
Eigenvalues and Eigenvectors Lecture

Let dimV = n. Since dimL(V ) = n2, every T ∈ L(V ) satisfies a polynomial
equation p(T ) = 0 of degree ≤ n2. (Later: we will improve this to degree
≤ n). The minimal polynomial is defined to be the unique monic polynomial
p(x) of least degree such that p(T ) = 0.

Eigenvalue and eigenvector of T : Tv = λv where v 6= 0. v and λ exist if and
only if T − λI is not invertible.

Theorem: Let p(x) be the minimal polynomial of T . Then λ is an eigenvalue
if and only if it belongs to the base field and p(λ) = 0.

Proof: Let λ be an eigenvalue with eigenvector v. Then 0 = p(T )v = p(λ)v,
therefore p(λ) = 0. Conversely, if p(λ) = 0 then p(x) = (x−λ)q(x), therefore
p(T ) = (T − λI)q(T ). By minimality, q(T ) 6= 0, so there is a vector v such
that q(T )v 6= 0. This is an eigenvector of T corresponding to eigenvalue λ.

Corollary: Every complex operator on a finite-dimensional space has an
eigenvalue.

Example: Let T : R2 → R2 be defined by T (x, y) = (x + y, x + y). Matrix

representation with respect to standard basis:

[
1 1
1 1

]
. Minimal polynomial:

x2−2x. Eigenvalues: λ = 0, 2. To find eigenvectors, consider T (T −2)e1 = 0
and (T − 2)Te2 = 0.

Example: Let T : R2 → R2 be defined by T (x, y) = (x− y, x + y). Matrix

representation with respect to standard basis:

[
1 −1
1 1

]
. Minimal polyno-

mial: x2 − 2x+ 2. No eigenvalues or eigenvectors.

Example: Let T : C2 → C2 be defined by T (x, y) = (x− y, x + y). Matrix

representation with respect to standard basis:

[
1 −1
1 1

]
. Minimal polyno-

mial: x2 − 2x+ 2. Eigenvalues are λ = 1 + 2i, 1− 2i. Eigenvectors: consider
T 2 − 2T + 2I applied to e1 and e2.

Example: Let T : P (Z5) → P (Z5) be defined by Tp(x) = xp(x). Then
T 5 = T , therefore x5 − x is a polynomial satisfied by T . Let p(x) be the
minimal polynomial. By the division algorithm, x5 − x = p(x)q(x) + r(x)
for some remainder polynomial of degree less than the degree of the minimal
polynomial. Since r(T ) = 0, minimality forces r(x) = 0. Hence p(x) is a
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divisor of x5 − x. Note that T 5 − T = T (T 4 − I) = T (T 2 − I)(T 2 + I) =
T (T 2 − I)(T 2 − 4I) = (T − I)(T + I)(T − 2I)(T + 2I). Applying this in
various permutations to x yields eigenvalues 0, 1, 2, 3, 4. Hence x5 − x is a
divisor of p(x), so p(x) = x5 − x.

Every linear operator on a finite-dimensional complex vector space has an
upper-triangular matrix representation: by induction on dimension n. True
for n = 1. More generally, let T : V → V be given. Write V = Fu1

⊕
W

where Tu1 = λu1. Let P project V onto W . Then PT maps W onto itself,
and by the induction hypothesis PT has an upper-triangular matrix repre-
sentation with respect to a basis {u2, . . . , un}. This implies that T has an
upper-triangular matrix representation with respect to the basis {u1, . . . , un}.

Note that once T has been given an upper-triangular matrix representation
U , its eigenvalues all appear along the diagonal. Reason: λ is an eigenvalue
if and only if T − λI is not invertible. Using the basis which gives to the
upper-triangular representation, T−λ has matrix representation U−λI, and
this represents an invertible linear transformation if and only if one of the
diagonal entries is zero.

Now consider real vector spaces. The same argument above implies that
either T has a real eigenvalue or there exists a quadratic polynomial a(T ) such
that a(T )u = 0 for some non-zero u (method: factor the minimal polynomial
into linear and quadratic factors). If there are no eigenvalues then U =
spanR{u, Tu} has dimension 2 and T maps U into U . Summarizing, T has
an invariant subspace of dimension ≤ 2.

Operators on real vector spaces have a block-upper-triangular matrix rep-
resentation with blocks of size ≤ 2: by induction on dimension. True in
dimension 1. More generally, find an invariant space U of dimension ≤ 2.
Expand to V = U

⊕
W . Let P be projection onto W and use the induction

hypothesis to find a block-upper-triangular matrix representation of PT on
W . This can be expanded to block-upper-triangular matrix representation
of T . Note that this implies that operators on real vector spaces always have
a real eigenvector, because at least one block has size 1.

Theorem: Let dimV = n. For T ∈ L(V ), the minimal polynomial of T has
degree ≤ n.

Proof: We will first do this under the assumption that V is a complex vector
space. Let A be an upper-triangular matrix representation with respect to
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an appropriate basis. Let λ1, . . . , λn be the entries on the diagonal. Then for
each i, T − λiI has matrix representation A− λiI, which is upper-triangular
with a 0 in row i, column i. This implies that (A − λ1I) · · · (A − λnI) = 0,
which implies that the matrix representation of (T − λ1I) · · · (T − λnI) is 0,
which implies (T − λ1I) · · · (T − λnI) = 0. Hence the minimal polynomial of
T is a divisor of (x− λ1) · · · (x− λn).

Now assume that V is a real vector space. Let A be the matrix representation
of T . The entries of A are all real and p(A) = 0 for some complex polynomial
p(x) of degree ≤ n. If r(x) and c(x) are the real polynomials derived from
p(x) by just using the real or the imaginary coefficients, we obtain r(A) = 0
and c(A) = 0. Hence A satisfies a non-zero real polynomial of degree ≤ n,
which implies that T does also.

Proving that the product of n n× n upper-triangular matrices, each with a
diagonal zero entry in a different location, is zero: Introduce 2× 2 block ma-
trix multiplication. Product of upper triangular-matrices is upper-triangular.
Using an induction argument, the product of the last n− 1 matrices has 0 in
the 2× 2 position. Now multiply by the first matrix to see that the product
is 0.
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