Eigenvalues and Eigenvectors Lecture

Let dim V' = n. Since dim £(V') = n?, every T' € L(V) satisfies a polynomial
equation p(T) = 0 of degree < n? (Later: we will improve this to degree
< n). The minimal polynomial is defined to be the unique monic polynomial
p(z) of least degree such that p(T") = 0.

Eigenvalue and eigenvector of T: Tv = Av where v # 0. v and X exist if and
only if T'— AI is not invertible.

Theorem: Let p(z) be the minimal polynomial of 7. Then A is an eigenvalue
if and only if it belongs to the base field and p(\) = 0.

Proof: Let A be an eigenvalue with eigenvector v. Then 0 = p(T)v = p(A)v,
therefore p(A) = 0. Conversely, if p(A) = 0 then p(z) = (x—\)g(z), therefore
p(T) = (T — M )q(T). By minimality, ¢(T") # 0, so there is a vector v such
that ¢(T)v # 0. This is an eigenvector of T' corresponding to eigenvalue .

Corollary: Every complex operator on a finite-dimensional space has an
eigenvalue.

Example: Let T : R? — R? be defined by T(z,y) = (v + y,r + y). Matrix

representation with respect to standard basis: . Minimal polynomial:

1
11
z? —2x. Eigenvalues: A = 0,2. To find eigenvectors, consider T(T —2)e; = 0
and (T'—2)Tey = 0.

Example: Let T : R? — R? be defined by T'(z,y) = (v — y,z + y). Matrix

1 _1 . Minimal polyno-
mial: 22 — 22 + 2. No eigenvalues or eigenvectors.

Example: Let T : C* — C? be defined by T'(z,y) = (x — y,z + y). Matrix

representation with respect to standard basis:

representation with respect to standard basis: . Minimal polyno-

1 —
1 1
mial: 2% — 2z + 2. Eigenvalues are A = 1+ 2i,1 — 2i. Eigenvectors: consider
T? — 2T + 21 applied to e; and e,.

Example: Let T : P(Zs) — P(Zs) be defined by Tp(x) = xp(x). Then
T° = T, therefore 2° — x is a polynomial satisfied by T. Let p(z) be the
minimal polynomial. By the division algorithm, z° — x = p(z)q(x) + r(z)
for some remainder polynomial of degree less than the degree of the minimal
polynomial. Since r(7') = 0, minimality forces r(z) = 0. Hence p(z) is a



divisor of 2% — z. Note that T° — T = T(T* - I) = T(T* - ) (T? + I) =
T(T? — I)(T?* —4I) = (T — I)(T + I)(T — 2I)(T + 2I). Applying this in
various permutations to x yields eigenvalues 0,1,2,3,4. Hence 2° — x is a

divisor of p(z), so p(r) = 2° — .

Every linear operator on a finite-dimensional complex vector space has an
upper-triangular matrix representation: by induction on dimension n. True
for n = 1. More generally, let T': V' — V be given. Write V = Fu; @W
where Tu; = Auy. Let P project V onto W. Then PT maps W onto itself,
and by the induction hypothesis PT' has an upper-triangular matrix repre-
sentation with respect to a basis {us,...,u,}. This implies that 7" has an
upper-triangular matrix representation with respect to the basis {uy, ..., u,}.

Note that once T has been given an upper-triangular matrix representation
U, its eigenvalues all appear along the diagonal. Reason: A is an eigenvalue
if and only if 7" — Al is not invertible. Using the basis which gives to the
upper-triangular representation, 7'— A\ has matrix representation U — A/, and
this represents an invertible linear transformation if and only if one of the
diagonal entries is zero.

Now consider real vector spaces. The same argument above implies that
either 7" has a real eigenvalue or there exists a quadratic polynomial a(7") such
that a(T")u = 0 for some non-zero u (method: factor the minimal polynomial
into linear and quadratic factors). If there are no eigenvalues then U =
spang{u, Tu} has dimension 2 and 7' maps U into U. Summarizing, T' has
an invariant subspace of dimension < 2.

Operators on real vector spaces have a block-upper-triangular matrix rep-
resentation with blocks of size < 2: by induction on dimension. True in
dimension 1. More generally, find an invariant space U of dimension < 2.
Expand to V. =U @ W. Let P be projection onto W and use the induction
hypothesis to find a block-upper-triangular matrix representation of P71 on
W. This can be expanded to block-upper-triangular matrix representation
of T'. Note that this implies that operators on real vector spaces always have
a real eigenvector, because at least one block has size 1.

Theorem: Let dimV =n. For T € £(V'), the minimal polynomial of 7" has
degree < n.

Proof: We will first do this under the assumption that V' is a complex vector
space. Let A be an upper-triangular matrix representation with respect to



an appropriate basis. Let Ai, ..., \, be the entries on the diagonal. Then for
each i, T'— \;I has matrix representation A — \;I, which is upper-triangular
with a 0 in row ¢, column 4. This implies that (A — X\ I)--- (A — A\, 1) =0,
which implies that the matrix representation of (T" — A1) --- (T — A\,1) is 0,
which implies (T"— A\ I) -+ (T'— A\, I) = 0. Hence the minimal polynomial of
T is a divisor of (x — A1) - -+ (x — \,).

Now assume that V' is a real vector space. Let A be the matrix representation
of T'. The entries of A are all real and p(A) = 0 for some complex polynomial
p(z) of degree < n. If r(z) and ¢(x) are the real polynomials derived from
p(z) by just using the real or the imaginary coefficients, we obtain r(A4) =0
and c¢(A) = 0. Hence A satisfies a non-zero real polynomial of degree < n,
which implies that T" does also.

Proving that the product of n n x n upper-triangular matrices, each with a
diagonal zero entry in a different location, is zero: Introduce 2 x 2 block ma-
trix multiplication. Product of upper triangular-matrices is upper-triangular.
Using an induction argument, the product of the last n — 1 matrices has 0 in
the 2 x 2 position. Now multiply by the first matrix to see that the product
is 0.



