is a 1-chromatic Kt−1 in Kn[V0],
which yields a 1-chromatic Kt in Kn.

Having established this, we start with the fact that R(s, t) is computable
when s ≤ 2 or t ≤ 2 and ratchet ourselves up to larger values.
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Corollary 12.18, page 513: For every s, t ≥ 1,

R(s, t) ≤
(
s+ t− 2

s− 1

)
.

Proof: This is true when at least one parameter is ≤ 2. Moreover, assuming
R(s− 1, t) ≤

(
s+t−3
s−2

)
and R(s, t− 1) ≤

(
s+t−3
t−2

)
we obtain

R(s, t) ≤
(
s+ t− 3

s− 2

)
+

(
s+ t− 3

t− 2

)
=

(
s+ t− 2

s− 1

)
.

A counting problem: Let n ≥ t ≥ 1. How many 2-colorings of Kn contain
a monochromatic Kt? Let the subsets of size t from {1, 2, . . . , n} be labeled
V1, V2, . . . , Vk where k =

(
n
t

)
. Let Ci denote the set of all 2-colorings in which

K[Vi] is monochromatic. Then the total number of colorings is |C1∪C2∪· · ·∪
Ck|. The exact size of this union requires an inclusion-exclusion argument,
but an upper bound is |C1|+ |C2|+ · · ·+ |Ck|. To produce all the colorings
in Ci, color all the edges in K[Vi] the same color and assign arbitrary colors
to the other

(
n
2

)
−
(
t
2

)
edges. This yields

|Ci| = 2(n2)−(t2)+1.

Therefore

|C1|+ |C2|+ · · ·+ |Ck| ≥
(
n

t

)
2(n2)−(t2)+1.

Now the total number of 2-colorings of Kn is 2(n2), so if this number is larger

than
(
n
t

)
2(n2)−(t2)+1 then there exist 2-colorings of Kn which contain neither

a 0-chromatic Kt nor a 1-chromatic Kt. We have proved that

2(n2) >

(
n

t

)
2(n2)−(t2)+1 =⇒ R(t, t) > n.

In other words,

2(t2) > 2

(
n

t

)
=⇒ R(t, t) > n.

To obtain 2(t2) > 2
(
n
t

)
it suffices to require 2(t2) > 2n

t

t!
. Setting n = bctc,

we examine the growth of f(t) = 2(t2) versus the growth of g(t) = 2 c
t2

t!
. We
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have f(t + 1) = 2tf(t), g(t + 1) = c2t+1

t+1
g(t). Setting c = 21/2 we obtain

c2t+1

t+1
= 2t 2

1
2

t+1
< 2t for t ≥ 1. Hence f(t) grows faster than g(t) for t ≥ 1, and

one can check that f(3) > bg(3)c. We have proved

R(t, t) > b2t/2c (t ≥ 3),

which is Theorem 12.20, page 515.

Graph Ramsey number: R(G0, G1) is smallest n so that every 2-coloring of
the edges of Kn contains an i-monochromatic Gi for some i.

Theorem: Let Tm be a tree with m vertices. Then R(Tm, Kn) = (m− 1)(n−
1) + 1.

Proof: We first show R(Tm, Kn) ≤ (m − 1)(n − 1) + 1 by induction on n.
The base case, R(Tm, K1) ≤ 1, is trivially true, since K1 has no edges. Now
assume R(Tm, Kn) ≤ (m− 1)(n− 1) + 1. Consider an arbitrary 2-coloring of
K(m−1)n+1. For each vertex v and define

V0(v) = {w ∈ V \{v} : c(wv) = 0}

and
V1(v) = {w ∈ V \{v} : c(wv) = 1}.

Consider the following two cases:

Case 1: |V1(v)| ≥ (m−1)(n−1)+1 for some v. By the induction hypothesis,
within G[V1(v)] there is a Tm colored 0 or a Kn−1 colored 1. The latter
produces a Kn colored 1 in K(m−1)n+1.

Case 2: |V1(v)| ≤ (m − 1)(n − 1) for all v. This implies |V0(v)| ≥ m − 1
for all v. In other words, in the subgraph of K(m−1)n+1 consisting of all the
vertices and just the edges colored 0, every vertex has degree ≥ m− 1. This
must contain a 0-chromatic copy of Tm by a Theorem 2.20, page 67.

We now show that R(Tm, Kn) > (m − 1)(n − 1). Color the edges of n − 1
disjoint copies of Km−1 with the color 0. This yields no copies of Tm colored
0. Now join all of these vertices not already connected by an edge by an edge
and color these 1. The largest clique colored 1 in this construction is Kn−1.
Hence we have produced a 2-coloring of K(m−1)(n−1) with no 0-colored Tm
and no 1-colored Kn.

A generalization of R(s, t): coloring edges of Kn is really a matter of coloring
2-element subsets of {1, 2, . . . , n}. To say that such a coloring produces

42



a 0-colored Ks or a 1-colored Kt is to say that there one can find either
S ⊆ {1, 2, . . . , n} with |S| = s such that all 2-element subsets of S are colored
0 or we can find T ⊆ {1, 2, . . . , n} with |T | = t such that all 2-element subsets
of T are colored 1. We now say that R(s, t; k) ≤ n whenever every arbitrary
coloring of the k-subsets of {1, 2, . . . , n} yields an s-set S with all k-subsets
colored 0 or a t-set T with all k-subsets colored 1.

Theorem: R(s, t; k) is computable.

Proof: Assuming that all R(i, j; k − 1) are computable and that p = R(s−
1, t; k) and q = R(s, t− 1; k) are computable, set

N = R(p, q; k − 1).

We claim that R(s, t; k) ≤ N + 1. To see this, let c be an arbitrary coloring
of the k-subsets of {1, 2, . . . , N +1}. Use c to define a coloring of the (k−1)-
subsets of {1, 2, . . . , N} via

c′(S) = c(S ∪ {N + 1}).

There are two cases to consider.

Case 1: There is a p-set P ⊆ {1, 2, . . . , N} such that all (k− 1)-sets of P are
colored 0 by c′. So all k-sets of P ∪{N + 1} that contain N + 1 are colored 0
by c. Given the size of P , there is a set S ⊆ {1, 2, . . . , N} of size s− 1 such
that all k-subsets of S are colored 0 by c or there is a set T ⊆ {1, 2, . . . , N}
of size t such that all k-subsets of T are colored 1 by c. If S exists then
S ∪ {N + 1} is a set of size s such that all k-subsets of S ∪ {N + 1} are
colored 0.

Case 2: There is a q-set Q ⊆ {1, 2, . . . , N} such that all (k− 1)-sets of Q are
colored 1 by c′. So all k-subsets of Q∪{N+1} that contain N+1 are colored
1 by c. Given the size of Q, there is a set S ⊆ {1, 2, . . . , N} of size s such
that all k-subsets of S are colored 0 by c or there is a set T ⊆ {1, 2, . . . , N}
of size t− 1 such that all k-subsets of T are colored 1 by c. If T exists then
T ∪{N+1} is a set of size t such that all k-subsets of T ∪{N+1} are colored
1.

Given that all R(i, j; 2) are computable by Theorem 12.17, page 512, each of
the R(s, t; k) are computable by a ratcheting-up argument.

Theorem (Erdos-Szekeres 1935): Given a sufficiently large number of
non-collinear points in the plane, one can find the vertices of a convex polygon
of m sides.
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Proof: Let there be R(m, 5; 4) points. Color every subset of 4 of them 0 if
they form the vertices of a convex polygon and 1 if they do not. Then either
there is a set S of size m such that every 4-set among them are colored 0
(i.e. form a convex polygon) or there is a set T of size 5 such that every 4-set
among them are colored 1 (i.e. they don’t form a convex polygon). Now T
cannot exist, because given any 5 non-collinear points, 4 of them are bound
to form a convex polygon. (Proof: take any 3 and form a triangle. If one
of the other two are outside, use one to form a convex 4-gon. But if both
are inside, use 2 inside and 2 along a side of the triangle to form a convex
4-gon.) Hence the set S exists. Now form the convex hull of these m points.
If one of the points is not a vertex of the convex hull then it is an interior
point. Triangulate the polygon by drawing chords. The interior points falls
in one of these triangles. The three vertices of this triangle plus the interior
point do not form a convex polygon, contrary to the defining property of S.
Contradiction. So every point of S is a vertex of the convex hull of S, hence
the points of S form the vertices of a convex polygon.
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