Eigenvalues and Eigenvectors Lecture

Let $\operatorname{dim} V=n$. Since $\operatorname{dim} \mathcal{L}(V)=n^{2}$, every $T \in \mathcal{L}(V)$ satisfies a polynomial equation $p(T)=0$ of degree $\leq n^{2}$. (Later: we will improve this to degree $\leq n$). The minimal polynomial is defined to be the unique monic polynomial $p(x)$ of least degree such that $p(T)=0$.

Eigenvalue and eigenvector of $T: T v=\lambda v$ where $v \neq 0 . v$ and λ exist if and only if $T-\lambda I$ is not invertible.
Theorem: Let $p(x)$ be the minimal polynomial of T. Then λ is an eigenvalue if and only if it belongs to the base field and $p(\lambda)=0$.
Proof: Let λ be an eigenvalue with eigenvector v. Then $0=p(T) v=p(\lambda) v$, therefore $p(\lambda)=0$. Conversely, if $p(\lambda)=0$ then $p(x)=(x-\lambda) q(x)$, therefore $p(T)=(T-\lambda I) q(T)$. By minimality, $q(T) \neq 0$, so there is a vector v such that $q(T) v \neq 0$. This is an eigenvector of T corresponding to eigenvalue λ.
Corollary: Every complex operator on a finite-dimensional space has an eigenvalue.
Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(x, y)=(x+y, x+y)$. Matrix representation with respect to standard basis: $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Minimal polynomial: $x^{2}-2 x$. Eigenvalues: $\lambda=0,2$. To find eigenvectors, consider $T(T-2) e_{1}=0$ and $(T-2) T e_{2}=0$.
Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(x, y)=(x-y, x+y)$. Matrix representation with respect to standard basis: $\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. Minimal polynomial: $x^{2}-2 x+2$. No eigenvalues or eigenvectors.
Example: Let $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be defined by $T(x, y)=(x-y, x+y)$. Matrix representation with respect to standard basis: $\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. Minimal polynomial: $x^{2}-2 x+2$. Eigenvalues are $\lambda=1+2 i, 1-2 i$. Eigenvectors: consider $T^{2}-2 T+2 I$ applied to e_{1} and e_{2}.
Example: Let $T: P\left(\mathbb{Z}_{5}\right) \rightarrow P\left(\mathbb{Z}_{5}\right)$ be defined by $T p(x)=x p(x)$. Then $T^{5}=T$, therefore $x^{5}-x$ is a polynomial satisfied by T. Let $p(x)$ be the minimal polynomial. By the division algorithm, $x^{5}-x=p(x) q(x)+r(x)$ for some remainder polynomial of degree less than the degree of the minimal polynomial. Since $r(T)=0$, minimality forces $r(x)=0$. Hence $p(x)$ is a
divisor of $x^{5}-x$. Note that $T^{5}-T=T\left(T^{4}-I\right)=T\left(T^{2}-I\right)\left(T^{2}+I\right)=$ $T\left(T^{2}-I\right)\left(T^{2}-4 I\right)=(T-I)(T+I)(T-2 I)(T+2 I)$. Applying this in various permutations to x yields eigenvalues $0,1,2,3,4$. Hence $x^{5}-x$ is a divisor of $p(x)$, so $p(x)=x^{5}-x$.

Every linear operator on a finite-dimensional complex vector space has an upper-triangular matrix representation: by induction on dimension n. True for $n=1$. More generally, let $T: V \rightarrow V$ be given. Write $V=F u_{1} \bigoplus W$ where $T u_{1}=\lambda u_{1}$. Let P project V onto W. Then $P T$ maps W onto itself, and by the induction hypothesis $P T$ has an upper-triangular matrix representation with respect to a basis $\left\{u_{2}, \ldots, u_{n}\right\}$. This implies that T has an upper-triangular matrix representation with respect to the basis $\left\{u_{1}, \ldots, u_{n}\right\}$.
Note that once T has been given an upper-triangular matrix representation U, its eigenvalues all appear along the diagonal. Reason: λ is an eigenvalue if and only if $T-\lambda I$ is not invertible. Using the basis which gives to the upper-triangular representation, $T-\lambda$ has matrix representation $U-\lambda I$, and this represents an invertible linear transformation if and only if one of the diagonal entries is zero.
Now consider real vector spaces. The same argument above implies that either T has a real eigenvalue or there exists a quadratic polynomial $a(T)$ such that $a(T) u=0$ for some non-zero u (method: factor the minimal polynomial into linear and quadratic factors). If there are no eigenvalues then $U=$ $\operatorname{span}_{\mathbb{R}}\{u, T u\}$ has dimension 2 and T maps U into U. Summarizing, T has an invariant subspace of dimension ≤ 2.
Operators on real vector spaces have a block-upper-triangular matrix representation with blocks of size ≤ 2 : by induction on dimension. True in dimension 1. More generally, find an invariant space U of dimension ≤ 2. Expand to $V=U \bigoplus W$. Let P be projection onto W and use the induction hypothesis to find a block-upper-triangular matrix representation of $P T$ on W. This can be expanded to block-upper-triangular matrix representation of T. Note that this implies that operators on real vector spaces always have a real eigenvector, because at least one block has size 1.

Theorem: Let $\operatorname{dim} V=n$. For $T \in \mathcal{L}(V)$, the minimal polynomial of T has degree $\leq n$.
Proof: We will first do this under the assumption that V is a complex vector space. Let A be an upper-triangular matrix representation with respect to
an appropriate basis. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the entries on the diagonal. Then for each $i, T-\lambda_{i} I$ has matrix representation $A-\lambda_{i} I$, which is upper-triangular with a 0 in row i, column i. This implies that $\left(A-\lambda_{1} I\right) \cdots\left(A-\lambda_{n} I\right)=0$, which implies that the matrix representation of $\left(T-\lambda_{1} I\right) \cdots\left(T-\lambda_{n} I\right)$ is 0 , which implies $\left(T-\lambda_{1} I\right) \cdots\left(T-\lambda_{n} I\right)=0$. Hence the minimal polynomial of T is a divisor of $\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)$.
Now assume that V is a real vector space. Let A be the matrix representation of T. The entries of A are all real and $p(A)=0$ for some complex polynomial $p(x)$ of degree $\leq n$. If $r(x)$ and $c(x)$ are the real polynomials derived from $p(x)$ by just using the real or the imaginary coefficients, we obtain $r(A)=0$ and $c(A)=0$. Hence A satisfies a non-zero real polynomial of degree $\leq n$, which implies that T does also.
Proving that the product of $n n \times n$ upper-triangular matrices, each with a diagonal zero entry in a different location, is zero: Introduce 2×2 block matrix multiplication. Product of upper triangular-matrices is upper-triangular. Using an induction argument, the product of the last $n-1$ matrices has 0 in the 2×2 position. Now multiply by the first matrix to see that the product is 0 .

