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Chapter 1: Divisibility

Prime number: a positive integer that cannot be factored into strictly smaller
factors. For example, 2, 3, 5, 7.

Every positive integer n ≥ 2 can be factored into prime numbers: use strong
induction on n.

Greatest common divisor of two numbers: maximum common divisor.

Division algorithm: For each pair of integers a and b 6= 0 there exists a unique
pair of integers q and r so that a = qb + r, 0 ≤ r < |b|. Proof: The real
number line is partitioned into intervals of the form [Q|b|, (Q + 1)|b|) where
Q is an integer. Find the one containing a. Then find q so that qb = Q|b|
and set r = a− qb. A formula for q is q =

[
a
|b|

]
|b|
b

.

Euclid’s algorithm for constructing greatest common divisor of a and b 6= 0:
Form the sequence a0, a1, a2, . . . with a1 > a2 > · · · ≥ 0 via a0 = a, a1 = b,
and for k ≥ 2, ak−2 = qk−2ak−1 + ak where 0 ≤ ak < ak−1. The sequence
has to terminate with some an = 0 for some n ≥ 2, and an−1 is the greatest
common divisor. Reason: The recurrence relation can be expressed in the
form [

ak−2

ak−1

]
=

[
qk−2 1

1 0

] [
ak−1

ak

]
.

This can be used to obtain[
q0 1
1 0

] [
q1 1
1 0

]
· · ·
[
qn−2 1

1 0

] [
an−1

0

]
=

[
a0

a1

]
.

Simplifying, [
x y
z w

] [
an−1

0

]
=

[
p
q

]
.

Hence [
xan−1

zan−1

]
=

[
p
q

]
.

So we can see that an−1 is a common divisor of p and q. Moreover if d is a
divisor of both p and q then the recurrence relation can be used to show that
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d divides each ak, including an−1. Hence d ≤ an−1 and an−1 is the greatest
common divisor.

Note that the inverse of

[
qk 1
1 0

]
is

[
0 1
1 −qk

]
. This implies that

[
an−1

0

]
=

[
0 1
1 −qn−2

] [
0 1
1 −qn−3

]
· · ·
[
0 1
1 −q0

] [
a0

a1

]
.

Simplifying, [
an−1

0

]
=

[
x′ y′

z′ w′

] [
a1

a0

]
,

x′p+ y′q = an−1.

In other words, given integers p and q with greatest common divisor d there
is always a pair of integers j and k such that jp+kq = d. Whenever we have
jp+ kq = r we must have d|r. In particular, when jp+ kq = 1 we must have
d = 1.

Example: Let a = 108 and b = 93. We have

108 = 1 · 93 + 15

93 = 6 · 15 + 3

15 = 5 · 3 + 0

hence a0 = 108, a1 = 93, a2 = 15, a3 = 3, a4 = 0, q0 = 1, q1 = 6, q2 = 5.
Therefore gcd(108, 93) = 3. Substituting these values into[

an−1

0

]
=

[
0 1
1 −qn−2

] [
0 1
1 −qn−3

]
· · ·
[
0 1
1 −q0

] [
a0

a1

]
yields [

3
0

]
=

[
0 1
1 −5

] [
0 1
1 −6

] [
0 1
1 −1

] [
108
93

]
.

Simplifying, [
3
0

]
=

[
−6 7
31 −36

] [
108
93

]
.

This yields
3 = (−6)(108) + 7(93).
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A useful lemma is that when (a, b) = 1 and a|bc then a|c. Reason: bc = ak
and xa+ by = 1 implies c = cxa+ cby = cxa+ aky = a(cx+ ky).

We now prove unique factorization for all integers n ≥ 2. There is only one
factorization of 2 into a weakly descending list of primes. Now assume that
every integer ≥ 2 up to n has a unique factorization into a weakly descending
list of primes. Suppose n+ 1 = p1p2 · · · pj = q1q2 . . . qk with p1 ≥ p2 · · · ≥ pj
and q1 ≥ q2 ≥ · · · ≥ qk. We will assume wlog that n + 1 is not prime and
that p1 ≥ q1If p1 > q1 then (p1, q1) = 1, therefore by the lemma p1|q2 · · · qk.
If p1 6= q2 then (p1, q2) = 1 and p1|q3 · · · qk. After a finite number of steps we
arrive at p1 = qi for some i, which implies p1 ≤ q1. Contradiction. Therefore
p1 = q1. Dividing both sides by p1 we have two factorizations of (n+1)/p1 ≥ 2
into descending lists of primes, so the factorizations must be the same, so
the two factorizations of n+ 1 must be the same.

Note that whenever p1, p2, . . . , pn are the first n primes then p1p2 · · · pn + 1
is not divisible by any of these. So it is either prime or has a prime factor
not equal to any of these. Hence there are infinitely many primes.

Greatest common divisor and least common multiple construction via prime
factorization.

1.8 Exercises, p. 7

(i) Using Euclid’s method and matrix calculations, (x, y) = (191,−42).

(ii) Since (35, 55) = 5 there is a solution to 35x+ 55y = 5. Since (5, 77) = 1
there is a solution to 5p+ 77q = 1. This yields 35xp+ 55yp+ 77q = 1. Given
(x, y) = (−3, 2) and (p, q) = (31,−2), we obtain (xp, yp, q) = (−93, 62,−2).

(iii) Let the primes ≤ n be labeled p1, p2, . . . , pj where p1 = 2. Let d be
the least common multiple of 1, 2, . . . , n and set m = 1 + 1

2
+ · · · + 1

n
. We

will show that dm is an odd integer. This implies that m is not an integer,
because if it were then dm would be even since d is even. To construct d
we inspect the prime factorization of each of the numbers 1, 2, ..., n, then
multiply the highest power of p1 in these factorizations times the highest
power of p2 in these factorizations times etc. Let 2a be the largest power
of 2 in {1, 2, . . . , n}. We claim that this is the uniquely highest power of
2 in the prime factorization of these numbers. To see this, let k 6= 2a be
given in this range. Write k = pf11 p

f2
2 · · · p

fj
j . Then 2f1+f2+···+fj ≤ pf11 · · · p

fj
k =

k ≤ n, therefore f1 + · · · + fj ≤ a, therefore f1 < a. So know we know
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d = pa1p
e2
2 · · · p

ek
k . This implies that d

k
is even when k 6= 2a and that d

2a
is odd,

hence dm is odd.

(iv) I assume (x, y, . . . ) stands for greatest common divisor and {x, y, . . . }
stands for least common multiple. To compute these we inspect prime fac-
torizations and pick out lowest or highest powers of primes. The identity
boils down to showing

min(max(a, b),max(b, c),max(c, a)) = max(min(a, b),min(b, c),min(c, a)).

This true: both sides are equal to b.

(v) Let the integers in question be g1, g2, . . . , gk. n0 = a0 + n1g1 determines
a0 and n1 uniquely by the division algorithm. n1 = a1 + n2g2 determines a1

and n2 uniquely by the division algorithm. Keep on going. Now make all the
substitutions and solve for n0.

(vi) Let p1, . . . , pk be the complete list of primes of the form 4n+3. Consider
the number x = 2 + p2

1 · · · p2
k. It is congruent to 3 mod 4, so its prime

factorization cannot include 2 and cannot be comprised exclusively of primes
of the form 4n + 1. Hence it must be divisible by some pi: contradiction.
Hence there are infinitely many primes of the form 4n+ 3.

(vii) Fermat primes are primes of the form 22n + 1. Now suppose 2n + 1 is
a prime number. Then the polynomial xn + 1 does not factor. This implies
that n does not have any odd divisors, because if n = pq where q is odd then
yq + 1 factors (has root −1) hence (xp)q + 1 factors hence xn + 1 factors.
Since n has no odd divisors we must have n = 2m for some m, which makes
2n + 1 a Fermat prime.

(viii) Let d be even. Then x + 1 divides xd − 1 since the latter has root
x = −1. So xm + 1 divides xmd − 1. Now let m and d be powers of 2 to
conclude 22n + 1 divides 22m − 1 when n < m. Write 22m − 1 = k(22n + 1).
Then 1 · (22m + 1) − k · (22n + 1) = 2. Any common divisor of 22m + 1 and
22n + 1 is a divisor of 2 and so must be 1 since 2 is ruled out.

(xi) Let p1 < p2 < p3 < · · · be the prime numbers. Given that 1 +
∏n

i=1 pi
is not divisible by pi for any i ≤ n, it must be divisible by some pj for some
j > n. This implies pn+1 ≤ pj ≤ 1 +

∏n
i=1 pi. So we have established that

pn+1 ≤ 1 +
∏n

i=1 pi. We have p1 ≤ 220 . Assume pk ≤ 22k−1
for 1 ≤ k ≤ n.

Then we know that we can find pm for some m ≥ n+ 1 dividing p1 · · · pn + 1,
therefore pn+1 ≤ pm ≤ p1 · · · pn+1 ≤ 220+···+2n−1

+1 = 22n−1+1 ≤ 22n . Hence
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we have proved pn ≤ 22n−1
for all n. Now let x be an integer in the range

22k−1
+ 1, 22k + 2, . . . , 22k . Given at pk ≤ 22k−1

, we have π(x) ≥ k. On the
other hand, we have log2 log2(x) ≤ k, therefore we have π(x) ≥ log2 log2(x)
for x ≥ 3.

Exercise: Show that 1
3

+ 1
5

+ · · ·+ 1
2n+1

is not an integer.

Exercise: Find an upper bound for qn = nth largest prime of the form 4n+3.

Exercise: Find a lower bound for π′(x) = number of primes of the form
4n+ 3 that are ≤ x.

Chapter 2: Arithmetical Functions

2.1 The function [x]:

If n ≤ x < n + 1 then [x] = n. Now write n = qd + r, 0 ≤ r < d. Then
qd + r ≤ x < (q + 1)d, therefore q + r

d
≤ x

d
< q + 1, therefore

[
x
d

]
= q =[

n
d

]
=
[

[x]
d

]
.

Write n = qd+ r, 0 ≤ r < d. Then

[n/d] = q = |{d, 2d, . . . , qd}| =
n∑
k=1

χ(d|k).

Write m ≤ x < m + 1 and n ≤ y < m + 1. Then m + n ≤ x + y, therefore
[x] + [y] = m+ n ≤ [x+ y].

Let p be a prime and lp(n) the largest power of p in n. Then

lp(n!) =
n∑
k=1

lp(k) =
n∑
k=1

∑
j≥1

χ(pj|k) =
∑
j≥1

n∑
k=1

χ(pj|k) =

∑
j≥1

[
n

pj

]
≤
∑
j≥1

n

pj
=
n

p

1

1− 1
p

=
n

p− 1
.

For n = a+ b,

lp(a!b!) = lp(a!) + lp(b!) =
∑
j≥1

[
a

pj

]
+
∑
j≥1

[
b

pj

]
≤
∑
j≥1

[
n

pj

]
= lp(n!).
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This implies a!b!|n!. Of course we already knew this because n!
a!b!

=
(
n
a

)
=

number of a-subsets of {1, 2, . . . , n}.

2.2 Multiplicative functions and generating functions: A multiplica-
tive arithmetical function is a function f : Z+ → R that satisfies f(ab) =
f(a)f(b) when (a, b) = 1, and more generally

f(pe11 p
e2
2 · · · ) = f(pe11 )f(pe22 ) · · · .

When f is not nontrivial (not identically 0) then f(1) = 1.

Generating function of a non-trivial multiplicative function: Let f be a non-
trivial multiplicative function and set

Fk(tk) =
∞∑
e=0

f(pek)t
e
k.

Then

f(pe11 p
e2
2 · · · ) = f(pe11 )f(pe22 ) · · · = [te11 t

e2
2 · · · ]F1(t1)F2(t2) · · · .

Therefore a generating function for f is Ff (t) = Ff (t1, t2, . . . ) = F1(t1)F2(t2) · · · .
Any such product with constant term 1 is the generating function of a mul-
tiplicative arithmetic function.

Products of generating functions:

If
F (t) = F (t1, t2, . . . ) =

∑
f(pe11 p

e2
2 · · · )te11 t

e2
2 · · · =

∑
n≥1

f(n)tn

and

G(t) = G(t1, t2, . . . ) =
∑

g(pe11 p
e2
2 · · · )te11 t

e2

2 · · · =
∑
n≥1

g(n)tn

then
F (t)G(t) =

∑
f(pa11 p

a2
2 · · · )g(pb11 p

b2
2 · · · )ta1+b1

1 ta2+b2
2 · · · =∑

n≥1

∑
d|n

f(d)g(n/d)tn.
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This implies that if a and b are multiplicative functions with generating
functions Fa(t) and Fb(t) then the multiplicative function c with generating
function Fa(t)Fb(t) is defined by

c(n) =
∑
d|n

a(d)b(n/d) =
∑
d|n

b(d)a(n/d).

Examples:

1. The unit function u(n) = 1 has generating function Fu(t) = 1
(1−t1)(1−t2)··· .

If f(n) is multiplicative then so is

g(n) =
∑
d|n

f(n/d) =
∑
d|n

f(d)

and

Fg(t) = Fu(t)Ff (t) =
Ff (t)

(1− t1)(1− t2) · · ·
.

2. The identity function i(n) = n has generating function 1
(1−p1t1)(1−p2t2)··· . If

f(n) is multiplicative then so is

h(n) =
∑
d|n

df(n/d) =
∑
d|n

f(d)
n

d

and

Fh(t) =
Ff (t)

(1− p1t1)(1− p2t2) · · ·
.

3. The Möbius function µ(n) defined by

µ(pe11 · · · p
ek
k ) = (−1)kχ(e1 = · · · = ek = 1)

has generating function

Fµ(t) = (1− t1)(1− t2) · · · ,

hence is multiplicative. If f is a multiplicative function and g is defined by

g(n) =
∑
d|n

f(d)
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then we have seen by Example 1 above that

Fg(t) =
Ff (t)

(1− t1)(1− t2) · · ·
= Fu(t)Ff (t) =

Ff (t)

Fµ(t)
.

This implies
Ff (t) = Fµ(t)Fg(t),

hence
f(n) =

∑
d|n

µ(d)g(n/d) =
∑
d|n

g(d)µ(n/d).

In particular,
f(pe) = g(pe)− g(pe−1)

when p is prime and e ≥ 1.

4. The unit characteristic function ν(n) = χ(n = 1) has generating function
Fν(t) = 1. Given that Fν(t) = Fu(t)Fµ(t), we have

ν(n) =
∑
d|n

µ(d) =
∑
d|n

µ(n/d).

5. Euler’s (totient) function φ(n): This is defined as the number of natural
numbers ≤ n that are relatively prime to n. Using the inclusion-exclusion
sum formula (see below), we have

φ(n) =
∑
d|P

µ(d)
∑
a∈Ad

1 =
∑
d|P

µ(d)
n

d
= n

∑
d|P

µd
1

d
= n(1− 1

p1

)(1− 1

p2

) · · · (1− 1

pr
).

One can check that φ is multiplicative given this formula. Now define

g(n) =
∑
d|n

φ(d).

This is multiplicative. It satisfies

g(pk) =
k∑
i=0

φ(pi) = 1 + (p− 1) + (p2 − p) + · · ·+ (pk − pk−1) = pk,
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hence g(n) = n for all n. Therefore∑
d|n

φ(d) = n.

To obtain a generating function for φ(n), note that

Fi(t) = Fg(t) = Fu(t)Fφ,

hence

Fφ(t) = Fµ(t)Fi(t) =
(1− t1)(1− t2) · · ·

(1− p1t1)(1− p2t2) · · ·
.

6. Möbius Inversion: Let f : R→ R be given and define

g(x) =
∑
n≤x

f(x/n),

summing over positive integers. Then∑
n≤x

µ(n)g(x/n) =
∑
n≤x

µ(n)
∑
m≤x/n

f(x/mn) =
∑
n≤x

µ(n)
∑
mn≤x

f(x/mn) =

∑
l≤x

f(x/l)
∑
m|l

µ(l/m) =
∑
l≤x

f(x/l)ν(l) = f(x).

Conversely, if we define

f(x) =
∑
n≤x

µ(n)g(x/n)

then∑
n≤x

f(x/n) =
∑
n≤x

∑
k≤x/n

µ(n)g(x/kn) =
∑
n≤x

∑
kn≤x

µ(n)g(x/kn) =
∑
l≤x

g(x/l)
∑
m|l

µ(l/m) =

∑
l≤x

g(x/l)ν(l) = g(x).

When a multiplicative function is used to define the other this way then the
second function is also multiplicative, and we obtain

g(n) =
∑
d|n

f(d)
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if and only if

f(n) =
∑
d|n

µ(d)g(n/d).

We already derived this by the method of generating functions above.

7. Applying Möbius inversion to the functions

τ(n) =
∑
d|n

1,

σ(n) =
∑
d|n

d,

n =
∑
d|n

φ(d),

we obtain
1 =

∑
d|n

µ(d)τ(
n

d
),

n =
∑
d|n

µ(d)σ(
n

d
),

φ(n) =
∑
d|n

µ(d)
n

d
.

The identities above also follow from Fu = FτFµ, Fi = FσFµ, Fφ = FiFµ.

8. Summary of generating functions:

µ(n): Fµ = (1− t1)(1− t2) · · ·

ν(n) = χ(n = 1) =
∑

d|n µ(n): Fν = 1

u(n) = 1: Fu = 1
(1−t1)(1−t2)···

i(n) = n: Fi = 1
(1−p1t1)(1−p2t2)···

τ(n) =
∑

d|n 1 =
∑

d|n u(d): Fτ = F 2
u = 1

(1−t1)2(1−t2)2···

σ(n) =
∑

d|n d =
∑

d|n i(d): Fσ = FuFi = 1
(1−t1)(1−t2)···(1−p1t1)(1−p2t2)···

φ(n): Fφ = (1−t1)(1−t2)···
(1−p1t1)(1−p2t2)··· = FµFi.
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9. The Riemann zeta-function. Take any generating function F (t) = F (t1, t2, . . . ) =
F1(t1)F2(t2) · · · for a multiplicative function f . Making the substitution
ti 7→ 1

psi
where s is a complex number yields an infinite product. For exam-

ple, recall that we have

Fu(t) =
1

(1− t1)(1− t2) · · ·
=

∑
e1,e2,e3,···≥0

te11 t
e2
2 t

e3
3 · · ·.

Hence

Fu(s) = Fi(1/p
s
1, 1/p

s
2, . . . ) =

∑
e1,e2,e3,···≥0

1

pe11 p
e2
2 p

e3
3 · · ·

=
∞∑
n=1

1

ns
.

This is called the Riemann zeta-function ζ(s). In particular,

ζ(2) =
∏
p

1

1− (1/p2)
=
∞∑
n=1

1

n2
=
π2

6
.

We will derive this evaluation this shortly.

More generally, if Ff (t) =
∑∞

n=1 f(n)tn then

Ff (s) = Ff (1/p
s
1, 1/p

s
2, . . . ) =

∞∑
n=1

f(n)

ns
.

Examples:

1. Fµ(s) = 1
Fu(s)

. This implies

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
.

In particular,
∞∑
n=1

µ(n)

n2
=

6

π2
.

2. Fτ (s) = Fu(s)
2. This implies

∞∑
n=1

µ(n)

ns
= ζ(s)2.
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In particular,
∞∑
n=1

µ(n)

n2
=
π4

36
.

3. Fi(s) =
∑∞

n=1
n
ns

= ζ(s− 1).

4. Fσ(s) = Fi(s)Fu(s). This implies

∞∑
n=1

σ(n)

ns
= ζ(s− 1)ζ(s).

5. Fφ(s) = Fµ(s)Fi(s). This implies

∞∑
n=1

φ(n)

ns
=
ζ(s− 1)

ζ(s)
.

6. For arbitrary functions f : Z+ → R and g : Z+ → R we have

∞∑
n=1

f(n)

ns

∞∑
n=1

g(n)

ns
=
∑
a,b≥1

f(a)g(b)

(ab)s
=
∞∑
n=1

1

ns

∑
d|n

f(d)g(n/d)

assuming the expressions converge.

Derivation of
∑∞

n=1
1
n2 = π2

6
:

sin−1 x =
∞∑
n=0

1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)

x2n+1

2n+ 1
,

x =
∞∑
n=0

1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)

sin2n+1 x

2n+ 1
,

∫ π
2

0

sin2n+1 x

2n+ 1
dx =

2 · 4 · · · (2n)

1 · 3 · · · (2n+ 1)
,

π2

8
=

∫ π
2

0

x dx =
∞∑
n=0

1

(2n+ 1)2
=
∞∑
n=1

1

n2
−
∞∑
n=1

1

4n2
=

3

4

∞∑
n=1

1

n2
,

π2

6
=
∞∑
n=1

1

n2
.
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2.5 The functions τ(n) and σ(n): These are the multiplicative functions
defined by

τ(n) =
∑
d|n

1

and
σ(n) =

∑
d|n

d.

We have
τ(pe11 p

e2
2 · · · ) = (e1 + 1)(e2 + 1) · · ·

and
σ(pe11 p

e2
2 · · · ) = [e1 + 1]p1 [e2 + 1]p2 · · · .

Given

log(τ(pk)
1
δ ) =

1

δ
log(k + 1) ≤ k log p

for all but a finite number of values of k and p,

τ(pk) ≤ pkδ

and
τ(n) ≤ cnδ

where c is large enough to compensate for the exceptions. Also,

σ(n) =
∑
d|n

n

d
≤ n

∑
d≤n

1

d
< n(1 + log n) < 2n log n,

the estimate coming from an integral comparison.

A lower bound for φ(n): set f(n) = σ(n)φ(n)/n2. This is a multiplicative
function, so to evaluate it it suffices to evaluate f(pk) for a prime p and k ≥ 1.
We have

σ(pk) = 1 + p+ · · ·+ pk =
pk+1 − 1

p− 1
,

φ(pk) = pk − pk−1 = pk−1(p− 1),

f(pk) =
p2k − pk−1

p2k
= 1− 1

pk+1
≥ 1− 1

p2
,
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f(n) ≥
∏
m≥2

(
1− 1

m2

)
=

1

2
,

the latter a limit of finite products, hence

σ(n)φ(n)/n2 ≥ 1

2
,

φ(n) ≥ n2

2σ(n)
>

n2

4n log n
=

n

4 log n
.

The ideas in this proof: (1) To calculate or estimate a multiplicative function,
combine them in such a way that things cancel; (2) use properties of inequal-
ities; (3) exploit known formulas such as infinite sums, infinite products, and
integrals.

2.6 Average orders: It’s time to start using big-O notation. When we say
f(x) = g(x) +O(h(x)) we mean that

g(x)− Ch(x) ≤ f(x) ≤ g(x) + Ch(x)

for some constant C > 0 independent of x.

Let x be an integer.∑
n≤x

τ(n) =
∑
n≤x

∑
d|n

1 =
∑
d≤x

∑
n≤x
d|n

1 =
∑
d≤x

|{d, 2d, 3d, . . . } ∩ [0, x]| =

∑
d≤x

|{1, 2, 3, . . . } ∩ [0,
x

d
]| =

x∑
d=1

[x
d

]
=

x∑
d=1

(x
d

+O(1)
)

= x
x∑
d=1

1

d
+O(x) =

x(log x+O(1)) +O(x) = x log x+O(x),

hence
1

x

∑
n≤x

τ(n) = log x+O(1).

Let x be a positive integer.∑
n≤x

σ(n) =
∑
n≤x

∑
d|n

n

d
=
∑
d≤x

∑
n≤x
d|n

n

d
=

14



∑
d≤x

∑
n∈{d,2d,... }∩[0,x]

n

d
=
∑
d≤x

∑
n
d
∈{1,2,... }∩[0,[xd ]]

n

d
=
∑
d≤x

[
x
d

]
(
[
x
d

]
+ 1)

2
=

∑
d≤x

1

2

((x
d

)2

+O(
x

d
)

)
=

=
x2

2
(
∞∑
d=1

1

d2
+O(1/x)) +O(x log x) =

π2x2

12
+O(x log x).

We have used
∑∞

d=1
1
d2

= π2

6
.

Let x be a positive integer.∑
n≤x

φ(n) =
∑
n≤x

∑
d|n

µ(d)
n

d
=
∑
d≤x

µ(d)
∑
d|n
n≤x

n

d
=

∑
d≤x

µ(d)

(
1

2

(x
d

)2

+O(
x

d
)

)
=
x2

2

(
∞∑
d=1

µ(d)

d2
+O(1/x)

)
+O(x log x)

=
3x2

π2
+O(x log x).

We have used
∞∑
d=1

µ(d)

d2
=

6

π2
.

We obtain ∑
n≤x

φ(n) =
3x2

π2
+O(x log x).

Note that the number of integer pairs (p, q) such that 1 ≤ p < q ≤ x and
gcd(p, q) = 1 is

∑
q≤x φ(q). Given there are x2−x

2
such pairs, the probability

that p < q are relatively prime in {1, 2, . . . , x} is ∼ 6
π2 .

2.7: Perfect numbers: Perfect number is a positive integer which is the
sum of its proper divisors: σ(n) = 2n. Examples include 6 and 28. More
generally, if p is a prime such that 2p − 1 is prime (i.e. a Mersenne prime),
then

σ(2p−1(2p−1)) = σ(2p−1)σ(2p−1) = (1+2+· · ·+2p−1)(1+(2p−1)) = (2p−1)2p

15



hence 2p−1(2p − 1) is a perfect number. These are the only even examples:
Let n be perfect and write n = 2ab where b is odd and a ≥ 1. The divisors
of n are of the form 2id where d|b. Hence

2a+1b = 2n = σ(n) = (2a+1 − 1)σ(b).

Unique factorization yields σ(b) = 2a+1b0 hence b = (2a+1−1)b0, which yields
information about σ(b). If b0 > 1 then b and b0 contribute to σ(b), hence

2a+1b0 = σ(b) ≥ b+ b0 + 1 = (2a+1 − 1)b0 + b0 + 1 > 2a+1b0,

a contradiction. Therefore b0 = 1, b = 2a+1 − 1, n = 2a(2a+1 − 1). We now
have

2a+1(2a+1 − 1) = 2n = σ(n) = (2a+1 − 1)σ(2a+1 − 1),

2a+1 = σ(2a+1 − 1),

b+ 1 = σ(b),

which implies that b is a prime number. So 2a+1 − 1 is prime. This forces
a+ 1 prime: xhk − 1 = yk − 1 has root y = 1, hence

xhk − 1 = yk − 1 = (y − 1)g(y) = (xh − 1)g(xh).

Given n = 2a(2a+1 − 1) we have n = 2p−1(2p − 1) where p and 2p − 1 are
prime.

Remark: According to Davenport (An Introduction to Higher Arithmetic),
it is not known if there are infinitely many perfect numbers or if there are
any odd perfect numbers.

The ideas in this proof: (1) Compare numbers and use unique factoriza-
tion; (2) information about how n factors yields information about σ(n); (3)
exploit inequalities; (4) a number n is prime if σ(n) = n+ 1.

Inclusion-Exclusion Sum and Product

Let A1, . . . , An be a union of finite sets of natural numbers. Let f be an
arithmetic function. For a finite subset A of natural numbers write

||A|| =
∑
a∈A

f(a).

16



Let s(a) the number of sets that a belongs to. Then for each 1 ≤ k ≤ n,∑
I∈([n]

k )

χ(a ∈ AI)f(a) = f(a)

(
s(a)

k

)
.

Now sum over each a ∈ A1 ∪ · · ·An. We obtain∑
I∈([n]

k )

||AI || =
∑

a∈A1∪···∪An

f(a)

(
s(a)

k

)
.

Now form the alternating sum

n∑
k=1

(−1)k−1
∑
I∈([n]

k )

||AI || =
n∑
k=1

(−1)k−1
∑

a∈A1∪···∪An

f(a)

(
s(a)

k

)
.

The sum on the right-hand side can be reorganized into

∑
a∈A1∪···∪An

f(a)
n∑
k=1

(−1)k−1

(
s(a)

k

)
.

Each of the expressions
∑n

k=1 (−1)k−1
(
s(a)
k

)
is equal to 1 by the Binomial

Theorem. Hence we obtain

n∑
k=1

(−1)k−1
∑
I∈([n]

k )

||AI || =
∑

a∈A1∪···∪An

f(a) = ||A1 ∪ · · · ∪ An||.

Example: Let f be an arithmetic function. We wish to evaluate∑
1≤a≤n
(a,n)=1

f(a).

Let the prime factorization of n be n = pe11 · · · perr . For each d ≤ n let
Ad = {a ≤ n : d|a}. We have

{a : 1 ≤ a ≤ n and (a, n) > 1} = Ap1 ∪ Ap2 ∪ · · · ∪ Apr .

17



By the inclusion-exclusion formula,

∑
1≤a≤n
(a,n)>1

f(a) = −
∑
d|P

µ(d)
∑
a∈Ad

f(a) +
n∑
a=1

f(a),

hence ∑
1≤a≤n
(a,n)=1

f(a) =
∑
d|P

µ(d)
∑
a∈Ad

f(a)

where
P = p1p2 · · · pr.

Example: ∏
1≤a≤n
(a,n)=1

f(a) =
∏
d|P

(∏
a∈Ad

f(a)

)µ(d)

.

Lemma: ∑
d|P

µ(d)dk = (1− pk1)(1− pk2) · · · (1− pkr).

Examples:

1. f(a) = a. Then ∑
a∈Ad

f(a) = n2/2d+ n/2,

∑
1≤a≤n
(a,n)=1

f(a) =
n2

2
(1− 1/p1) · · · (1− 1/pr) =

nφ(n)

2
.

2. f(a) = a3. Then
∑

a∈Ad f(a) = (dn2)/4 + n3/2 + n4/(4d),

∑
1≤a≤n
(a,n)=1

f(a) =
n2

4
(1− p1) · · · (1− pr) +

n4

4
(1− 1/p1) · · · (1− 1/pr) =

φ(n)

4
((−1)rp1 · · · prn+ n3).
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3. f(a) = a. Then
∏

a∈Ad f(a) = dn/d(n/d)!, therefore∏
1≤a≤n
(a,n)=1

a =
∏
d|P

(
dn/d(n/d)!

)µ(d)
=
∏
d|P

(
(n/d)dd!

)µ(n/d)
=

n
∑
d|n dµ(n/d)

∏
d|n

(d!/dd)µ(n/d) = nφ(n)
∏
d|n

(d!/dd)µ(n/d).

2.10 Exercises:

(i) This is a multiplicative function which evaluates to −p on pk, so if n =
pe11 · · · perr then we obtain (−1)rp1 · · · pr.

(ii) Let n = pe11 · · · perr .
∑

d|n Λ(d) =
∑r

i=1

∑ei
j=1 log pi =

∑r
i=1 ei log pi =

log n. Hence
∑∞

n=1
Λ(n)
ns
ζ(s) =

∑∞
n=1

logn
ns

,

∞∑
n=1

Λ(n)

ns
= ζ(s)−1

∞∑
n=1

log n

ns
= −ζ

′(s)

ζ(s)
.

(iii) See Example 1 above. We have f = 1
2
φ + 1

2
ν. Given FφFu = Fi and

FνFu = Fu, we have
∑

d|n f(d) = 1
2
(n+ 1).

(iv) See Example 2 above.

(v) See Example 3 above.

(vi) Recall {x} = x− [x] and
[
x
d

]
=
[

[x]
d

]
. Hence

{
x
d

}
= x

n
−
[

[x]
d

]
. We have∑

n≤x

µ(n)[x/n] =
∑
n≤x

µ(n)
∑
k≤x/n

1 =
∑
n≤x

µ(n)
∑
kn≤x

1 =
∑
n≤x

µ(n)
∑
m≤x
n|m

1 =

∑
m≤x

∑
n|m

µ(n) =
∑
m≤x

ν(m) = 1.

Hence ∑
n≤x

µ(n)
x

n
−
∑
n≤x

µ(n)

{
[x]

n

}
= 1,
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∑
n≤x

µ(n)
1

n
=

1

x

(
1 +

∑
n≤x

µ(n)

{
[x]

n

})
,

∣∣∣∣∣∑
n≤x

µ(n)
1

n

∣∣∣∣∣ =
1

x

∣∣∣∣∣∣1 +
∑
n≤[x]

µ(n)

{
[x]

n

}∣∣∣∣∣∣ ≤ [x]

x
≤ 1

since all the terms in the sum have absolute value ≤ 1 and the last summand
is 0.

(vii) If µ(n/(m,n)) = 0 then every summand is zero and the identity is true.
Now consider µ(n/(m,n)) 6= 0. Let a be the product of the primes appearing
to smaller exponent in m, let b be the product ot the primes appearing to
smaller exponent in n, and let c be the product of the primes appearing
to the same exponent in m and n. Then we have (m,n) = abc, where by
convention an empty product is 1. We also have m = Abc and n = aBc
where P (A) = P (a) and P (B) = P (b), denoting by P (k) the product of the
distinct primes appearing in k. Moreover n/(m,n) = B/b = P (b) since we
are assuming n/(m,n) is square free. Any divisor of (m,n) has the form
a′b′c′ where a′|a, b′|b, and c′|c. Therefore∑

d|(m,n)

dµ(n/d) =
∑

a′|a,b′|b,c′|c

a′b′c′µ((a/a′)(B/b′)(c/c′)) =

∑
a′|a

a′µ(a/a′)

∑
b′|b

b′µ(B/b′)

∑
c′|c

c′µ(c/c′)

 =

φ(a)

∑
b′|b

b′µ(B/b′)

φ(c) =

φ(a)bµ(P (b))φ(c) = µ(n/(m,n))
φ(n)

φ(n/(m,n))

since the only nonzero contribution by µ(B/b′) is from b′ = b.

(viii)
∑∞

n=1 φ(n) xn

1−xn =
∑∞

n=1 φ(n)(xn + x2n + x3n + · · · ) =
∑∞

j=1

(
xj
∑

d|j φ(d)
)

=∑∞
j=1 jx

j = x
(1−x)2

.
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(ix) Let x be an integer.∑
n≤x

φ(n)

n
=
∑
n≤x

∑
d|n

µ(d)

d
=
∑
d≤x

µ(d)

d

∑
n≤x
d|n

1 =
∑
d≤x

µ(d)

d

[x
d

]
=

∑
d≤x

µ(d)

d

(x
d

+O(1)
)

= x
∑
d≤x

µ(d)

d2
+O(1)

∑
d≤x

µ(d)

d
=

x((6/π2) +O(1/x)) +O(log x)O(1) = (6/π2)x+O(log x).

Chapter 3: Congruences

Definition. Given a natural number n ∈ {1, 2, 3, . . . } we say that integers
a and b satisfy a ≡ b (mod n) provided n|(b − a). This is an equivalence
relation.

Properties: (1) a ≡ b and a′ ≡ b′ imply a ± a′ ≡ b ± b′ and aa′ ≡ bb′. (2)
a ≡ r where a = qn+ r and 0 ≤ r < n, which implies that there are exactly
n different congruence classes mod n. (3) When (a, n) = 1 then ab ≡ 1 mod
n has a solution: use x where xa + ny = 1. b is unique mod n: ab ≡ 1 and
ac ≡ 1 implies n|a(b − c) implies n|(b − c) implies b ≡ c mod n. We write
a−1 ≡ b. (4) (a, n) = 1 and a ≡ b mod n implies (b, n) = 1 and a−1 ≡ b−1.
(5) If (a, n) = 1 and ax ≡ y mod n then x ≡ a−1y mod n. The solution x is
unique mod n.

Linear equations: Consider the equation

ax ≡ b (mod n).

This is equivalent to n|(ax − b), and if there is a solution then (a, n)|b. So
this is a necessary condition. If this condition holds then we are attempting
to solve a0x ≡ b0 (mod n0), where we have divided through by (a, n). We
have seen above that has a solution because (a0, n0) = 1. Conclusion: ax ≡
b (mod n) has a solution iff (a, n)|b.
Note that there is a unique solution for x mod n0. So the solutions are all
of the form x0 + kn0 where x0 is a particular solution. Number of distinct
solutions mod n: x0 + kn0 ≡ x0 + jn0 (mod n) ⇐⇒ n|n0(k − j) ⇐⇒
(a, n)|(k − j) ⇐⇒ k ≡ j (mod (a, n)). So there are (a, n) distinct solutions
mod n, and it suffices to use x0 + kn0 where 0 ≤ k ≤ (a, n)− 1.
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More generally, we now have the means to solve the equation ax+ b ≡ c mod
n.

Chinese remainder theorem: Let n1, . . . , nk be natural numbers which
are coprime in pairs, meaning (ni, nj) = 1 when i 6= j. Let c1, . . . , ck be
integers. Then there is an integer x, unique mod n1n2 · · ·nk, such that

(x, x, . . . , x) ≡ (c1, c2, . . . , ck) mod (n1, n2, . . . , nk).

First proof: repeated substitution and shifting. We are seeking a
solution of the form c1+a1n1 for an appropriate a1. We require c1+a1n1 ≡ c2

mod n2, which has a solution for a1 because (n1, n2) = 1. The most general
solution is a1 + a2n2. We require c1 + (a1 + a2n2)n1 ≡ c3 mod n3, which
has a solution for a2 because (n2n1, n3) = 1. The most general solution is
a2 + a3n3. We require c1 + (a1 + (a2 + a3n3)n2)n1 ≡ c4 mod n4, which has a
solution for a3 because (n3n2n1, n4) = 1. Keep on going until we have found

x = c1 + a1n1 + a2n2n1 + · · ·+ aknknk−1 · · ·n1.

The solution is unique mod n1n2 · · ·nk because if y is another solution then
then ni|(x− y) for i = 1, . . . , k, so n1 · · ·nk|(x− y).

Example: Solve (x, x, x) ≡ (1, 2, 3) mod (6, 35, 143). Solution: 1 + 6a1 ≡ 2
mod 35, a1 = 6 + 35a2, 1 + 6(6 + 35a2) ≡ 3 mod 143, a2 = 1088 + 143a3, so
our solution is x = 1 + 6(6 + 35(1088 + 143a3)) = 228517 + 30030a3.

Second proof: decoupling. First find solutions to xi ≡ ci mod ni and
xi ≡ 0 mod nj for j 6= i, then use the solution x = x1 + x2 + · · · + xk. So
we have reduced the problem to solving the simultaneous equations xi ≡ ci
mod ni and xi ≡ 0 mod n1 · · · n̂i · · ·nk. Setting xi = n1 · · · n̂i · · ·nkyi we are
seeking a solution to

n1 · · · n̂i · · ·nkyi ≡ ci (mod ni).

There will be a solution for yi because (n1 · · · n̂i · · ·nk, ni) = 1.

With the ni coprime in pairs, we can now solve the simultaneous equations
aix = bi (mod ni): first solve each solution individually, yielding solutions
x1, . . . , xk, then find x so that x ≡ xi (mod ni) for i = 1, . . . k.

Alternative proof that φ is multiplicative: Let m ≥ 2, n ≥ 2 be given
such that (m,n) = 1. Let 1 ≤ m1 < · · · < mr < m satisfy (mi,m) = 1, let
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1 ≤ n1 < · · · < ns < n satisfy (ni, n) = 1, and let 1 ≤ x1 < · · · < xt < mn
satisfy (xi,mn) = 1. Consider the mapping (mi, nj) 7→ min + njm. If the
images are congruent to xi’s and each xi is uniquely an image modulo mn,
then we know that rs = t.

We first show (min + njm,mn) = 1. Let d be a common divisor of these
numbers. Then d|m or d|n. Without loss of generality d|m. Then (d, n) = 1
and d|min, therefore d|mi. Since (m,mi) = 1, d = 1.

The mapping is injective: man + nbm = mcn + ndm =⇒ (ma − mc)n =
(nd − nb)m =⇒ n|(nd − nb) =⇒ nd = nb and ma = mc.

The mapping is surjective: We wish to find mi and nj such that min+njm ≡
xk mod mn. We can certainly find integers p and q such that pm + qn = 1
since (m,n) = 1. This yields xkpm+xkqn = xk. The claim is that (xkp, n) =
1 and (xkq,m) = 1. It suffices to prove (p, n) = 1 and (q,m) = 1, but these
are true since pm+ qn = 1.

Lemma: Let a1, a2, . . . , aφ(n) a complete list of class representatives in the
set {a ∈ Z : (a, n) = 1}. Let (k, n) = 1. Then ka1, ka2, . . . , kaφ(n) is a
permutation of a1, a2, . . . , aφ(n) mod n.

Proof: The set {a ∈ Z : (a, n) = 1} is closed with respect to multiplication,
so all the elements in the list ka1, ka2, . . . , kaφ(n) appear in this set. We need
only show that the list consists of distinct elements modulo n. The results
from kai ≡ kaj =⇒ n|k(ai − aj) =⇒ n|(ai − aj).

Euler’s Theorem: Assume (a, n) = 1. Then aφ(n) ≡ 1 mod n.

Proof: By the previous theorem we know that aa1, . . . , aaφ(n) is a permuta-
tion of a1, . . . , aφ(n) mod n. Forming the product of the lists,

aφ(n)a1 · · · aφ(n) ≡ a1 · · · aφ(n) mod n.

This implies aφ(n) ≡ 1 mod n.

Fermat’s Theorem: Let p be prime and assume (p, n) = 1. Then ap−1 ≡ 1
mod p.

Proof: This is a corollary of Euler’s Theorem with n = p and φ(n) = p− 1.

Wilson’s Theorem: Let p > 2 be a prime. Then (p − 1)! ≡ −1 mod
p. Proof: The class representatives are 1, 2, . . . , p − 1, and for each class a
there is a unique class a′ such that aa′ ≡ 1 mod p. Classify the numbers
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1, 2, . . . , p− 1 into three types: a < a′, a = a′, a > a′. In the a = a′ category
we have a2 ≡ 1, therefore p|(a − 1)(a + 1), therefore p|(a − 1) or p|(a + 1).
The only possibilities are a = 1 and a = p− 1. The remaining numbers pair
off to form the product 2 · 3 · · · (p− 2) ≡ 1. This yields (p− 1)! ≡ −1.

A converse: let n > 1 be a natural number that satisfies (n− 1)! ≡ −1 mod
n. Then n|((n − 1)! + 1). So any d < n dividing n divides 1, forcing d = 1.
Hence n must be prime.

The field Zp: Define addition and multiplication in {0, 1, . . . , p − 1} using
modulus class representatives. The set of non-zero elements is closed with re-
spect to multiplication and each element has a unique multiplicative inverse,
hence forms a group. We call such a set a field.

Finding
√
−1 in Zp: Trivial when p = 2. For odd p, consider solving the

equation x2 ≡ −1 mod p. If we can realize x2 as (p − 1)! then we have a
solution. Write p = 2r+1. We have −1 ≡ (p−1)! = r!(r+1)(r+2) · · · (2r) ≡
r!(−r)(−r + 1) · · · (−1) = (−1)r(r!)2. If r is even we get −1 ≡ x2 where
x = r!. This requires p ≡ 1 mod 4. Now if p ≡ 3 mod 4 the equation
x2 ≡ −1 mod p implies xp−1 = x4n+2 ≡ (−1)2n+1 = −1, which contradicts
Fermat’s theorem. So there is no

√
−1 in Zp when p ≡ 3 mod 4, but there is

when p ≡ 1 mod 4.

Lagrange’s Theorem: Given a polynomial f(x) of degree n and integer
coefficients, where p does not divide the leading term, there are at most n so-
lutions to f(x) ≡ 0 mod p. Proof: Induction argument regarding polynomials
in Zp[x].

In Zp[x] Fermat’s theorem implies

xp−1 − 1 = (x− 1)(x− 2) · · · (x− p+ 1).

Therefore xp−1 − 1 has exactly p− 1 roots in Zp.
Now suppose d|(p − 1). Write p − 1 = qd. (Y − 1)|(Y q − 1), therefore
(xd − 1)|(xp−1 − 1), so we can write xp−1 − 1 = (xd − 1)g(x). Since xp−1 − 1
has p − 1 roots, and g(x) provides at most p − 1 − d of them by a degree
argument, xd − 1 has to provide at least d of them. So xd − 1 has exactly d
roots in Zp.
Second proof of Wilson’s theorem: Evaluating at x = 0 in the identity above
yields

−1 ≡ (−1)p−1(p− 1)! = (p− 1)! mod p
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for an odd prime.

When n is not prime, it is possible for there to be more than deg(f) distinct
roots mod n of a monic polynomial f(x). Construction: Let p1, ..., pk be
distinct primes. Set fi(x) = xpi −x for each i ≤ k. Then fi(x) has exactly pi
roots mod pi. Now set f(x) = f1(x) · · · fk(x). Choose any vector (q1, . . . , qk)
where 0 ≤ qi < pi for each i. By the Chinese remainder theorem there is
a unique integer x mod p1 · · · pn such that x ≡ qi mod pi for each i, and
f(x) ≡ 0 mod p1, mod p2, ..., mod pk, hence mod p1p2 · · · pn. So we have
constructed a polynomial of degree p1 + · · · + pk with p1 · · · pk roots. For
example, f(x) = (x3 − x)(x5 − x) has degree 8 and 15 roots mod 15.

Section 3.6: Primitive roots.

Let (a, n) = 1. We know that aφ(n) ≡ 1 mod n. The order of a mod n is
defined to be d = o(a), the smallest positive integer such that ad ≡ 1 mod
n. It is a divisor of φ(n): write φ(n) = pd + r where 0 ≤ r < d. Raising a
to the power of both sides and simplifying, ar ≡ 1. By minimality of d this
forces r = 0. A primitive root mod n is an integer a such that (a, n) = 1 and
a has order φ(n) mod n.

Terminology: when the order of a mod n is d we say that a belongs to d mod
n.

Theorem: There are φ(p− 1) primitive roots mod p for a prime p.

Proof: Let ψ(d) be the number of elements a with 1 ≤ a < p and (a, p) = 1
and having order d. We wish to prove ψ(p− 1) = φ(p− 1). We have∑

d|(p−1)

ψ(d) = p− 1.

Given that ∑
d|(p−1)

φ(d) = p− 1,

we will have ψ(d) = φ(d) for each d dividing p − 1 provided we can show
ψ(d) ≤ φ(d) for each such d. To do this, suppose that ψ(d) > 0 for a given
d. Let a have order d. Then the numbers 1, a, a2, . . . , ad−1 are distinct mod
p and constitute all the roots of xd − 1 in Zp. We now count the elements
of order d mod p − 1. Let b be an element with order d. It is a root of
xd − 1 mod p, hence it must have the form am for a unique m satisfying
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0 ≤ m ≤ d − 1. We will show (m, d) = 1. Suppose (m, d) = k and write
m = m0k and d = d0k. Then bd0 = (am)d0 = a(m0d/k) = (ad)m0 ≡ 1, forcing
d0 ≥ d. But d ≥ d0, hence d = d0 and k = 1. Hence ψ(d) ≤ φ(d), as desired.

Remark: The theorem implies that there is always at least one primitive root
mod p for every prime p. It says nothing about how to find them, but in
the problems to think about for Chapters 3 and 4 I illustrate some of the
techniques. One can always use brute force. In Problem (v) below we will
show how all the primitive roots of n are related to any particular one of
them.

Remark: Now that we know that there are φ(d) ≥ 1 primitive roots of unity
of order d mod p when d|(p−1), we can pick any of them, say a, and produce
all the roots of xd − 1 via the list 1, a, a2, . . . , ad−1. Hence

xd − 1 = (x− 1)(x− a) · · · (x− ad−1)

in Zp[x].

Constructing a primitive root mod pj when p is prime: Let a be a primitive
root of p. If the order of a mod pj is d then ad ≡ 1 mod p, so φ(p)|d,
i.e. (p− 1)|d. On the other hand, d|φ(pj), therefore d|(p− 1)pj−1, therefore
d = (p− 1)pk for some k ≤ j − 1. To find a primitive root of pj we will find
a primitive root of p satisfying k = j − 1.

Lemma: For an odd prime p and an integer z, (1 +pz)p
j

= 1 + pj+1Z where
Z ≡ z mod p. For any integer x, (1 + 2x)2j = 1 + 2j+2y for some integer y
for j ≥ 1.

Proof: We treat the odd prime case by induction on j. The base case j = 0
is true. Now assume that (1+pz)p

j
= 1+pj+1Z where Z ≡ z mod p. Raising

both sides to the power p we obtain

(1 + pz)p
j+1

= 1 + pj+2Z +

p∑
i=2

(
p

i

)
p(j+1)iZi.

One can check that pj+3 is a divisor of all the terms in the sum with a binomial
coefficient, using the fact that p|

(
p
i

)
when 0 < i < p and the fact that p ≥ 3.

Writing Z ′ = Z + p−j−2
∑p

i=2

(
p
i

)
p(j+1)iZi we have (1 + pz)p

j+1
= 1 + pj+2Z ′

and Z ′ ≡ Z mod p.
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We have (1 + 2x)2 = 1 + 8
(
x+x2

2

)
. Assuming (1 + 2x)2j = 1 + 2j+2y, we have

(1 + 2x)2j+1

= (1 + 2j+2y)2 = 1 + 2j+3(y + 2j+1y2).//

Note that the lemma implies that there are no primitive roots mod 2j for
j ≥ 2, since (1 + 2x)2j−2 ≡ 1 mod 2j.

Now let p be an odd prime and let a be an integer such that (a, p) = 1 and
a is a primitive root of p. Then ap−1 = 1 + py for some y. For any integer x,
a+ px is a primitive root of p and

(a+ px)p−1 = ap−1 + (p− 1)pxap−2 + p2Z =

1 + py + (p− 1)pxap−2 + p2Z = 1 + p(y + (p− 1)xap−2 + pZ).

Since ((p− 1)ap−2, p) = 1, we can find x so that y + (p− 1)xap−2 + pZ = Z ′

for some Z ′ with Z ′ ≡ 1 mod p. This implies that a+ px is a primitive root
mod pj: suppose that a + px has order d mod pj. Then d = (p − 1)pk for
some k ≤ j − 1. We have

(a+ px)(p−1)pk = (1 + pZ ′)p
k

= 1 + pk+1Z ′′ ≡ 1 mod pj

where Z ′′ ≡ Z ′ ≡ 1 mod p. Since p does not divide Z ′′, 1 + pj−1Z ′′ ≡ 1 mod
pj implies k+1 ≥ j, i.e. k ≥ j−1. Hence k = j−1, d = (p−1)pj−1 = φ(pj).

Moduli that permit primitive roots: Suppose n factors as n = n1n2 where
(n1, n2) = 1 and n1 > 2, n2 > 2. Then φ(n) = φ(n1)φ(n2) is even and,

for any a with (a, n) = 1, a
1
2
φ(n) = (aφ(n1))

1
2
φ(n2) ≡ 1 mod n2 and a

1
2
φ(n) =

(aφ(n2))
1
2
φ(n1) ≡ 1 mod n1, hence a

1
2
φ(n) ≡ 1 mod n. So there are no primitive

roots of n in this case. The lemma implies that there are no primitive roots
mod 2j for j ≥ 3. This leaves n = 2, 4, 2pj where p is an odd prime. There
are primitive roots in each case: 1 is primitive mod 2, 3 is primitive mod 4.
Now let a be primitive mod pj. Then so is a+pj, and the odd one of these is
coprime with 2pj. We have φ(2pj) = φ(pj), so either a or a+ pj is primitive
mod 2pj.

Section 3.7: Indices.

Let g be a primitive root of n. Then

{1 ≤ a ≤ n− 1 : (a, n) = 1} = {1, g, . . . , gφ(n) − 1} mod n.
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We write ind(a) = i when (a, n) = 1 and a ≡ gi mod n. More generally,
a ≡ gl mod n iff l ≡ ind(a) mod φ(n). Properties include ind(ab) ≡ ind(a)+
ind(b) mod φ(n) and, for n > 2, ind(−1) = 1

2
φ(n).

Example: solve x5 ≡ 2 mod 7. The number of distinct solutions to x mod
7 is equal to the number of solutions to ind(x) mod 6. We have 5ind(x) ≡
ind(2) mod 6. Since (5, 6) = 1, there is a unique solution for ind(x) mod
6, hence a unique solution for x mod 7: Using the primitive root 3 we have
ind(x) ≡ −ind(2) = −2 ≡ 4, x ≡ 34 ≡ 4.

Now consider n = 2j for j ≥ 3. We can prove by induction that

52a = 1 + 2a+2ka

where ka is odd by induction on a ≥ 0. This implies that o(5) = 2j−2 mod
2j for j ≥ 3. Moreover, 5a ≡ 1 mod 4 and (−5)a ≡ 3 mod 4, which implies
that 5a 6≡ (−5)b mod 2j when j ≥ 3. So all numbers of the form (−1)x5y,
0 ≤ x ≤ 1, 0 ≤ y ≤ 2j−2 − 1, are distinct mod 2j, and this accounts for
all odd residue classes mod 2j. Hence every odd residue class mod 2j has a
unique expression of the form (−1)x5y mod 2 in x and mod 2j−2 in y.

3.9 Exercises:

(i) This equivalent to solving (x, x, x) ≡ (2, 2, 3) mod (3, 5, 7). Solution set
using repeated substitution: x = 17 + 105k.

(ii) Write ax = qxn + rx where 0 ≤ rx < n. As x runs through a set of
reduced residues mod n, so does rx. Moreover {ax/n} = rx/n. So for n ≥ 2
we obtain

1

n

∑
1≤r≤n
(r,n)=1

r.

By Problem (iii) in Chapter 2, this sum is φ(n)
2

.

(iii) The contrapositive of this statement is that when n is not prime then
either an−1 6≡ 1 mod n or am ≡ 1 mod n for some proper divisor of n − 1.
So assume n is not prime and an−1 ≡ 1 mod n. We must show am ≡ 1
mod n. Let the order of a mod n be d. Then d|(n − 1) and d|φ(n). We
can set m = d provided we can show φ(n) < n − 1. This follows from
φ(n) = φ(n1)φ(n2) ≤ (n1 − 1)(n2 − 1) ≤ n− 3 where (n1, n2) = 1, n1n2 = n,
n1, n2 ≥ 2.
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(iv) First suppose that p > 2. Using indices,

xp−1 ≡ 1 mod pj iff (p− 1)ind(x) ≡ 0 mod φ(pj) iff ind(x) ≡ 0 mod pj−1.

There are p− 1 solutions mod pj, namely the multiples of pj−1. When p = 2
there is exactly one solution to x ≡ 1 mod 2j.

(v) Let g be a primitive root of n. Then it has order φ(n). If gk has order
d mod n then d|φ(n) and φ(n)|kd, and if (k, φ(n)) = 1 then φ(n)|d and so
d = φ(n). Hence (k, φ(n)) = 1 implies primitive. Moreover, if (k, φ(n)) =
D > 1, write k = k0D, φ(n) = φ0D. Then (gk)φ0 = (gk0)φ(n) = 1, hence gk is
not primitive. Hence gk is primitive iff (k, φ(n)) = 1. This implies φ(φ(n))
primitive roots mod n, namely

{gk : 1 ≤ k ≤ φ(n) and (k, φ(n)) = 1}.

(vi) Let g be a primitive root mod p. We have shown in problem (v) that the
primitive roots mod p are precisely gk where 1 ≤ k ≤ p−1 and (k, p−1) = 1.
So we are evaluating ∑

1≤k≤p−1
(k,p−1)=1

gk.

By our inclusion-exclusion sum formula of chapter 2 this is equal to∑
d|P

µ(d)
∑
a∈Ad

ga

where p1, . . . , pr are the primes dividing p− 1,

P = p1p2 · · · pr,

and
Ad = {a ≤ p− 1 : d|a}.

Given that
nd =

∑
a∈Ad

ga = gd + g2d + · · ·+ gp−1,

we have gdnd ≡ nd mod p, hence (gd − 1)nd ≡ 0 mod p. For d < p − 1 this
forces nd ≡ 0 mod p. This just leaves µ(p− 1)np−1 = µ(p− 1).
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(vii) Using 3 as the primitive root of 7, the equation is equivalent to 2Y ≡
5 + 3X mod 6, where X and Y are the indices of x and y. Hence X must
be an odd number. Writing X = 1 + 2X ′ and substituting, the equation is
2Y ≡ 2 mod 6. Any X ′ will do, and we must have Y ≡ 1 mod 3. Hence
y = 31+3a, x = 31+2b. In reduced form, y = 3 · (−1)a, x = 3 · 2b.
(viii) Let m = 1 + 1

2
+ · · · + 1

p−1
. Then m = n/d where n = (p − 1)!m and

d = (p−1)!. Since d is not divisible by p, it suffices to show that n is divisible
by p2, for then any fraction equivalent to m will have numerator divisible by
p2. We have

2n = (p−1)![((1/1)+(1/p−1))+((1/2)+(1/p−2))+· · ·+((1/p−1)+(1/1))]

= p(p− 1)!(1/(1(p− 1)) + 1/(2(p− 2)) + · · ·+ (1/((p− 1)1))).

Write

M = (p− 1)!(1/(1(p− 1)) + 1/(2(p− 2)) + · · ·+ (1/((p− 1)1))).

It suffices to show that M is divisible by p. We have

M ≡ (p− 1)!(1−1(p− 1)−1 + 2−1(p− 2)−1 + · · ·+ (p− 1)−11−1) ≡

1−2 + 2−2 + · · ·+ (p− 1)−2 ≡ 12 + 22 + · · ·+ (p− 1)2 =
(p− 1)p(2p− 1)

6
.

Since (p, 6) = 1 (we are given p > 3), 6|(p − 1)(2p − 1). Hence M ≡ 0 mod
p. NOTE: there is a proof in Hardy and Wright that involves this idea of
pairing things off, but this sum of squares business is my idea.

Chapter 4: Quadratic Residues

Sections 4.1 and 4.2: Legendre’s Symbol and Euler’s Criterion

Solving ax2 + bx + c ≡ 0 mod n requires solving (2ax + b)2 ≡ b2 − 4ac mod
4an. We call a a quadratic residue mod n when there is a solution to x2 ≡ a
mod n. In other words,

√
a ∈ Zn.

Example: Recall that for an odd prime p,
√
−1 ∈ Zp if and only if p ≡ 1

mod 4, in which case we have
√
−1 = ±(p−1

2
)!.

Let p be an odd prime. Each of the numbers 12, 22, . . . , (p−1
2

)2 are quadratic

residues mod p. They are distinct mod p: given i 6= j ∈ {1, 2, . . . , p−1
2
}, the

factors i− j and i+ j are not divisible by p, hence i2 − j2 is not divisible by
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p. Hence these numbers are the complete set of solutions to x
p−1
2 ≡ 1 mod

p. Since every k ∈ {1, . . . , p− 1} satisfies k
p−1
2 ≡ ±1 mod p, k is a non-zero

quadratic residue mod p if and only if k
p−1
2 ≡ 1 mod p. This gives rise to

Euler’s Criterion: for an odd prime p and (a, p) = 1, a is a quadratic residue

mod p if and only if a
p−1
2 ≡ 1. The Legendre symbol is(

a

p

)
=

{
1 a is a quadratic residue mod p
−1 a is not a quadratic residue mod p

}
≡ a

p−1
2 mod p.

Note (
ab

p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
mod p,

and since p ≥ 3 and these symbols are ±1 this implies
(
ab
p

)
=
(
a
p

)(
b
p

)
.

Let p be an odd prime and let g be a primitive root of p. A complete set of
non-zero quadratic residues mod p is {g2, g4, . . . , gp−1}.
Section 4.3: Gauss’ Lemma

We wish to derive a formula for
(
a
p

)
for an arbitrary odd prime p that does

not depend on computing a
p−1
2 mod p, which can be difficult when p is large.

Toward this end, observe that given an odd prime p = 2r+1, every integer k
is equivalent to a unique number in {−r,−r + 1, . . . ,−1, 0, 1, . . . , r − 1}. To
see this, use the division algorithm to write k+ r = dp+ s where 0 ≤ s ≤ 2r.
Then k ≡ s − r mod p and −r ≤ s − r < r. We will say that k has a
negative representation mod p if k ≡ s for some s ∈ {−r,−r + 1, . . . ,−1}
where p = 2r + 1. The number s is called the numerically least residue of k
mod p.

Theorem: Let p = 2r + 1 be an odd prime and let (a, p) = 1. Then(
a

p

)
= (−1)n

where n is the number of integers in the set {a, 2a, . . . , ra} that have a
negative representation mod p.

Proof: For each i ∈ {1, 2, . . . , r} say that ia ≡ ai mod p where ai ∈
{−r,−r+1, . . . , r−1}. Then |a1|, |a2|, . . . , |ar| is a rearrangement of 1, 2, . . . , r.
Hence

(r!)ar = (1a)(2a) · · · (ra) ≡ a1a2 · · · ar = |a1||a2| · · · |ar|(−1)n = (r!)(−1)n mod p,
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ar ≡ (−1)n mod p,(
a

p

)
≡ (−1)n mod p,(
a

p

)
= (−1)n.

Let’s calculate
(

2
p

)
for an odd prime p. Write p = 2r + 1. Then

{−1,−2, . . . ,−r} ≡ {r + 1, r + 2, . . . , 2r − 1}

mod p. Using a = 2 we must determine

n = |{2, 4, . . . , 2r} ∩ {r + 1, r + 2, . . . , 2r − 1}|.

If r = 2k then

n = |{2, 4, . . . , 4k}∩{2k+ 1, 2k+ 2, . . . , 4k}| = |{2k+ 2, 2k+ 4, . . . , 4k}| = k

and (
2

4k + 1

)
= (−1)k.

If r = 2k + 1 then

n = |{2, 4, . . . , 4k+2}∩{2k+2, 2k+3, . . . , 4k+2}| = |{2k+2, 2k+4, . . . , 4k+2}| = k+1

and (
2

4k + 3

)
= (−1)k+1.

Hence (
2

8j + 1

)
=

(
a

4(2j) + 1

)
= (−1)2j = 1(

2

8j + 3

)
=

(
a

4(2j) + 3

)
= (−1)2j+1 = −1(

2

8j + 5

)
=

(
a

4(2j + 1) + 1

)
= (−1)2j+1 = −1(

2

8k + 7

)
=

(
a

4(2j + 1) + 3

)
= (−1)2j+2 = 1.
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Hence 2 is a quadratic residue mod an odd prime p iff p ≡ 1, 7 mod 8 and 2
is a non-quadratic residue mod p iff p ≡ 3, 5 mod 8.

Section 4.4: Law of Quadratic Reciprocity

Let p and q be distinct odd primes. The law of quadratic reciprocity is(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

This formula is useful for deciding whether or not a number is a quadratic
residue. For example, we have

(
5

171

) (
171
5

)
= (−1)4(170)/4 = 1, therefore(

5
171

)
=
(

171
5

)
≡ 1712 ≡ 1 mod 5. Hence 5 is a quadratic residue mod 171.

Proof: For each integer x there is a unique integer ypq(x) such that xp −
ypq(x)q ∈ (−q/2, q/2]. We have(

p

q

)
= (−1)|Xpq |

where
Xpq = {x ∈ (0, q/2) : xp− ypq(x)q ∈ (−q/2, 0)} ∩ Z.

Note that for all x ∈ Xpq, ypq(x) ∈ (0, p/2). Setting

Rpq = {(x, y) ∈ (0, q/2)× (0, p/2) : xp− yq ∈ (−q/2, 0)} ∩ Z2

we have
{(x, ypq(x)) : x ∈ Xpq} = Rpq.

Therefore (
p

q

)
= (−1)|Rpq |.

Similarly, we have (
q

p

)
= (−1)|Rqp|

where

Rqp = {(x, y) ∈ (0, p/2)× (0, q/2) : xq − yp ∈ (−p/2, 0)} ∩ Z2.

Reversing the coordinates, this has the same size as the set

R′qp = {(x, y) ∈ (0, q/2)× (0, p/2) : xp− yq ∈ (0, p/2)} ∩ Z2.
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The regions Rpq and R′qp correspond to the upper and lower intermediate
regions of a rectangular diagram (see Figure 4.1 in the textbook). To de-
termine the relationship between |Rpq| and |R′qp|, first note that there is a
bijection between the integer coordinates in the rectangle (0, q/2)× (0, p/2)
to itself defined by

(x, y) 7→ (x′, y′) = (
q + 1− 2x

2
,
p+ 1− 2y

2
).

Under this mapping we have

x′p− y′q = −(xp− yq) +
p− q

2
.

Hence xp− qy ≤ −(q/2) if and only if x′p− y′q ≥ p/2. In other words, there
are as many integer coordinates in the top-most region of the associated
diagram as there are integer coordinates in the bottom-most region. Hence
the total number of coordinates in the top and bottom region is an even
number, and the number of coordinates in the entire rectangle is congruent
mod 2 to the number of coordinates in the two intermediate regions, namely
|Rpq|+ |R′qp|. Hence

|Rpq|+ |R′qp| ≡
(p− 1)(q − 1)

4
mod 2,

where the latter number is the number of integer coordinates in the rectangle
(0, q/2)× (0, p/2). This implies(

p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

A second proof: Let p and q be distinct odd primes. Let S be the set of
all integers x ∈ [1, pq−1

2
] not divisible by p or q. We have pq−1

2
= p q−1

2
+ p−1

2
=

q p−1
2

+ q−1
2

, therefore

∏
x∈S

[x]p =
([1]p[2]p · · · [p− 1]p)

q−1
2 [1]p[2]p · · · [p−1

2
]p

[q]p[2q]p · · · [p−1
2
q]p

= [−1]
q−1
2

p [

(
q

p

)
]p

and ∏
x∈S

[x]q =
([1]q[2]q · · · [q − 1]q)

p−1
2 [1]q[2]q · · · [ q−1

2
]q

[p]q[2p]q · · · [ q−1
2
p]q

= [−1]
p−1
2

q [

(
p

q

)
]q.
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Write θ(x) = ([x]p, [x]q). Then∏
x∈S

θ(x) = ([−1]
q−1
2

p [

(
q

p

)
]p, [−1]

p−1
2

q [

(
p

q

)
]q).

For each (a, b) ∈ [p − 1] × [ q−1
2

] there exists a unique x ∈ [pq − 1] such
that θ(x) = ([a]p, [b]q) by the Chinese Remainder Theorem. Moreover, ex-
actly one of the two numbers x and pq − x belongs to S. Hence there is
a unique x(a, b) ∈ S and a unique ε(a, b) ∈ {−1, 1} such that θ(x(a, b)) =
([ε(a, b)a]p, [ε(a, b)b]q). This implies

S = {x(a, b) : (a, b) ∈ [p− 1]× [
q − 1

2
]}

and ∏
x∈S

θ(x) = ([ε]p, [ε]q)

q−1
2∏
b=1

p−1∏
a=1

([a]p, [b]q)

where
ε =

∏
(a,b)∈[p−1]×[ q−1

2
]

ε(a, b).

We have
q−1
2∏
b=1

p−1∏
a=1

[a]p = [(p− 1)!]
q−1
2

p = [−1]
q−1
2

p

and
p−1∏
a=1

q−1
2∏
b=1

[b]p = [

(
q − 1

2

)
!]p−1
q .

We have

[−1]q = [(q − 1)!]q = [(−1)
q−1
2 ]q[

(
q − 1

2

)
!]2q,

therefore

[

(
q − 1

2

)
!]p−1
q = [(−1)

p−1
2 ]q[(−1)

(p−1)(q−1)
4 ]q.

Hence

([−1]
q−1
2

p [

(
q

p

)
]p, [−1]

p−1
2

q [

(
p

q

)
]q) = ([ε]p, [ε]q)([−1]

q−1
2

p , [(−1)
p−1
2 ]q[(−1)

(p−1)(q−1)
4 ]q).
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This implies

((−1)
q−1
2

(
q

p

)
, (−1)

p−1
2

(
p

q

)
) = (ε, ε)((−1)

q−1
2 , (−1)

p−1
2 (−1)

(p−1)(q−1)
4 ).

Comparing the products of the two coordinates, this implies(
q

p

)(
p

q

)
= (−1)

(p−1)(q−1)
4 .

Section 5: Jacobi’s Symbol

Let n be a positive odd integer and let n = p1 · · · pk be a factorization into
primes. Then (a

n

)
=


(
a
p1

)
· · ·
(
a
pk

)
(a, n) = 1

0 (a, n) > 1.

Properties:

1.
(
ab
n

)
=
(
a
n

) (
b
n

)
.

2. When (a,mn) = 1,
(
a
mn

)
=
(
a
m

) (
a
n

)
. (True even when (a,mn) > 1.)

3.
(−1
n

)
= (−1)

n−1
2 .

4.
(

2
n

)
= (−1)

n2−1
8 .

5. If m and n are odd and (m,n) = 1,
(
m
n

) (
n
m

)
= (−1)

(m−1)(n−1)
4 .

6. If a is a quadratic residue mod n then
(
a
n

)
= 1. Hence if

(
a
n

)
= −1 then

a is not a quadratic residue mod n.

Reasons: (1) by the same property of the Legrende symbol, (2) by prime
factorization, (3) by induction on l(n), (4) by induction on l(n), (5) by in-
duction on l(m) + l(n), where l(m) is the number of primes in the prime
factorization of m, (6) by the lemma and corollary below.

Lemma: Let p be an odd prime. If (a, p) = 1 and a is a quadratic residue
of a mod p then it is a quadratic residue of pk for all k.

Proof: By induction on k. The base case k = 1 is trivial. Now assume
x2 ≡ a mod pk has a solution. Write x2 = a+ αpk. Set y = x+ βpk. Then

y2 = x2 + 2xβpk + β2p2k ≡ a+ αpk + 2xβpk mod pk+1.
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We wish to find β such that

αpk + 2xβpk ≡ 0 mod pk+1,

or equivalently
α + 2xβ ≡ 0 mod p.

There is a solution because (2x, p) = 1.

Corollary: Let n = pe11 · · · p
ek
k be a product of odd primes. Let (a, n) = 1.

Then a is a quadratic residue mod n iff a is a quadratic residue mod pi for
1 ≤ i ≤ k.

Proof: If x2 ≡ a mod n then x2 ≡ a mod pi for each i. Conversely, suppose
that for each i ≤ k there is an xi such that x2

i ≡ a mod pi. By the corollary
there is a yi such that y2

i ≡ a mod peii for each i ≤ k. By the Chinese
Remainder Theorem, there is a z such that z ≡ yi mod peii for each i. This
implies z2 ≡ a mod peii for each i, which implies z2 ≡ a mod n.

Section 4.7 Exercises:

(i)
(

5
p

)
=
(
p
5

)
≡ p2 mod 5. Hence we need p ≡ 1, 4 mod 5.

(ii) To decide if 2 is a quadratic residue mod p′ we evaluate 2p mod p′. On
the other hand, since p = 3 + 4k, p′ = 7 + 8k, we know that 2 is a quadratic
residue mod p′. Hence 2p ≡ 1 mod p′. Hence 2p − 1 is not prime since it has
proper divisor p′. We have also proved that 2 is primitive mod p′.

(iii) Let g be a primitive root of p. The quadratic residue product is P =

g2g4 · · · gp−1 = g
p2−1

4 = (g
p−1
2 )

p+1
2 = h

p+1
2 where h = g

p−1
2 . Since h2 ≡ 1,

h ≡ ±1. But h 6≡ 1 since g has order p− 1, hence h ≡ −1 and P ≡ (−1)
p+1
2 .

(iv) We have
(
−1
p

)
= (−1)

p−1
2 = 1 since p ≡ 1 mod 4. Hence −1 is a

quadratic residue. This implies that whenever r is a quadratic residue, so is
−r. There is a one-to-one correspondence between quadratic residues ≤ p/2
and quadratic residues ≥ p/2 via r ↔ p−r. There are p−1

2
quadratic residues,

every pair of which sums to p. Since there are p−1
4

pairs, the sum of them all

is p−1
4
· p.

(v) Use the properties repeatedly.

(vi) When (d, p) > 1, d ≡ 0 and there is exactly one solution, consistent
with the formula. When (d, p) = 1 and d is not a quadratic residue then
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there are no solutions, which is consistent with the formula. When (d, p) = 1
and d is a quadratic residue, then x2 − d has a root r, and we can write
x2 − d ≡ (x− r)(x− s) in Fp[x]. If r ≡ s then x2 − d ≡ x2 − 2rx+ r2 hence
r ≡ 0, d ≡ 0: contradiction. Hence there are two solutions, consistent with
the formula.

(vii) Since (a, p) = (2, p) = (4, p) = 1, we can divide by a, 2, 4 in Fp. We have

ax2 + bx+ c = (1/a)((ax+ b/2)2 − d/4),

hence(
f(x)

p

)
=

(
1/a

p

)(
(ax+ b/2)2 − d/4

p

)
=

(
a

p

)(
(ax+ b/2)2 − d/4

p

)
,

p∑
x=1

(
f(x)

p

)
=

(
a

p

) p∑
x=1

(
(ax+ b/2)2 − d/4

p

)
=

(
a

p

) p∑
x=1

(
x2 − d/4

p

)

=

(
a

p

) p∑
x=1

(
x2 + d

p

)
.

When d = 0 this evaluates to
(
a
p

)
(p − 1). Now consider d 6= 0. Since

1 +
(
k2+d
p

)
counts the number of solutions to x2 − k2 = d,

p∑
k=1

[
1 +

(
k2 + d

p

)]
is the size of the set {(a, b) ∈ Fp×Fp : a2− b2 = d}. This is in 1:1 correpon-
dence with the set {(u, v) : uv = d/4}, and the size of the latter set is p− 1.
Hence

p∑
k=1

(
k2 + d

p

)
= −1.

(viii) To show that 2 is a primitive root mod p we must show that o(2) = p−1.
We have p − 1 = 2p′, which has divisors 1, 2, p′, 2p′. Therefore the order of
2 mod p is one of these numbers. We can rule out 1 and 2 since p ≥ 11.
Moreover if o(2) = p′ then 2

p−1
2 ≡ 1 mod p, which implies that 2 is a quadratic
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residue mod p, which contradicts the fact that p ≡ 3 mod 8. Therefore
o(2) = 2p′ = p− 1 and 2 is primitive.

Now 5
p−1
2 ≡ 1 mod p if and only if p ≡ 1, 4 mod 5 by problem (i), hence

5
p−1
2 ≡ −1 mod p if and only if p ≡ 2, 3 mod 5 if and only if p′ ≡ 1, 3 mod

5. For these primes we have o(5) ∈ {1, 2, p − 1} mod p. We can rule out
o(5) = 1, 2 by a direct inspection of p = 7 and p = 23. The next smallest p
is 47, and the order of 5 in this case is 46.

(ix) If p = 2 then we can easily solve ax+ by ≡ c mod 2, hence ax2 + by2 ≡ c
mod 2. Now assume that p is an odd prime. We are attempting to show

that
(
−(a/b)x2+(c/b)

p

)
= 1 for some x. Now if −(a/b)x2 + (c/b) ≡ 0 for some x

then x2 ≡ c/a, hence (x, 0) is a solution to ax2 + by2 ≡ c. Now assume that
−(a/b)x2 + (c/b) 6≡ 0 for all x. Since the discriminant of this polynomial is
4ac/b2 6≡ 0, we know by problem (vii) that

p∑
x=1

(
−(a/b)x2 + (c/b)

p

)
= −

(
−(a/b)

p

)
= ±1.

This implies that some −(a/b)x2 +(c/b) is a quadratic residue, otherwise the
sum would be −p.
Generalized Lagrange Theorem

Theorem: Let f(x1, x2, . . . , xn) ∈ Zp[x1, . . . , xn] be a polynomial with de-
gree ≤ p − 1 in each variable xi. Assume that f(a1, . . . , an) = 0 for all
(a1, . . . , an) ∈ Znp . Then all the coefficients of f(x1, . . . , xn) are equal to zero.

Proof: By induction on n. First consider n = 1. Then f(x1) has roots
0, 1, . . . , p − 1, therefore f(x1) = g(x1)

∏p−1
i=0 (x1 − i) for some polynomial

g(x1). If g(x1) has a non-zero coefficient then we can write g(x1) = gax
a
1+

terms of lower degree where ga 6= 0. This implies that f(x1) has degree
≥ p+ a, contrary to hypothesis. Hence g(x1) has all zero coefficients, which
implies that f(x1) has all zero coefficients.

Assume that the statement of the theorem is true for some n ≥ 1. Let
f(x1, . . . , xn+1) be a polynomial that meets the hypothesis of the theorem.
We will show that all the coefficients of f(x1, . . . , xn+1) are equal to zero.

We can write

f(x1, . . . , xn+1) =

p−1∑
i=0

fi(x1, . . . , xn)xin+1.
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Fixing a1, . . . , an, the polynomial
∑p−1

i=0 fi(a1, . . . , an)xin+1 has p roots, hence
each coefficient fi(a1, . . . , an) is equal to zero. Now let a1, . . . , an vary and use
the induction hypothesis to show that fi(x1, . . . , xn) = 0 for 0 ≤ i ≤ p− 1.

(x) Let f(x1, . . . , xn) be a polynomial that vanishes only at (0, 0, . . . , 0). We
will show that the total degree of f is ≥ n. Note that 1 − fp−1 vanishes at
every non-trivial (x1, . . . , xn) and evaluates to 1 at (0, . . . , 0). So 1− fp−1 is
the same function as h = (1 − xp−1

1 ) · · · (1 − xp−1
n ) from Znp to Zp. Let g be

the polynomial functionally equal to 1− fp−1 by repeatedly replacing every
instance of xki with k ≥ p in 1− fp−1 by xk−p+1

i . The is possible because xpi
and xi are functionally equal. Then g− h vanishes on Znp and every variable
has exponent at most p− 1. By the generalized Lagrange theorem (above),
g − h = 0, hence g = h, hence has total degree (p − 1)n. This implies that
the total degree of 1− fp−1 is ≥ (p− 1)n, hence the total degree of f is ≥ n.

(xi) A special case of (x).

Chapter 5: Quadratic Forms

Section 5.1: Equivalence

Quadratic form:
f(x, y) = ax2 + bxy + cy2.

In matrix form:

f(v) = vT
[
a b/2
b/2 c

]
v.

The discriminant of a quadratic form is d(f) = b2−4ac. When f(v) = vTFv
we have d(f) = −4 det(F ). We will say that forms f and g are equiv-
alent if f(v) = g(Uv) for some 2 × 2 integer matrix U with determinant
1 (unimodular matrix). In other words, f = g ◦ U . This is an equiv-
alence relation: f(v) = f(Iv); f(v) = g(Uv) implies f(U−1v) = g(v);
f(v) = g(U1v) and g(v) = h(U2v) implies f(v) = h(U2U1v). Equivalent
forms have the same discriminant: given f(v) = g(Uv) and g(v) = vTGv
we have f(v) = vT (UTGU)v, hence F = UTGU , hence det(F ) = det(G).
Equivalent forms produce the same set of output values. Note also that
4af(x, y) = (2ax + by)2 − dy2, hence when d < 0 the output values of f are
all ≤ 0 when a < 0 and all ≥ 0 when a > 0. Moreover the only zero output
occurs when x = y = 0.

More facts about forms:
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1. If f = ax2 + bxy + cy2 then (f ◦ U) = f(p, r)x2 + b′xy + f(q, s)y2 where

U =

[
p q
r s

]
.

2. Let Uk =

[
1 k
0 1

]
and V =

[
0 −1
1 0

]
. If f = ax2 + bxy + cy2 then

f ◦ Uk = ax2 + (b+ 2ak)xy + (ak2 + bk + c)y2 and f ◦ V = cx2 − bxy + ay2.

3. Let f be a form with a > 0 and d < 0 and having minimum positive
output amin using integer inputs. Then we can produce an equivalent form
g = aminx

2 + · · · . To find amin, proceed as follows (following Niven and
Zuckerman): Given any output m, check all (x, y) such that f(x, y) < m, i.e.
solve

(2ax+ by)2 − dy2

4a
< m.

This requires

y2 <
4am

−d
,

which has a finite number of solutions in y. Given y in this range, we hunt
for integers x such that

(2ax+ by)2 < 4am+ dy2,

and there are finitely many values of x to check for each y. Having found
(p, r) such that f(p, r) = amin, the fact that f is homogeneous implies that

gcd(p, r) = 1. Hence there exist integers q, s such that U =

[
p q
r s

]
has

determinant 1. We set g = f ◦ U .

Example: Consider f(x, y) = 37x2 + 59xy+ 25y2. The discriminant is −219.
Some outputs are {37, 37− 59 + 25, 25}, the least of which is m = 3. Solving
y2 < 148/219 we have y = 0. Number of non-zero solutions to 4ax2 < 4am:
none. So the smallest output is 3 = f(1,−1). We set

g = f ◦
[

1 3
−1 −2

]
= 3x2 + 27xy + 79y2.

Section 5.2: Reduction

From here on out we are going to consider f(x, y) = ax2 + bxy + cy2 where
a > 0 and d < 0. This forces c > 0 since b2 < 4ac. We will show that every
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such form is equivalent to Ax2 + Bxy + Cy2 where −A < B ≤ A < C or
0 ≤ B ≤ A = C. We call such forms reduced, and we will show that distinct
reduced forms are inequivalent.

Given f(x, y) = ax2 + bxy + cy2, let g(x, y) = a0x
2 + b0xy + c0y

2 be any
form equivalent to f(x, y) where a0 is the minimum positive output of f .
Now choose k so that −a0 < b0 + 2ka0 ≤ a0 (division algorithm applied to
b + a − 1 and 2a). Then we obtain the equivalent form h(x, y) = a0x

2 +
(b0 + 2ka0)xy + (a0k

2 + b0k + c0)y2. Since a0k
2 + b0k + c0 is an output

of h, it is an output of f , hence a0 ≤ a0k
2 + b0k + c0. This is reduced if

a0 < a0k
2 + b0k + c0, and if a0 = a0k

2 + b0k + c0 and b0 + 2ka0 < 0 then the
equivalent form k(x, y) = a0x

2 − (b0 + 2ka0)xy + a0y
2 is reduced.

Example: We have already shown that f(x, y) = 37x2 + 59xy + 25y2 has
minimum output 3 and is equivalent to 3x2 + 27xy + 79y2. In order to
subtract 24 from 3 we will compose with U−4. This yields

h(x, y) = (3x2 + 27xy + 79y2) ◦
[
1 −8
0 1

]
= 3x2 + 3xy + 19y2.

We now show that distinct reduced forms are inequivalent. Let f(x, y) =
ax2 + bxy + cy2 and g(x, y) = Ax2 +Bxy +Cy2 be reduced quadratic forms
with a,A > 0 and the same discriminant d < 0. We will show that if they
are equivalent then a = A, b = B, and c = C. Since they are equivalent,
they have the same outputs. For x2 ≥ y2 > 0 we have

f(x, y) ≥ ax2 − |b|x2 + cy2 = (a− |b|)x2 + cy2 ≥ c

and for y2 ≥ x2 > 0 we have

f(x, y) ≥ ax2 − |b|y2 + cy2 = ax2 + (c− |b|)y2 ≥ a+ c− |b| ≥ c.

We also have
f(x, 0) = ax2 ≥ a

and
f(0, y) = cy2 ≥ c

for x, y 6= 0. Therefore the five smallest outputs of f are 0, a, a, c, c and
similarly the five smallest outputs of g are 0, A,A,C,C. This implies a = A
and c = C, which implies b = ±B since the discriminants are equal. We
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must prove B = −b implies b = B = 0. This is clear if a = c since the forms
are reduced, so we can assume a < c.

Suppose f(x, y) = ax2 + bxy + cy2, g(x, y) = ax2 − bxy + cy2, b ≥ 0, a < c,

and f(v) = g(Uv) where U =

[
p q
r s

]
. We wish to show U = I and b = 0.

We must have a > b given −a < |b| ≤ a. If pr 6= 0 then we have c > a =
f(1, 0) = g(p, r) ≥ C = c, which is impossible. Therefore p = 0 or r = 0. If
qs 6= 0 then we have c = f(0, 1) = g(q, s) > c, which is impossible. Given
F = UTGU and

F =

[
a b/2
b/2 c

]
and

G =

[
a −b/2
−b/2 c

]
,

we obtain

F ∈
{[

cr2 −(b/2)qr
−(b/2)qr aq2

]
,

[
ap2 (−b/2)ps

(−b/2)ps cs2

]}
.

The first possibility contradicts a = c. The second possibility implies that
b = −b since ps = 1, hence b = 0.

There are finitely many reduced forms h(d) with a > 0 and d < 0: We have
−a ≤ b ≤ a ≤ c, hence b2 ≤ ac, hence −d = 4ac − b2 ≥ 3ac, |b| ≤ a ≤ c ≤
−d/3a ≤ −d/3, hence there are finitely many choices for a, b, and c.

Example: x2 + y2 is reduced and satisfies d = −4. The equivalent reduced
forms ax2 + bxy + cy2 satisfy |b| ≤ a ≤ c ≤ 4/3, which forces a = c = 1 and
b = 0. In other words, x2 + y2 is the unique reduced form with discriminant
−4.

Note that c = b2−d
4a

. Reducing |b| reduces c when a is unchanged. This leads
to another algorithm for finding reducing a form and for finding amin given
an arbitrary form with a > 0 and d < 0: If the form is reduced then amin = a.
If the form is not reduced, then either (1) a > c or (2) a = c and b > a or
(3) a = c and b < 0 or (4) a < c and b > a or (5) a < c and b ≤ −a. The
following actions either lower [x2] or identify a reduced form:

(1) a > c : Apply V , lowering [x2].

43



(2) a = c and b > a: We have b > b− 2a > −a > −b. Find the largest k ≥ 1
such that b− 2ka > −b, such that |b− 2ka| < |b|, then apply Uk, then apply
V , lowering [x2].

(3) a = c and b < 0: If b ≥ −a then applying V produces a reduced form.
But if b < −a then b < b + 2a < a < −b, and there is a largest k ≥ 1
such that b < b + 2ka < −b. Apply Uk, then V . Summarizing: Find the
largest k ≥ 0 such that |b + 2ka| < |b|, then apply Uk, then apply V , either
producing a reduced form or lowering [x2].

(4) a < c and b > a: Applying U−1 leads to b > b − 2a > −a > −b. Find
the largest value of k ≥ 1 such that |b− 2ka| < |b|, then apply U−k, then V ,
lowering [x2].

(5) a < c and b ≤ −a: Applying U1 leads to b+2a ≤ a ≤ −b. Find the largest
k ≥ 1 such that |b + 2ka| ≤ |b|, then apply Uk, then V , either producing a
reduced form or lowering [x2].

Section 5.3: Representations by Binary Forms

Definition: Let a be a natural number. We say that a is properly repre-
sented by the binary form f iff a = f(p, r) for some coprime pair p and r.
For example, if f(x, y) = 37x2 + 59xy + 25y2 then f(4,−3) = 109 hence 109
is properly represented by f .

Theorem: A necessary and sufficient condition that a be properly repre-
sented by a binary form with discriminant d is that b2 ≡ d mod 4a has a
solution. In other words, d is a quadratic residue mod 4a.

Proof: Suppose b2 ≡ d mod 4a. Then b2 − d = 4ac for some c, therefore
b2 − 4ac = d. Setting f(x, y) = ax2 + bxy + cy2 we have d(f) = d and
a = f(1, 0).

Conversely, suppose a = f(p, r) where (p, r) = 1. Then a = g(1, 0) where

g(v) = f(Uv) and U =

[
p q
r s

]
. We know that g(x, y) = ax2 + bxy + cy2 for

some b and c, therefore d = d(f) = d(g) = b2 − 4ac ≡ b2 mod 4a.

Example: we will determine the primes representable as a sum of two squares.
We have 2 = 12 + 12. The odd primes are of the form 4n+ 1 and 4n+ 3. No
prime of the form 4n + 3 can be represented as a sum of 2 squares, because
the latter is congruent to 0, 1, or 2 mod 4. When p ≡ 1 mod 4, −1 is a
quadratic residue mod p, hence −4 is a quadratic residue mod 4p, hence p
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can be properly represented by a form with discriminant −4, hence by a
reduced form with discriminant −4. Since x2 +y2 is the unique reduced form
with discriminant −4, p can be properly represented by x2 + y2.

Example: Primes of the form 4n + 3 are 3, 7, 11, 19, ... and primes of the
form 4n+ 1 are of the form 5, 13, 17, ... . Setting

f(n) = {
√
n2 − x2 : 0 ≤ x ≤

√
n/2}

we have
f(3) = {1.73205, 1.41421},
f(7) = {2.64575, 2.44949},

f(11) = {3.31662, 3.16228, 2.64575},
f(19) = {4.3589, 4.24264, 3.87298, 3.16228},

f(5) = {2.23607, 2.},
f(13) = {3.60555, 3.4641, 3.},
f(17) = {4.12311, 4., 3.60555}.

Section 5.4: Sums of Two Squares

Necessary Conditions: Suppose x2 + y2 is divisible by an odd prime p.
Then x2 ≡ −y2 mod p, hence (y, p) = 1 implies (x/y)2 ≡ −1 mod p implies
p ≡ 1 mod 4. So if p ≡ 3 mod 4 then p|y, which implies p|x, which p2|(x2+y2).
Hence in the prime factorization of x2 + y2, primes ≡ 3 mod 4 occur to even
exponent.

Sufficient Conditions: Suppose n is any arbitrary number with this prop-
erty. Write n = n2

0p1p2 · · · pk, the pi distinct primes. Then pi ≡ 1 mod 4 (or
pi = 2) for each i, hence x2

i ≡ −1 mod pi has a solution for each i, hence by
the Chinese remainder theorem b2 ≡ −1 mod p1 · · · pk has a solution, hence
(2b) ≡ −4 mod 4p1 · · · pk has a solution, hence p1 · · · pk is representable by a
binary quadratic form with discriminant −4, hence by a reduced form with
this discriminant, which can only be x2 + y2. So we have p1 · · · pk = x2 + y2,
n = n2

0p1 · · · pk = n2
0(x2 + y2) = (n0x)2 + (n0y)2.

A second proof: Write each pi in the form x2
i + y2

i and use the fact that the
set of sums of squares is closed with respect to multiplication:

(x2
1 + y2

1)(x2
2 + y2

2) = |x1 + y1i|2|x2 + y2i|2 = |(x1 + y1i)(x2 + y2i)|2 =
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|(x1x2 − y1y2) + (x1y2 + x2y1)i|2 = (x1x2 − y1y2)2 + (x1y2 + x2y1)2.

Example:

1485154 = 2 · 112 · 17 · 192 = (12 + 12)(42 + 1)112192 = (32 + 52)112192 =

6272 + 10452.

Section 5.5: Sums of Four Squares

The set of sums of four square integers is closed with respect to multiplication:
using quaternions,

(x2
1+x2

2+x2
3+x2

4)(y2
1+y2

2+y2
3+y2

4) = |x1−x2i−x3j−x4k|2|y1+y2i+y3j+y4k|2 =

|(x1y1 + x2y2 + x3y3 + x4y4) + (x1y2 − x2y1 − x3y4 + x4y3)i+

(x1y3 + x2y4 − x3y1 − x4y2)j + (x1y4 − x2y3 + x3y2 − x4y1)k|2 =

(x1y1 + x2y2 + x3y3 + x4y4)2 + (x1y2 − x2y1 − x3y4 + x4y3)2+

(x1y3 + x2y4 − x3y1 − x4y2)2 + (x1y4 − x2y3 + x3y2 − x4y1)2.

Another derivation: Let z and w be complex numbers. Then[
z w
w z

]
has a determinant which is a sum of four squares. The product of two such
matrices has a similar form, and det(AB) = det(A) det(B), hence a product
of two sums of four squares is a sum of four squares.

The numbers 1 and 2 can be expressed as the sum of four squares. If we can
show that every odd prime can be expressed as the sum of four squares, then
every natural number can be.

Observation 1: If n is a sum of four squares and n is even then n
2

is a sum of
four squares. This follows from the identity

a2 + b2 + c2 + d2

2
=

(
a+ b

2

)2

+

(
a− b

2

)2

+

(
c+ d

2

)2

+

(
c− d

2

)2

,
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grouping together numbers of equal parity.

Observation 2: If
n =

(x1y1 + x2y2 + x3y3 + x4y4)2 + (x1y2 − x2y1 − x3y4 + x4y3)2+

(x1y3 + x2y4 − x3y1 − x4y2)2 + (x1y4 − x2y3 + x3y2 − x4y1)2

and m2|n and xi ≡ yi mod m for i = 1, 2, 3, 4 then each of the squares in the
sum is divisible by m2.

Observation 3: If m is odd and mN is an odd sum of four squares and m > 1
then m′N is a sum of four squares for some m′ satisfying 1 ≤ m′ < m. Proof:
write mN = a2 + b2 + c2 + d2 and choose a0, b0, c0, d0 ∈ (−m/2,m/2] such
that (a, b, c, d) ≡ (a0, b0, c0, d0) mod m. Set n = a2

0 + b2
0 + c2

0 + d2
0. Then

n < 4m
2

4
= m2. We have n ≡ mN ≡ 0 mod m, hence n = m1m for some m1

satisfying 1 ≤ m1 < m. The product n(mN) = (m1m)(mN) = m1Nm
2 is a

sum of four squares, and by Observation 2 each of the squares is divisible by
m2. Hence m1N is a sum of four squares.

Observation 4: If mN is a sum of four squares for some m then N is a sum
of four squares. Proof: construct the sequence m = m0 > m1 > m2 > · · ·
where each miN is a sum of four squares, setting mi+1 = mi

2
when mi is even

as in Observation 1 and constructing mi+1 from mi when mi is odd as in
Observation 3. At some point we must have mi = 1.

To prove that an odd prime p is a sum of four squares it suffices to show that
mp is a sum of four squares for some m. A fancy proof: setting f(x, y, z) =
x2 +y2 +z2 there is a non-trivial solution to f(x, y, z) ≡ 0 mod p by Exercise
(x), Chapter 4, so there are integers x, y, z, not all congruent 0 mod p, such
that x2 + y2 + z2 = mp for some m. A plain proof (which a computer can
find): Let p = 2r + 1 be given. The numbers 02, 12, . . . , r2 are distinct mod
p, as are the numbers −1 − 02,−1 − 12, . . . ,−1 − r2: If 0 ≤ i < j ≤ r then
r ≥ j − i ≥ 1 and 1 ≤ i + j ≤ 2r − 1, hence i− j 6≡ 0 and i + j 6≡ 0 mod p,
hence i2 − j2 6≡ 0 mod p, hence i2 6≡ j2. Since there are only 2r + 1 residue
classes, there has to be some overlap in the list: x2 ≡ −1− y2 mod p where
0 ≤ x, y ≤ r. This yields x2 + y2 + 02 + 12 = mp for some m.

Chapter 5 Exercises:

(i) Using Mathematica, the unique reduced forms with discriminant in the
range −1,−2, . . . ,−200 are:
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d = −3: x2 + xy + y2

d = −4: x2 + y2

d = −7: x2 + xy + 2y2

d = −8: x2 + 2y2

d = −11: x2 + xy + 3y2

d = −19: x2 + xy + 5y2

d = −43: x2 + xy + 11y2

d = −67: x2 + xy + 17y2

d = −167: x2 + xy + 41y2.

(ii) By Problem (i) the form x2 + xy + 5y2 is the unique reduced form with
discriminant d = −19. It suffices to determine the odd primes properly
represented by a form with discriminant −19 (the input must be coprime
since the output will be prime). We must determine the odd primes p such
that b2 ≡ −19 mod 4p has a solution. Now b2 ≡ −19 mod 4p if and only if
b2 ≡ −19 mod 4 and b2 ≡ −19 mod p. The first congruence always has a
solution: any odd number b. The equation b2 ≡ −19 mod p has a solution

iff
(
−19
p

)
= 1. Any even solution b yields on odd solution b + 19. Using

the Jacobi symbol and quadratic reciprocity, we have
(
−19
p

)
=
(
−1
p

)(
19
p

)
=

(−1)
p−1
2

(
p
19

)
(−1)

(p−1)(19−1)
4 ≡ p9 mod 19. We have p9 ≡ 1 mod 19 when p is

equivalent to 1, 4, 5, 6, 7, 9, 11, 16, 17 mod 19.

The least primes congruent to one of these are 191 = f(6, 5), 23 = f(1, 2), 43 =
f(1,−3), 101 = f(3, 4), 197 = f(9, 4), 47 = f(6, 1), 163 = f(11, 2), 73 =
f(4, 3), 131 = f(1, 5).

(iii) Let n = x2 + 2y2. Let p|n be an odd prime. If (y, p) = 1 then

0 ≡ x2 + 2y2 mod p implies (xy−1)2 ≡ −2 mod p, hence
(
−2
p

)
= 1,

1 =
(
−1
p

)(
2
p

)
= (−1)

p−1
2 (−1)

p2−1
8 = (−1)

(p−1)(p+5)
8 , hence p ≡ 1 or p ≡ 3

mod 8. Contrapositive: p|n is congruent to 5 or 7 mod 8 then p|y, hence p|x,
hence p2|n. I will conjecture that the set of integers that can be expressed
in the form x2 + 2y2 are those in which its prime divisors congruent to 5 or
7 mod 8 appear with an even exponent. Evidence of this: 1 = 12 + 2(02),
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2 = 02 + 2(12), 3 = 12 + 2(12), 4 = 22 + 2(02), 5 cannot be expressed in the
form x2 + 2y2, 6 = 22 + 2(12), 7 cannot be expressed in the form x2 + 2y2.

Let P (n) be the statement that if n = x2 + 2y2 then prime divisors of n
congruent to 5 or 7 mod 8 appear with even exponent. Then P (1) is true.
Assume P (1) through P (n−1) are true. Now suppose n = x2+2y2 is possible
and let p|n where p ≡ 5 or p ≡ 7 mod 8. We have seen that p|x and p|y,
hence p2|n and we can write n = p2n0 where n0 = x2

0 + 2y2
0. Since P (n0) is

true, so is P (n). Hence P (n) is true for all n ≥ 1.

Conversely, let n be such that prime divisors congruent to 5 or 7 mod 8
appear with even exponent. Write n = ms2 where m is square-free. Then m
is a product of distinct primes not congruent to 5 or 7 mod 8. It will suffice
that all such primes p are representable in the form p = x2

p+2y2
p, because the

set of integers of the form x2 + 2y2 is closed with respect to multiplication:

(a2 + 2b2)(A2 + 2B2) = (aA+ 2bB)2 + 2(aB − Ab)2.

This can be derived as follows: Set

Mk(x, y) =

[
x y
ky x

]
.

Then detMk(x, y) = x2 − ky2. Given that we have

Mk(x1, y1)Mk(x2, y2) = Mk(x1x2 + ky1y2, x1y2 + y1x2),

after taking determinants we obtain

(x2
1 − ky2

1)(x2
2 − ky2

2) = (x1x2 + ky1y2)2 − k(x1y2 + y1x2)2.

The discriminant of x2 + 2y2 is −8, and there is just one form with this
discriminant up to equivalence. The prime 2 can be expressed in this form.
Given a prime p congruent to 1 or 3 mod 8, we have seen that x2 ≡ −2
mod p has a solution. The same solution yields (2x)2 ≡ −8 mod 4p. So p
can be expressed in the form x2

p + 2y2
p. Note: we can use an infinite descent

algorithm to express primes equal to 2 or congruent to 1,3 mod 8 in the form
x2 + 2y2, adapting Problem 7 in the Problems to Think About for Chapter
5.

(iv) Integers congruent to 0, 1, 3 mod 4 can be represented this way: 4n =
(n+ 1)2− (n−1)2, 4n+ 1 = (2n+ 1)2− (2n)2, 4n+ 3 = (2n+ 2)2− (2n+ 1)2.
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Integers congruent to 2 mod 4 cannot be presented this way: (2a)2− (2b)2 =
4(a2 − b2) ≡ 0 and (2a+ 1)2 − (2b+ 1)2 = 4(a2 + a− b2 − b) ≡ 0.

(v) According to Mathematica, there are two reduced forms with discriminant
−20: x2 + 5y2 and 2x2 + 2xy + 3y2. Now let p be an odd prime not equal to
5. It is representable by one of these forms iff there is a solution to x2 ≡ −20
mod 4p, i.e. an even solution to x2 ≡ −20 mod p, i.e. any solution at all (if an

odd one exists, add p to obtain an even one), iff
(
−20
p

)
= 1, iff (−1)

p−1
2 p2 ≡ 1

mod 5 using quadratic reciprocity. Setting p = 4k + 1 yields p ≡ 1, 9 mod
20. Setting p = 4k + 3 yields p ≡ 3, 7 mod 20. We must show primes of the
form 1 + 20k and 9 + 20k are representable in the form x2 + 5y2 and primes
of the form 3+20k and 7+20k are not. A brute-force calculation shows that
the only values taken on by 2x2 + 2xy + 3y2 mod 20 are 0, 2, 3, 7, 8, 10, 12,
15, 18. So primes congruent to 1 or 9 mod 20 cannot be represented in this
form and must be representable by x2 + 5y2. Another brute-force calculation
shows that the only values taken on by x2 + 5y2 mod 20 are 0, 1, 4, 5, 6, 9,
10, 14, 16, so primes congruent to 3 or 7 mod 20 cannot be represented in
this form and must be representable by 2x2 + 2xy + 3y2.

Examples: The first primes congruent to 1 or 9 mod 20 are 41 = 62+5(12) and
29 = 32 + 5(22). The first primes after 101 that are congruent to 3 or 7 mod
20 are 103 = 2(−7)2 +2(−7)(5)+3(52) and 107 = 2(−8)2 +2(−8)(3)+3(32).

(vi) Mathematica: reduced forms with d = −31 are

x2 + xy + 8y2, 2x2 − xy + 4y2, 2x2 + xy + 4y2.

Hence h(−31) = 3.

(vii) It suffices to find the reduced form and calculate a. Applying Uk with
k = −2 we can convert 4x2 + 17xy+ 20y2 to 4x2 + xy+ 2y2. Applying V we
can further convert this to this 2x2− xy+ 4y2. (Check: this is indeed one of
the three reduced forms with discriminant −31.) The smallest output is 2.

(viii) Assuming that the number of representations of a by a form with
discriminant d is equal to the number of disinct solutions to b2 ≡ d mod
4a in [0, 2a) times the number of automorphs of discriminant d forms (not
proved in the book), it suffices to show that the number of solutions to
x2 ≡ −4 mod 4n is the same as the number of solutions to x2 ≡ −4 mod
8n, since the discriminant of x2 + y2 is −4 and there is one such form up
to equivalence. Since each solution to x2 ≡ −4 mod 8n is a solution to
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x2 ≡ −4 mod 4n, it suffices to show that each solution to x2 ≡ −4 mod 4n
is also a solution to x2 ≡ −4 mod 8n. Suppose x2 ≡ −4 mod 4n. Then
n = x2 + y2 is possible. Using the closure-under-multiplication formula,
2n = (12 + 12)(x2 + y2) = (x− y)2 + (x + y)2, therefore x2 ≡ −4 mod 8n is
possible.

This solution suggest a bijection: φ(x, y) = (x−y, x+y). This maps solutions
to n = x2 +y2 injectively into solutions to 2n = x2 +y2. Moreover, if an even
number m satisfies m2 = x2 +y2 then x and y have the same parity, therefore
p = x+y

2
and q = −x−y

2
are integers, and p2 + q2 = x2

4
+ y2

4
= m2

4
= (m/2)2.

Moreover φ(p, q) = (p− q, p+ q) = (x, y), so the mapping is surjective.

(ix) Given n = 3k− 1 = xk1 +xk2 + · · ·+xks , each xi ∈ {1, 2}. So there is some
non-negative solution to a + b = s where a + b2k = n. The larger b is, the
smaller s is. We need to find the maximum value of b such that n− b2k ≥ 0.
This yields b = [n/2k], a = n− b2k = n− b n

2k
c2k, s = n− [n/2k]2k + [n/2k].

Chapter 6: Diophantine Approximation

Introduction: Numbers can be classified as natural, integer, rational, real,
complex. The rationals can be listed out uniquely in a sequence. The complex
numbers cannot, because the reals in [0, 1] cannot by Cantor’s argument. So
there exist irrational numbers. In fact, we can prove θ is irrational. Algebraic
numbers are complex numbers that are roots to polynomials with integer
coefficients. For example,

√
2 is algebraic. Since we can list out integer-

coefficient polynomials sequentially, and each has a finite number of roots,
we can list out their roots sequentially. So there exist transcendental (non-
algebraic) numbers. We will prove in this chapter that e is transcendental
and show how to construct other transcendental numbers.

Section 6.1: Dirichlet’s Theorem

Theorem: Let θ be a real number. Then θ is irrational if and only if there
exist an infinite number of reduced fractions p

q
such that |θ − p

q
| < 1

q2
.

Proof: Consider a rational number θ = a
b
. When p

q
6= θ we have |θ − p

q
| =

|aq−bp|
bq
≥ 1

bq
, and q ≥ b =⇒ 1

bq
≥ 1

q2
. So |θ − p

q
| < 1

q2
can only be achieved

for a finite number of values of q, namely q < b, which limits p to a finite
number of values.

Consider an irrational number θ. To illustrate the construction we will find
coprime integers p and q, 1 ≤ q < 10, such that |q

√
2− p| ≤ 1

10
. This yields
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|
√

2− p
q
| ≤ 1

10q
< q2. Write k

√
2 = ak+bk for 0 ≤ k ≤ 9, where ak is an integer

and 0 ≤ bk < 1. Set a10 = 0 and b10 = 1. Now write Ik = [k/10, (k + 1)/10)
for 0 ≤ k ≤ 8 and I9 = [9/10, 1]. Then the numbers b0, b1, . . . , b10 lie in
the disjoint intervals I0, I1, . . . , I9, and two of these numbers lie in the same
interval. Say that bi, bj ∈ Ik where 0 ≤ i < j < 10. Then we have |bj − bi| ≤
1
10

. If j < 10 then we can write |(j − i)
√

2− (aj − ai)| ≤ 1
10

. If j = 10 then

we can write |i
√

2− (1 + ai)| ≤ 1
10

. Mathematica yields

k b[k] a[k]
0 0. 0
1 0.414214 1
2 0.828427 2
3 0.242641 4
4 0.656854 5
5 0.0710678 7
6 0.485281 8
7 0.899495 9
8 0.313708 11
9 0.727922 12
10 1 0.

We can choose i = 1, j = 6, which yields |5
√

2− 7| ≤ 1
10

. Check: 5
√

2− 7 ≈
0.0710678. So we can use q = 5, p = 7.

More generally, given θ ∈ R and 1 < Q ∈ Z there exist a pair of integers p, q
with 1 ≤ q < Q such that |qθ − p| ≤ 1

Q
. We can assume that p and q are

coprime, dividing through if necessary by (p, q). Hence |θ − p
q
| ≤ 1

qQ
< 1

q2
.

Having found p
q

satisfying this condition, choose any integer Q′ > 1
|θ− p

q
| . If

|q′θ − p′| ≤ 1
Q′

then

|θ − p′

q′
| < 1

q′
|θ − p

q
| ≤ |θ − p

q
|,

hence p′

q′
6= p

q
. So there are infinitely many such p

q
.

Section 6.2: Continued Fractions

Let x0, x1, x2, . . . be a sequence of real numbers with xi > 0 for i ≥ 1.
The associated sequence of continued fractions is [x0], [x0, x1], [x0, x1, x2], . . .
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defined by the recurrence relation [x0] = x0 and

[x0, x1, . . . , xn] = x0 + 1/[x1, x2, . . . , xn]

for n ≥ 1. The first few terms in the sequence are

x0, x0 +
1

x1

, x0 +
1

x1 + 1
x2

, x0 +
1

x1 + 1
x2+ 1

x3

, . . . .

Any rational number a
b

where b > 0 can be expressed in the form [x0, x1, . . . , xn]
for some choice of integers x0, x1, . . . , xn: by strong induction on b. For
b = 1 we have a

b
= [x0] where x0 = a. Now assume for 1 ≤ b ≤ n that

a
b

= [x0, x1, . . . , xk] for some choice of integers x0, x1, . . . , xk . Given b = n+1,
write a = qb+r where 0 ≤ r ≤ n. If r = 0 then a

b
= [q], but if 1 ≤ r < b then

b
r

= [x0, x1, . . . , xk] and a
b

= q + r
b

= b+ 1/[x0, x1, . . . , xk] = [b, x0, . . . , xk].

Example: Consider the sequence of Fibonacci numbers F0, F1, F2, F3, F4, · · · =
1, 1, 2, 3, 5 . . . . For n ≥ 2 we have

Fn
Fn−1

=
Fn−1 + Fn−2

Fn−1

= 1 +
Fn−2

Fn−1

= [1,
Fn−1

Fn−2

],

hence
1

1
= [1],

2

1
= [1, 1],

3

2
= [1, 1, 1],

5

3
= [1, 1, 1, 1], . . . .

Given an irrational number θ, we have θ0 = θ = a0 + 1/θ1 where θ1 > 1,
θ1 = a1 + 1/θ2 there θ2 > 1, θ2 = a2 + 1/θ3 where θ3 > 1, etc via an = [θn]
and θn+1 = 1/{θn} for all n. This gives rise to the continued fractions

θ = a0 +
1

θ1

θ = a0 +
1

a1 + 1
θ2

θ = a0 +
1

a1 + 1
a2+ 1

θ3

etc. Hence for all n we have

θ = [a0, a1, . . . , an−1, θn].
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Example: we have

√
2 = 1 + (

√
2− 1) = 1 +

1√
2 + 1

,

√
2 + 1 = 2 + (

√
2− 1) = 2 +

1√
2 + 1

,

hence √
2 = [1, 2, 2, . . . , 2, θn]

for all n ≥ 1.

Terminology: The numbers a0, a1, . . . are the partial quotients of θ, the num-
bers θ1, θ2, . . . are the complete quotients of θ, and the numbers [a0, a1, . . . , an]
are the convergents of θ.

Theorem: limn→∞ [a0, a1, . . . , an] = θ when θ is irrational.

Proof: For each n ≥ 0 let (pn, qn) be the coprime pair with qn > 0 that
satisfies

pn
qn

= [a0, a1, . . . , an].

For each n ≥ 1 let (p′n, q
′
n) be the coprime pair with q′n > 0 that satisfies

p′n
q′n

= [a1, a2, . . . , an+1].

We can check directly that p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1. Hence[
p1 p0

q1 q0

]
=

[
a0 1
1 0

] [
a1 1
1 0

]
.

Given
pn
qn

= a0 +
q′n−1

p′n−1

=
a0p
′
n−1 + q′n−1

p′n−1

for n ≥ 2, we also have[
pn pn−1

qn qn−1

]
=

[
a0 1
1 0

] [
p′n−1 p′n−2

q′n−1 q′n−2

]
.
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Hence we can prove by induction that[
pn pn−1

qn qn−1

]
=

[
a0 1
1 0

] [
a1 1
1 0

]
· · ·
[
an 1
1 0

]
.

Taking determinants, this yields∣∣∣∣pn pn−1

qn qn−1

∣∣∣∣ = (−1)n+1.

This implies ∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ =
1

qn−1qn
.

The matrix identity implies[
pn pn−1

qn qn−1

]
=

[
pn−1 pn−2

qn−1 qn−2

] [
an 1
1 0

]
,

hence
pn = anpn−1 + pn−2

and
qn = anqn−1 + qn−2.

Since qn →∞, this implies

lim
n→∞

∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ = 0.

If we can show that
p2n+1

q2n+1

> θ >
p2n

q2n

for all n, then this limit implies that pn
qn
→ θ.

Let x0, x1, x2, . . . with xi > 0 for all i ≥ 1. Let x+
k denote a quantity larger

than xk. We can prove by induction on n that [x0, . . . , x
+
2n] > [x0, . . . , x2n]

and [x0, . . . , x
+
2n+1] < [x0, . . . , x2n+1]. Given that θn > an for all n, we have

p2n+1

q2n+1

= [a0, . . . , a2n+1] > [a0, . . . , θ2n+1] = θ = [a0, . . . , θ2n] > [a0, . . . , a2n] =
p2n

q2n

.
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Example: Applying this to
√

2 = [1, 2, 2, . . . ] we have pn = 2pn−1 + pn−2 and
qn = 2qn−1 + qn−2 for n ≥ 2 with p0 = 1, p1 = 3, q0 = 1, q1 = 2. This yields
the sequence of fractions

1,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
,
577

408
,
1393

985
,
3363

2378
,
8119

5741
· · · −→

√
2.

Example: Setting ai = 1 for all i yields pi = Fi+1 and qi = Fi for all i ≥ 0.
Given that

pn+1

qn+1

= 1 +
qn
pn

for all n, in the limit we obtain θ = 1+1/θ. This implies θ = 1+
√

5
2

. Therefore

lim
n→∞

Fn+1

Fn
=

1 +
√

5

2
.

Section 6.3: Rational Approximations

We can extract a lot of information from the proof above about the conver-
gents pn

qn
= [a0, . . . , an] to an irrational θ:

1. The sequence of differences |θ− pn
qn
| is strictly decreasing. To see this, note

that the recurrence relation

Pn+1 = xn+1Pn + Pn−1

and
Qn+1 = xn+1Qn +Qn−1

holds for any arbitrary sequence x0, x1, x2, . . . satisfying xi > 0 for i ≥ 1 and
Pi/Qi = [x0, x1, . . . xi] for all i with P0 = x0 and Q0 = 1. Setting xi = ai for
0 ≤ i ≤ n and xn+1 = θn+1 we obtain

θ = [a0, a1, . . . , an, θn+1] =
Pn+1

Qn+1

=
θn+1pn + pn−1

θn+1qn + qn−1

.

Substituting this into qnθ − pn and simplifying the numerator using

|pnqn−1 − pn−1qn| = 1
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we obtain

|qnθ − pn| =
1

θn+1qn + qn−1

.

Given that

θn+1qn + qn−1 > qn + qn−1 = (an + 1)qn−1 + qn−2 > θnqn−1 + qn−2,

this implies
|qn+1θ − pn+1| < |qnθ − pn|,

hence ∣∣∣∣θ − pn+1

qn+1

∣∣∣∣ < qn
qn+1

∣∣∣∣θ − pn
qn

∣∣∣∣ .
2. Given an+1 = [θn+1] and qn−1 < qn, we have

an+1qn < θn+1qn + qn−1 < (an+1 + 1)qn + qn = (an+1 + 2)qn.

This yields
1

(an+1 + 2)q2
n

<

∣∣∣∣θ − pn
qn

∣∣∣∣ < 1

an+1q2
n

,

which provides an alternative proof of Dirichlet’s theorem.

3. Infinitely many convergents pn
qn

satisfy |θ − pn
qn
| < 1

2q2n
. To see this, use the

fact that p2n+1

q2n+1
> θ > p2n

q2n
and

∣∣∣pnqn − pn−1

qn−1

∣∣∣ = 1
qn−1qn

to obtain∣∣∣∣θ − p2n

q2n

∣∣∣∣+

∣∣∣∣θ − p2n+1

q2n+1

∣∣∣∣ =

∣∣∣∣p2n+1

q2n+1

− p2n

q2n

∣∣∣∣ =
1

q2nq2n+1

<
1

2q2
2n

+
1

2q2
2n+1

.

So either ∣∣∣∣θ − p2n

q2n

∣∣∣∣ < 1

2q2
2n

or ∣∣∣∣θ − p2n+1

q2n+1

∣∣∣∣ < 1

2q2
2n+1

.

4. Every rational number p/q satisfying |θ−p/q| < 1/2q2 is a convergent to θ:

We must have qn ≤ q < qn+1 for some n. Given that the matrix

[
pn+1 pn
qn+1 qn

]
has determinant (−1)n, we can find integers u and v such that[

p
q

]
=

[
pn+1 pn
qn+1 qn

] [
u
v

]
.
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Since
qn ≤ uqn+1 + vqn < qn+1,

v 6= 0 and u and v have opposite signs. Given that qn+1θ−pn+1 and qnθ−pn
are also of opposite signs, we obtain

|qθ−p| = |u(qn+1θ−pn+1)+v(qnθ−pn)| = |u||qn+1θ−pn+1|+|v||qnθ−pn| ≥ |qnθ−pn|.

Therefore ∣∣∣∣pqn − qpnqqn

∣∣∣∣ =

∣∣∣∣pq − pn
qn

∣∣∣∣ ≤ ∣∣∣∣θ − p

q

∣∣∣∣+

∣∣∣∣θ − pn
qn

∣∣∣∣ =

1

q
|qθ − p|+ 1

qn
|qnθ − pn| ≤

(
1

q
+

1

qn

)
|qθ − p| < q + qn

qqn

1

2q
≤ 1

qqn
≤ 1.

This forces pqn − qpn = 0, p/q = pn/qn.

5. We can actually show that infinitely many convergents satisfy |θ−pn/qn| <
1/
√

5q2. Suppose that there are three consecutive convergents

pn/qn, pn+1/qn+1, pn+2/qn+2

that satisfy |θ − p/q| ≥ c/q2. We will show that c < 1/
√

5. Adding them in
pairs as #3 above we obtain

c

q2
n

+
c

q2
n+1

≤
∣∣∣∣θ − pn

qn

∣∣∣∣+

∣∣∣∣θ − pn+1

qn+1

∣∣∣∣ ≤ 1

qnqn+1

and
c

q2
n+1

+
c

q2
n+2

≤
∣∣∣∣θ − pn+1

qn+1

∣∣∣∣+

∣∣∣∣θ − pn+2

qn+2

∣∣∣∣ ≤ 1

qn+1qn+2

.

Rearranging, we obtain

λ+
1

λ
≤ 1

c
and

µ+
1

µ
≤ 1

c

where λ = qn+1/qn and µ = qn+2/qn+1. This implies

λ ≤ x, µ ≤ x,

where

x =
1 +
√

1− 4c2

2c
.
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Given that qn+2 = an+2qn+1 + qn we have µ = an+2 + 1/λ ≥ 1 + 1/λ. This
yields

1 +
1

x
≤ 1 +

1

λ
≤ µ ≤ x,

x+ 1 ≤ x2.

This forces

x ≥ 1 +
√

5

2
.

In fact, the inequality is strict because equality implies µ is irrational. Given
that x satisfies cx2 − x+ c = 0, we have

c =
x

x2 + 1
.

This is a decreasing function for x ≥ 1, so

c <
1+
√

5
2(

1+
√

5
2

)2

+ 1
=

1√
5
.

In summary, when c ≥ 1√
5
, at least one of three consecutive convergents

always satisfies |θ − p/q| < c/q2, hence infinitely many of them do. This is

best possible: when c < 1√
5

and θ = 1+
√

5
2

, only finitely many convergents

pk/qk satisfy |θ − p/q| < c/q2 and none of the non-convergents do. This is
Hurwitz’s Theorem, proved via Liouville’s Theorem (Section 6.5).

Section 6.4: Quadratic Irrationals

A quadratic irrational is an irrational solution to ax2 + bx + c = 0 where
a, b, c are integers.

Theorem: Let θ be an irrational number, and let a0, a1, . . . be the cor-
responding sequence of partial quotients. Then θ is a quadratic irrational
if and only if its partial quotients are ultimately periodic, i.e. there exists
m ≥ 1 and N such that n ≥ N implies an = an+m = an+2m = · · · .
Proof: First suppose that the partial quotients are purely periodic, i.e.
an = an+m = an+2m = · · · for all N ≥ 0. We can assume without loss of
generality that m ≥ 2. Given that θm = a0 + 1/θm+1, θm+1 = a1 + 1/θ1, ...,
θm has the same convergents as θ, hence is equal to θ. This implies

θ = [a0, a1, . . . , am−1, θ],
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which implies

θ =
θpm−1 + pm−2

θqm−1 + qm−2

,

hence θ is the root of a quadratic equation.

More generally, assume that an = an+m = · · · for n ≥ N . We can assume
N ≥ 2. Then

θ = [a0, . . . , aN−1, ψ]

where ψ is purely periodic. Then

θ =
ψpN−1 + pN−2

ψqN−1 + qN−2

,

and since ψ has the form r +
√
s where r, s ∈ Q, so does θ.

Conversely, let θ be an irrational solution to ax2 + bx + c = 0. Define
f(x, y) = ax2+bxy+cy2 and, for n ≥ 1, the equivalent binary form fn(x, y) =
anx

2 + bnxy + cny
2 where

fn(v) = f(Vnv)

and

Vn =

[
pn pn−1

qn qn−1

]
.

Given

θ =
θn+1pn + pn−1

θn+1qn + qn−1

and
fn(x, y) = f(pnx+ pn−1y, qnx+ qn−1y),

we have
fn(θn+1, 1) = f(θ(qnθn+1 + qn−1), θn+1qn + qn−1) =

(θn+1qn + qn−1)2f(θ, 1) = 0.

Hence θn+1 is a root of anx
2 +bnx+cn = 0. If we can show that there finitely

many triples (an, bn, cn) then there must be a finite number of possibilities for
θn. So at some point we have θN+m = θN , which implies ultimate periodicity
in the sequence a0, a1, a2, . . . by virtue of its definition.

We have an = fn(1, 0) = f(pn, qn), cn = fn(0, 1) = f(pn−1, qn−1) = an−1, and
f(θ, 1) = 0. We also have

an = f(pn, qn) = q2
nf(pn/qn, 1) = q2

n(f(pn/qn, 1)− f(θ, 1)) =
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q2
n(a((pn/qn)2 − θ2) + b((pn/qn)− θ)).

The inequality
|θ − pn/qn| < 1/q2

n

implies

q2
n|θ2 − p2

n/q
2
n| = |qnθ − pn||qnθ + pn| < |θ + pn/qn| ≤ 3|θ|

for sufficiently large n. Hence |an| ≤ M for some M . In other words, there
are finitely many values for an. Since cn and bn are determined by an and
the common discriminant d, there are a finite number of triples (an, bn, cn).

We now characterize the purely periodic quadratic irrationals in terms of
continued fractions. If θ is purely periodic then it satisfies

θ = [a0, a1, . . . , am−1, θ]

for some m, therefore

θ =
θpm−1 + pm−2

θqm−1 + qm−2

,

therefore θ is a root of f(x) = qm−1x
2 + (qm−2 − pm−1)x − pm−2. We have

θ = a0+1/θ1 > 1. The other root θ′ lies between−1 and 0 by the intermediate
value theorem since f(−1) = qm−1 − qm−2 + pm−1 − pm−2 > 0 and f(0) =
−pm−2 < 0.

Conversely, let θ be a quadratic irrational that satisfies θ > 1 and −1 <
θ′ < 0, where θ′ denotes the other root of the quadratic that θ satisfies.
Setting θ0 = θ we have −1 < (θ0)′ < 0. Now assume −1 < (θn)′ < 0. Then
θn = an+1/θn+1, hence (θn)′ = an+1/(θn+1)′, hence −1 < an+1/(θn+1)′ < 0,
hence

− 1

an
< (θn+1)′ < − 1

1 + an
.

Therefore −1 < (θn)′ < 0 for all n. We also have

an − (θn)′ = − 1

(θn+1)′
,

hence, after computing the floor of each expression,

an =

[
− 1

θ′n+1

]
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for each n. Since θ is ultimately periodic with some period m ≥ 1, there is
a minimum value of n such that ak = ak+m for all k ≥ n. If n ≥ 1 we have
θn = θn+m, therefore (θn)′ = (θn+p)

′, therefore an−1 = an+p−1. Contradiction.
Therefore n = 0 and θ is purely periodic.

Now consider θ =
√
d + [

√
d] where d is not a perfect square. Then θ′ =

−
√
d+ [
√
d], therefore −1 < θ < 0, therefore θ is purely periodic. If

√
d+ [
√
d] = [a0, a1, . . . , ap−1]

then √
d = [a0 − [

√
d], a1, . . . , ap].

For example, if θ =
√

2 + 1 then

θ = 2 +
1

θ1

θ1 =
1√

2− 1
=
√

2 + 1 = θ

hence √
2 + 1 = [2, 2, 2, . . . ]

and √
2 = [1, 2, 2 . . . ].

Section 6.5: Liouville’s Theorem

We know that when θ is irrational and |θ − p/q| < 1/2q2 for some rational
number p/q, p/q = pn/qn for some n. Hence if p/q is not a convergent then
|θ − p/q| ≥ 1/2q2. Moreover, we proved earlier that∣∣∣∣θ − pn

qn

∣∣∣∣ > 1

(an + 2)q2
n

for all n. When θ is a quadratic irrational the sequence of partial quotients
a0, a1, . . . is bounded, so a number c > 0 can be found so that |θ − pn/qn| ≥
c/q2

n for all convergents pn/qn. In summary, a quadratic irrational θ satisfies
|θ − p/q| > c/q2 for all rational p/q and some c > 0. Quadratic irrational
numbers fall into a class of numbers called algebraic numbers, and Liouville’s
theorem states that for any algebraic number α with minimal polynomial of
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degree n > 1 there exists a number sufficiently small real number c > 0 such
that |α − p/q| > c/qn for all rationals p/q. We will define algebraic number
carefully, then prove Liouville’s theorem.

A real or complex number α is said to be algebraic if it is a zero of a non-zero
polynomial P (x) with integer coefficients. We can always assume that the
coefficients of P (x) do not have a common divisor. If P (x) and Q(x) are
reduced polynomials of least degree n such that P (α) = Q(α) = 0 then for
any integers a and b we see that α is a root of aP (x)−bQ(x). We can choose a
coprime pair a and b so that aP (x)− bQ(x) has smaller degree than n, which
forces aP (x) = bQ(x). If p is a prime dividing b then, since p cannot divide
all the coefficients of P (x), p divides a. Since (a, b) = 1, this forces |b| = 1,
and similarly |a| = 1. If we further assume that P (x) and Q(x) have positive
leading coefficient then we must have P (x) = Q(x). In other words, there
is a unique reduced polynomial P (x) of minimal degree and positive leading
coefficient such that P (α) = 0, and we call P (x) the minimal polynomial of
α. For example, the quadratic irrational rational

√
2 has minimal polynomial

P (x) = x2 − 2 and we can see that
√

2 is an algebraic number. Note also
that rational numbers p/q are algebraic with minimal polynomial qx−p, but
the degree of the minimal polynomial in this case is 1.

Minimal polynomials are irreducible over the rationals: If P (x) is the minimal
polynomial of α then P (x) = f(x)g(x) implies f(α) or g(α) = 0. We can
multiply f(x) and g(x) by a suitable integers to obtain reduced polynomials
F (x) and G(x) with positive leading term satisfying F (α) = 0 or G(α) = 0,
and minimality of P (x) implies that P (x) = F (x) or P (x) = G(x). Hence
f(x) or g(x) is a scalar multiple of P (x), which implies P (x) is irreducible.

For the purposes of presenting this material rapidly in a lecture, we can say
that α is algebraic if and only if it is the root of a non-zero polynomial with
rational coefficients. The minimal polynomial P (x) is the unique polynomial
of minimal degree and leading coefficient 1 and must be irreducible in Q[x].

To prove Liouville’s theorem, let α be a real algebraic number with minimal
polynomial P (x) of degree n > 1. Let r = p/q be given where q > 0. Then
by the mean-value theorem,

P (α)− P (r) = (α− r)P ′(ξr)
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for some ξr ∈ (α, r). We have P (α) = 0 and, since P (x) is irreducible of
degree ≥ 2 over the rationals, P (r) 6= 0. This implies P ′(ξr) 6= 0. We have

|α− r| =
∣∣∣∣ P (r)

P ′(ξr)

∣∣∣∣ .
Choosing a positive integerM so thatMP (x) has integer coefficients, qnMP (p/q)
is a non-zero integer, hence |P (r)| ≥ 1/Mqn. Hence

|α− p/q| ≥ 1

Mqn|P ′(ξr)|
.

For |α − p/q| ≤ 1 have |ξr| ≤ |ξr − α| + |α| ≤ |r − α| + |α| ≤ 1 + |α|, hence
we can find C ≥ 1 such that |P ′(ξr)| ≤ C, which implies

|α− p/q| ≥ 1

MCqn
.

The latter inequality is also satisfied when |α− p/q| ≥ 1.

For example, consider α = 1+
√

5
2

. Its minimal polynomial is P (x) = x2−x−1.
We have

|α− p/q| ≥ 1

q2|2ξr − 1|

for some ξ between α and p/q. As p/q → α, ξr → α, hence |2ξr − 1| →
√

5.
When |α − p/q| < c′/q2 for some c′ < 1/

√
5 we know that p/q = pk/qk for

some k, which implies

c′/q2
k > |α− pk/qk| ≥

1

q2
k|2ξk − 1|

,

which implies

c′ >
1

|2ξk − 1|
,

which implies
|2ξk − 1| > 1/c′ >

√
5,

which can only happen for a finite number of k. So for all rational numbers
except a finite number of convergents of the form pk/qk, |α − p/q| ≥ c′/q2

when c′ < 1/
√

5. This proves Hurwitz’s theorem.
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Liouville’s theorem says that algebraic numbers α of degree d ≥ 2 are sep-
arated from rational numbers in the sense that qd|α − p/q| ≥ c > 0 for
every rational p/q. So if α is a real number for which there exists a sequence
p1/q1, p2/q2, . . . such that qnn|α − pn/qn| → 0 as n → ∞ then for any d ≥ 2
we have (eventually)

qdn|α− pn/qn| ≤ qnn|α− pn/qn| → 0,

hence α is not algebraic of any degree d (i.e. transcendental). We can replace
the expression qnn by f(n) where qdn ≤ f(n) for any d ≥ 2 and sufficiently

large n, for example f(n) = q
g(n)
n where g(n)→∞.

Example: Let r ∈ (0, 1) be a rational number. Set θ =
∑∞

k=0 r
ψ(k). We will

choose r and ψ(k) ∈ Z so that θ is a transcendental convergent infinite series.
The partial sums sn =

∑n
k=0 r

ψ(k) are rational and we set pn/qn = sn. We
have

θ − pn/qn =
∞∑

k=n+1

rψ(k) = rψ(n+1)

∞∑
k=n+1

rψ(k)−ψ(n+1).

Assuming ψ(n+ i)− ψ(n+ 1) ≥ i for all i ≥ 1 we have(
1

r

)ψ(n+1)

|θ − pn/qn| =
∞∑

k=n+1

rψ(k)−ψ(n+1) → 0.

For example, if r = 1/2 and ψ(n+ 1) = (n+ 1)! then we can set qn = 2n! and
pn = qnsn (verify that pn is an integer), and we have qnn < 2ψ(n+1), therefore

qnn|θ − pn/qn| → 0.

This yields the transcendental number

θ =
∞∑
k=0

1

2k!
.

A proof that e is transcendental: The proof begins with the observation that
for any differentiable function f , if we set I(t, f) = et

∫ t
0
e−xf(x) dx, then

integration by parts yields

I(t, f) = etf(0)− f(t) + I(t, f ′).
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When f(x) is a polynomial, this yields

I(t, f) = et
∑
j≥0

f (j)(0)−
∑
j≥0

f (j)(t)

where the index j is bounded above by the degree of f(x). Now suppose e is
algebraic. Then there exist integers a0, a1, . . . , an, coefficients of the minimal
polynomial of e, that satisfy

a0 + a1e+ · · ·+ anen = 0.

This yields

a0I(0, f) + a1I(1, f) + · · ·+ anI(n, f) = −
n∑
k=0

∑
j≥0

akf
(j)(k).

The right-hand side can be evaluated given information about the coefficients
of f(x), and the left-hand side can be approximated using properties of the
definite integral. The idea is to choose f(x) to yield a contradiction.

Details: consider the polynomial

f(x) = xp−1(x− 1)p · · · (x− n)p

where p > n is prime. We claim that all the expressions f (j)(k) are divisible
by p! for j ≥ 0 and 0 ≤ k ≤ n except f (p−1)(0), and the latter is divisible
by (p − 1)! and not p. To see this, note that for 1 ≤ k ≤ n the polynomial

f(x + k) is divisible by xp. Since the coefficient of xj in f(x + k) is f (j)(k)
j!

,

f (j)(k) = 0 for j < p and f (j)(k) is a multiple of j! for j ≥ p. Since the

coefficient of xj in f(x) is f (j)(0)
j!

, f (j)(0) = 0 for j < p − 1 and f (j)(0) is a

multiple of j! for j > p − 1. The coefficient of xp−1 in f(x) is (−1)np(n!)p,
hence f (p−1)(0) = (p − 1)!(−1)np(n!)p is a multiple of (p − 1)! that is not
divisible by p.

Let f(x) denote the polynomial

f(x) = xp−1(x+ 1)p · · · (x+ n)p.

Then f(k) ≤ (2n)2np for each 0 ≤ k ≤ n.
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We return to the identity

a0I(0, f) + a1I(1, f) + · · ·+ anI(n, f) = −
n∑
k=0

∑
j≥0

akf
(j)(k).

Since a0 6= 0, and given the information we have about f(x) above, the
right-hand side in this identity is a non-zero multiple of (p− 1)!. This yields

|a0||I(0, f)|+ |a1||I(1, f)|+ · · ·+ |an||I(n, f)| ≥ (p− 1)!.

On the other hand,

|I(t, f)| =
∣∣∣∣et ∫ t

0

e−xf(x) dx

∣∣∣∣ ≤ et
∫ t

0

e−xf(x) dx.

Since ∫ t

0

e−xxj dx ≤
∫ t

0

xj ≤ tj+1,

we have
|I(t, f)| ≤ tetf(t).

Combined with the inequalities above this implies

(|a1|e+ 2|a2|e2 + · · ·+ n|an|en)(2n)2np ≥ (p− 1)!.

So there exist integers a, k > 0 such that

akp ≥ (p− 1)!

for all primes p > n. This is impossible: for p ≥ k + 2,

(p− 1)! = k!(k + 1) · · · (p− 1) ≥ k!(k + 1)p−k−1,

a ≥ (p− 1)!

kp
≥ k!

(k + 1)k+1

(
k + 1

k

)p
,

and
(
k+1
k

)p →∞ as p→∞.

Section 6.7: Minkowski’s Theorem

Given a bounded region X ⊆ Rn we define

vol(X) =

∫
X

1 dx1dx2 · · · dxn.

67



Given an n× n matrix A, we have

vol(AX) = | det(A)|vol(X)

by the change-of-variables theorem.

Let a1, a2, . . . , an be a basis for Rn. These vectors define an integer lattice Λ
via

Λ = spanZ(a1, a2, . . . , an).

In other words, Λ consists of all vectors of the form Au where A is the
matrix whose columns are a1, a2, . . . , an and u is a column vector with integer
coordinates. The parameter d(Λ) denotes the determinant of A.

A symmetric convex body S ⊆ Rn is an open, bounded set that satisfies
three properties: 0 ∈ S, x ∈ S implies −x ∈ S, and x, y ∈ S and 0 < t < 1
implies tx+ (1− t)y ∈ S.

Minkowski’s theorem states that if vol(S) > 2nd(Λ) then S contains a non-
zero point in Λ. For the proof, set S0 = A−1S. Then S0 is a convex body
with vol(S0) > 2n, and it suffices to find a non-zero point integral point in
S0. Let S1 = 1

2
S0. Then S1 is a symmetric convex body with vol(S1) > 1. A

partition of S1 is
⋃
u S1(u), where

S1(u) = {x ∈ S1 : ui ≤ xi < ui+1 for 1 ≤ i ≤ n}.

Note that S1(u)−u has the same volume as S1(u) for each u and S1(u)−u ⊆
[0, 1]n. Since ∑

u

vol(S1(u)− u) > 1

and
vol([0, 1]n) = 1,

there must be distinct integral points u, v such that

(S1(u)− u) ∩ (S1(v)− v) 6= ∅.

Let z be an element in the intersection. Then z = x− u for some x ∈ S1(u)
and z = y − v for some y ∈ S1(v). So we have z = 1

2
X − u and z = 1

2
Y − v

for some X, Y ∈ S0. Writing Y = −Y ′ we have Y ′ ∈ S0. So now we have

1

2
X − u = z = −1

2
Y ′ − v,
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1

2
X +

1

2
Y ′ = u− v.

By convexity, 1
2
X + 1

2
Y ′ ∈ S0, and this is a non-trivial integral point in Rn.

In summary, if a convex body S is symmetric about the origin and has volume
greater than 2n times the determinant defining a lattice, then it contains a
non-trivial point in the lattice. In particular, if λ1 · · ·λn > det(A) then for
m = 1, 2, 3, . . . there is a non-zero um ∈ Zn such that

Au ∈ (−λ1, λ1)× · · · × (−λn − 1/m, λn + 1/m).

Inspecting the sequence u1, u2, u3, . . . we see that there are only a finite
number of distinct terms, so one of them, call it u, satisfies

Au ∈ (−λ1, λ1)× · · · × [−λn, λn].

Example 1: Let θ1, . . . , θn be real numbers and define

A =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
θ1 θ2 · · · θn −1

 ,

λ1 = Q, . . . , λn = Q, λn+1 = Q−n. Then there exist integers q1, q2, . . . , qn, p,
not all zero (the coordinates of u), such that |q1|, . . . , |qn| < Q and

|q1θ1 + · · ·+ qnθn − p| ≤ Q−n.

Example 2: Let θ1, . . . , θn be real numbers and define

A =


−1 0 · · · 0 θ1

0 −1 · · · 0 θ2
...

...
...

...
...

0 0 · · · −1 θn
0 0 · · · 0 1

 ,
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λ1 = 1/Q, . . . , λn = 1/Q, λn+1 = Qn. Then there exist integers p1, p2, . . . , pn, q,
not all zero (the coordinates of u), such that

|qθ1 − p1|, |qθ2 − p2|, . . . , |qθn − pn| < 1/Q

and |q| ≤ Qn. For further results, see Cassels’ An Introduction to the Geom-
etry of Numbers.

Chapter 6 Exercises

1. Write θ = [1, 2, 3, 1, 4]. Then θ is a quadratic irrational. We first determine
φ = [1, 4]. We have

φ = [1, 4, φ].

Writing the convergents to [a0, a1, a2] we have[
p2 p1

q2 q1

]
=

[
a0 1
1 0

] [
a1 1
1 0

] [
a2 1
1 0

]
=

[
1 1
1 0

] [
4 1
1 0

] [
φ 1
1 0

]
=

[
1 + 5φ 5
1 + 4φ 4

]
.

Hence

φ =
p2

q2

=
1 + 5φ

1 + 4φ
,

φ ∈ {1

2

(
1−
√

2
)
,
1

2

(
1 +
√

2
)
}.

Since a0 = 1 we must have

φ =
1

2

(
1 +
√

2
)
.

Now we can write θ = [1, 2, 3, φ]. Writing the convergents to [a0, a1, a2, a3]
we have[
p3 p2

q3 q2

]
=

[
a0 1
1 0

] [
a1 1
1 0

] [
a2 1
1 0

] [
a3 1
1 0

]
=

[
1 1
1 0

] [
2 1
1 0

] [
3 1
1 0

] [
φ 1
1 0

]
=

[
3 + 10φ 10
2 + 7φ 7

]
.

Hence

θ =
p3

q3

=
3 + 10φ

2 + 7φ
= − 2

23

(
−18 +

√
2
)
.
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Mathematica yields

ContinuedFraction

[
− 2

23

(
−18 +

√
2
)
, 10

]
= {1, 2, 3, 1, 4, 1, 4, 1, 4, 1}.

(ii) Using the program myContinuedFraction which I wrote in Mathematica,
the continued fraction representing 3.1415926 is [3, 7, 15, 1, 243, · · · ]. Apply-
ing myConvergents to this yields the list {3, 22/7, 333/106, 355/113, 86598/27565, . . . }.
So |3.1415926− 355/113| < 1

243(113)2
. This implies

|π−355/113| ≤ |π−3.1415926|+|3.1415926−355/113| < 10−7+
1

243(113)2
< 10−6.

(iii) We have θ = a+
√
a2+4
2

= [a, a, . . . ], θ′ = a−
√
a2+4
2

. This yields the recur-
rence relation

q0 = 1, q1 = a, qn = aqn−1 + qn−2 (n ≥ 2),

the solution to which is

qn = α(θ)n+1 + β(θ′)n+1

for a suitable α and β. Using the initial conditions we obtain

α =
1√

a2 + 4
=

1

θ − θ′
, β =

−1√
a2 + 4

=
−1

θ − θ′
.

We obtain the Fibonacci sequence when a = 1.

(iv) The recurrence relation in (iii) suggests that a floor for qn is given by the

Fibonacci numbers F0, F1, F2, . . . . So we must argue Fn ≥
(

1+
√

5
2

)n−1

. This

is true for n = 0 and n = 1. Assuming it true for F0 through Fn, we have

Fn+1 ≥

(
1 +
√

5

2

)n−1

+

(
1 +
√

5

2

)n−2

=

(
1 +
√

5

2

)n

since the number x = 1+
√

5
2

satisfies x−1 + x−2 = 1. On the other hand, if
an ≤ a for all n then the recurrence relation in (iii) says that qn ≤ Qn where
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Qn is the solution to the recurrence relation in (iii). The latter sequence

satisfies Qn ≤
(
a+
√
a2+4
2

)n
for n = 0 and n = 1. Assuming this is true for Q0

through Qn, we have

Qn+1 = aQn+Qn−1 ≤ a

(
a+
√
a2 + 4

2

)n

+

(
a+
√
a2 + 4

2

)n−1

=

(
a+
√
a2 + 4

2

)n+1

since x = a+
√
a2+4
2

satisfies ax+ 1 = x2.

(v) We will first look at convergents. We have |e− pn
qn
| > 1

(an+2)q2n
. We want

to show 1
an+2

> c
log qn

for an appropriate c > 0. In other words, qn > ec(an+2).

This is clear because qn grows exponentially by (iv) and an is bounded by
a linear function. Now if some |e − p/q| < c/q2 log q then it must be a
convergent (choosing c sufficiently small), and this is not possible.

(vi) Thue-Siegel-Roth says that algebraic numbers α of degree d ≥ 2 are
separated from rational numbers in the sense that qκ|α− p/q| ≥ c(α, κ) > 0
for every rational p/q for any given κ > 2. So if α is a real number for which
there exists a sequence p1/q1, p2/q2, . . . such that f(n)|α − pn/qn| → 0 as
n→∞ where qκn

f(n)
= O(1) for some κ > 2 then we have

qκn|α− pn/qn| =
qκn
f(n)

f(n)|α− pn/qn| → 0,

hence α is transcendental.

Now set α =
∑∞

k=1
1

abk
where a ≥ 2 and b ≥ 3 are integers. This is convergent

by comparison with the geometric series. Set

pn
qn

=
n∑
k=1

1

abk
.

We have

α− pn
qn

=
∞∑

k=n+1

1

abk
=

1

abn+1

∞∑
k=n+1

1

abk−bn+1 ,

ab
n+1 |α− pn

qn
| =

∞∑
k=n+1

1

abk−bn+1 → 0.
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(The sum on the right approaches 0 as n→∞ by comparison with the tails
of the geometric series.) Setting qn = ab

n
and f(n) = ab

n+1
we have

qbn
f(n)

= 1.

Hence α is transcendental using κ = b.

(vii) Minkoski’s theorem says that if vol(S) > 4|∆| then S will contain a
point of the lattice. Setting S = {(x, y) : |x| + |y| ≤

√
2|∆|} we obtain a

square with vertices at (0,±
√

2|∆|) and (±
√

2|∆|, 0) with area 4|∆|, so L
and M can be found. The point (|L|, |M |) lives in a rectangle inside the
region bounded by the x-axis, the y-axis, and the line y =

√
2|∆| − x, hence

|LM | is the bounded above by the maximum inscribed area. The latter is

generated by the square corresponding to the point (

√
2|∆|
2

,

√
2|∆|
2

), which has

area |∆|
2

.

(viii) Construct a counterexample using the parameters given.

(ix) I’d like to see a proof of Kronecker’s Theorem first!

Chapter 7: Quadratic Fields

Vector space and field: Let d be a square-free integer other than 1. Then

Q(
√
d) = {u+ v

√
d : u, v ∈ Q}.

This is a vector space over Q with basis {1,
√
d}. It is also a field: one can

check closure with respect to addition and multiplication and the existence
of additive inverses. Moreover, since

√
d is irrational, u + v

√
d ∈ Q(

√
d)∗

implies u2 − v2d 6= 0 implies (u + v
√
d)−1 = u

u2−v2d −
v

u2−v2d

√
d ∈ Q(

√
d).

Since Q(
√
d) has dimension 2 over the rationals, every α ∈ Q(

√
d) its the

root of a non-zero rational polynomial of degree 2, hence is algebraic.

Linear Operator and norm: For each α ∈ Q(
√
d) we obtain a linear

operator Lα : Q(
√
d)→ Q(

√
d) via Lα(β) = αβ. Now set α = u+v

√
d. Then

Lu+v
√
d(1) = u+v

√
d and Lu+v

√
d(
√
d) = dv+u

√
d, hence Lu+v

√
d has matrix

representation

[
u dv
v u

]
. The norm of u+ v

√
d is the determinant of Lu+v

√
d,

hence N(u + v
√
d) = u2 − dv2. Since LαLβ = Lαβ, N(α)N(β) = N(αβ).

This yields the identity

(u2
1 − dv2

1)(u2
2 − dv2

2) = (u1u2 + v1v2d)2 − d(u1v2 + u2v1)2.
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Note also that N(α) = αα where α is the conjugate of α.

Algebraic integer: A number whose minimal polynomial (rational poly-
nomial of least degree with leading coefficient 1) has integer coefficients.

Degree 1 algebraic integer: minimal polynomial x − k for some k ∈ Z,
hence ordinary integers.

Degree 2 algebraic integers: Let x = u + v
√
d be an algebraic integer

with v 6= 0. We can find a rational polynomial satisfied by x as follows:
Using Lx as above we have[

x 0
0 x

] [
1√
d

]
=

[
u dv
v u

] [
1√
d

]
[
x− u −dv
−v x− u

] [
1√
d

]
=

[
0
0

]
.

Hence

x2 − 2xu+ (u2 − dv2) = det

[
x− u −dv
−v x− u

]
= 0.

Hence the minimal polynomial is x2− 2ux+ (u2− dv2). Since x is algebraic,
2u ∈ Z and N(x) = u2 − dv2 ∈ Z. Conversely, any x having this minimal
polynomial is an algebraic integer.

Characterization of degree 2 algebraic integers:

Write 2u = m, u2 − dv2 = n, v = p/q where (p, q) = 1. Then

u2 − dv2 = n

4u2 − 4dv2 = 4n

m2 − 4dv2 = 4n

q2m2 − 4dp2 = 4nq2

q2(m2 − 4n) = (2p)2d.

Since d is square-free, we must have q2|(2p)2, hence q|2p, hence q ∈ {1, 2}.
We will write 2v = k. We now have m2 − dk2 = 4n, hence m2 ≡ dk2 mod 4.
Bearing in mind that m2, k2 ≡ 0, 1 mod 4, consider the cases:

d ≡ 0 mod 4: Not possible since d is square-free.
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d ≡ 1 mod 4: m2 ≡ k2 mod 4, hence m and k have the same parity. Writing
m = k + 2p, we have

x =
k + 2p

2
+
k

2

√
d = p+ k

1 +
√
d

2
.

d ≡ 2 mod 4: m2 ≡ 2k2 mod 4, therefore m and k are even, u and v are
integers, and

x = u+ v
√
d.

d ≡ 3 mod 4: m2 ≡ 3k2 mod 4, therefore m and k are even, u and v are
integers, and

x = u+ v
√
d.

The ring Rd of algebraic integers in Q(
√
d): We have found necessary

conditions above for x to be an algebraic integer, but one can check that they
are also sufficient, given the polynomial satisfied by x. Setting Rd equal to
the set of algebraic integers Q(

√
d), we have

Rd =

{
Z[1, 1+

√
d

2
] d ≡ 1 mod 4

Z[1,
√
d] d ≡ 2, 3 mod 4.

In particular, Rd is a ring and is closed with respect to conjugation.

Every algebraic integer has an integer norm. To see this, let α ∈ Rd and
write α = x+ yω where

ω =

{√
d d ≡ 1 mod 4

1+
√
d

2
d ≡ 2, 3 mod 4.

Then

N(α) = αα =

{
x2 + xy + 1−d

4
y2 d ≡ 1 mod 4

x2 − dy2 d ≡ 2, 3 mod 4.

We can interpret N(x+ yω) as a binary quadratic form f(x, y) with discrim-
inant

d(f) =

{
d d ≡ 1 mod 4

4d d ≡ 2, 3 mod 4.
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Units, primes, and irreducibles in Rd: We will define the units in Rd

to be the set Ud of invertible elements in Rd. If ε ∈ Ud then εε′ = 1 for
some ε′ ∈ Ud, hence 1 = N(1) = N(εε′) = N(ε)N(ε′), hence N(ε) = ±1.
Conversely, if α ∈ Rd and N(α) = ±1 then αα = ±1 hence α−1 = ±α ∈ Rd.
So we have proved

Ud = {α ∈ Rd : N(α) = ±1}.
In other words, the units in Rd are the numbers in Rd norm a unit in Z.

We say that a|b in Rd if a = bc for some c ∈ Rd. Primes π ∈ Rd are non-zero
non-units that satisfy π|ab =⇒ π|a or π|b. Irreducibles π ∈ Rd are non-zero
non-units that satisfy π = ab =⇒ a or b is a unit.

Primes are irreducible: Let π be prime and suppose π = ab. Then π|a or
π|b. If π|a, write write a = πa0. Then 1 = a0b, therefore b is a unit. But if
π 6 | a then π|b, therefore a is a unit.

Not all irreducibles are primes: Note that a = bc implies N(a) = N(b)N(c)
and a|b implies N(a)|N(b). We can use these properties to show that 2 is
irreducible but not prime in R−5. Since −5 ≡ 3 mod 4 we have R−5 =
Z[1,
√
−5]. Suppose

2 = (x1 + y1

√
−5)(x2 + y2

√
−5).

Take norms,
4 = (x2

1 + 5y2
1)(x2

2 + 5y2
2).

Since x2 + 5y2 = 2 has no solution, one of the two norms on the right is 1,
hence one of the two factors is a unit. Therefore 2 is irreducible. On the other
hand, 2|(1 +

√
−5)(1−

√
−5) yet 2 is a divisor of neither factor since there is

no algebraic integer x + y
√
−5 ∈ R−5 that satisfies 1±

√
−5 = 2(x + y

√
2).

Hence 2 is not prime.

Every non-zero non-unit α in Rd can be factored into irreducibles: by in-
duction on |N(α)| ≥ 2. If |N(α)| = 2, write α = βγ. Taking norms,
N(α) = N(β)N(γ) so |N(β)| = 1 or |N(γ)| = 1, therefore β or γ is a unit.
Now consider |N(α)| > 2. If α is not irreducible then there must be a way
to factor it in the form α = βγ where neither factor is a unit. Taking norms
we see that 1 < |N(β)|, |N(γ)| < |N(α)|, hence β and γ are products of
irrreducibles, hence α is a product of irrreducibles.

Unique factorization into irreducibles in Rd: When all irreducibles are
primes in Rd, we have unique factorization of non-units in Rd into irreducibles
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in the following sense: When x1 · · ·xm = y1 · · · yn in Rd with each xi and yj
irreducible, then m = n and there are units u1, . . . , un and a permutation
σ such that yi = uixσ(i) for each i. We will prove this by induction on n.
When n = 1 we have x1 · · · xm = y1. Since y1 is irreducible, this forces
m = 1 and x1 = y1. Assume the statement is true for a given n. Suppose
x1 · · ·xm = y1 · · · yn+1. Then m > 1. The product on the right is divisible
by x1, and since x1 is prime it has to be a divisor of some yj. Reordering
if necessary, j = 1 and y1 = u1x1 for some unit u1. Cancelling off x1 we
obtain x2 · · ·xm = u1y2 · · · yn+1. Equivalently, (v1x2) · · ·xm = y2 · · · yn+1

where u1v1 = 1. We can use the induction hypothesis provided v1x2 is
irreducible. It is: If v1x2 = αβ then x2 = (u1α)β, therefore u1α is a unit or
β is a unit, hence α is a unit or β is a unit.

By consideration of norms we can prove that 2, 3, 1 +
√
−5, 1 −

√
−5 are

irreducible in R−5 and neither number in {2, 3} is an associate of either of
the numbers in {1 +

√
−5, 1−

√
−5}. On the other hand,

(2)(3) = (1 +
√
−5)(1−

√
−5).

Hence unique factorization into irreducibles fails in R−5.

Units in Rd where d < 0: For d ≡ 1 mod 4, i.e. d = 1− 4k, we have

N(x+ yω) = x2 + xy + ky2.

This is a reduced binary quadratic form. When k ≥ 2 the output 1 occurs
only with (x, y) = (±1, 0), so the units in Rd are ±1. When k = 1 the output
1 occurs only with (x, y) = (±1, 0), (0,±1),±(1,−1), so the units in R−3 are

±1 and ±1+
√
−3

2
and ±1−

√
−3

2
.

For d ≡ 2 mod 4, i.e. d = 2− 4k, we have

N(x+ yω) = x2 + (4k − 2)y2.

This form is reduced for all k ≥ 1 and the only units are ±1. For d ≡ 3 mod
4, i.e. d = 3− 4k, we have

N(x+ yω) = x2 + (4k − 3)y2.

This form is reduced for all k ≥ 1. For k ≥ 2 the only units are ±1. When
k = 1 the units in R−1 are ±1,±i.
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Summary:

R−1 has units ±1,±i, roots of x2 + 1.

R−2 has units ±1, roots of x2 − 1.

R−3 has units ±1,±1±
√

3i
2

, roots of x6 − 1.

R−k has units ±1 for k ≥ 5 and k square-free, roots of x2 − 1.

Units in Rd where d > 0: Consider a square-free integer d ≥ 2. (Actually,
all we require is

√
d irrational.) We can construct infinitely many units in

Q[
√
d] as follows:

√
d is irrational and its convergents pn/qn satisfy

|
√
d− pn/qn| < 1/q2

n.

Hence
pn − qn

√
d = cos(θn)/qn

pn + qn
√
d = cos(θn)/qn + 2qn

√
d

|N(pn − qn
√
d)| = | cos(θn)2/q2

n + 2 cos(θn)
√
d| ≤ 1 + 2

√
d.

Since the sequence of norms N(pn − qn
√
d) is bounded, there is an infinite

subsequence of constant norm N . We can finitely partition this subsequence
according to ([pn]N , [qn]N), congruence classes mod N , and one of the parts
of this partition is infinite. Hence there exist infinitely many pairs m < n
such that pm ≡ pn mod N and qm ≡ qn mod N and p2

m−dq2
m = p2

n−dq2
n = N .

Setting

η =
pm − qm

√
d

pn − qn
√
d

=
pmpn − dqmqn

N
+
pmqn − pnqm

N

√
d,

we have
pmpn − dqmqn ≡ p2

n − dq2
n ≡ 0 mod N

and
pmqn − pnqm ≡ 0 mod N.

Hence η ∈ Rd and has norm 1. Note that η = x− y
√
d satisfies x2− dy2 = 1,

so it is a solution to the Diophantine equation known as Pell’s equation.
This argument shows that there are an infinite number of solutions to this
equation.
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We can characterize the set of units Ud in Rd as follows: we first claim that
there is a unit µ = x + y

√
d > 1. If η > 1, use η. If 0 < η < 1, use

1/η. If −1 < η < 0, use −1/η. If η < −1, use −η. Secondly, we claim
that any unit x + y

√
d > 1 satisfies x, y > 0. For if N(x + y

√
d) = 1

then x+ y
√
d > (x+ y

√
d)−1 = x− y

√
d > 0, and if N(x+ y

√
d) = −1 then

x+y
√
d > (x+y

√
d)−1 = −x+y

√
d > 0, and both statements yield x, y > 0.

Therefore Ud∩(1,∞) has a minimum element ε: let x0 be minimum such that
there exists at unit x0 + y0

√
d > 1. If x1 + y1

√
d < x0 + y0

√
d in Ud ∩ (1,∞)

then 0 ≤ x1 − x0 < (y0 − y1)
√
d, hence y1 < y0. This is satisfied by only

finitely many values of y1, hence by only finitely many values of x1 + y1

√
d

since the value of y1 determines the value of x1 uniquely. We can identify
ε as the minimum element of {xi + yi

√
d : i ≥ 0}. Every other unit can be

expressed in terms of ε: for any other unit δ with δ > 1 we have εn ≤ δ < εn+1

for some n, hence 1 ≤ δ/εn < ε. Since δ/εn is a unit and ε is the smallest
unit > 1, we must have δ/εn = 1, i.e. δ = εn. So the set of all units > 1 is
{εk : k ≥ 1}, which implies that the set of all units is {±εk : k ∈ Z} by the
argument at the beginning of the pargraph.

Euclidean Fields: Certain quadratic fields, called Euclidean, are endowed
with an analogue of the division algorithm: for each α, β ∈ Rd with β 6= 0
there exist δ, ρ ∈ Rd such that

α = δβ + ρ

with |N(ρ)| < |N(δ)|. This gives rise to an analogue of Euclid’s algorithm for
constructing the greatest common divisor of α and β 6= 0: Form the sequence
α0, α1, α2, . . . with |N(α1)| > |N(α2)| > · · · ≥ 0 via α0 = α, α1 = β, and for
k ≥ 2, αk−2 = δk−2αk−1 + αk where 0 ≤ |N(αk)| < |N(αk−1)|. The sequence
has to terminate with some αn = 0 for some n ≥ 2, and αn−1 is a greatest
common divisor in the sense that αn−1|α and αn−1|β, and whenever x|α and
x|β we must have x|αn−1. All greatest common divisors divide each other,
hence are associates of each other. To see that αn−1 is a greatest common
divisor, observe that the recurrence relation can be expressed in the form[

αk−2

αk−1

]
=

[
δk−2 1

1 0

] [
αk−1

αk

]
.

This can be used to obtain[
δ0 1
1 0

] [
δ1 1
1 0

]
· · ·
[
δn−2 1

1 0

] [
αn−1

0

]
=

[
α0

α1

]
.
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Simplifying, [
x y
z w

] [
αn−1

0

]
=

[
α
β

]
.

Hence [
xan−1

zan−1

]
=

[
α
β

]
.

So we can see that αn−1 is a common divisor of α and β. Moreover if δ is
a divisor of both α and β then the recurrence relation can be used to show
that δ divides each αk, including αn−1. Hence δ|αn−1 and αn−1 is a greatest
common divisor. All greatest common divisors are associates of each other.

Note that the inverse of

[
δk 1
1 0

]
is

[
0 1
1 −δk

]
. This implies that

[
αn−1

0

]
=

[
0 1
1 −δn−2

] [
0 1
1 −δn−3

]
· · ·
[
0 1
1 −δ0

] [
α0

α1

]
.

Hence given algebraic integers α and β with greatest common divisor δ there
is a pair of algebraic µ and ν such that µα + νβ = δ. Whenever we have
µα + νβ = ρ we must have δ|ρ. In particular, when µα + νβ = 1 we must
have δ|1, hence δ is a unit. Conversely when the greatest common divisor of
α and β is a unit, i.e. α and β are coprime, there exist µ and ν such that
µα + νβ = 1.

Euclidean quadratic fields have unique factorization: let π be an irreducible
algebraic integer in a Euclidean quadratic field Q(

√
d) and suppose π|αβ. We

will show that π|α or π|β. Assume π 6 | α. We claim that π and α are coprime.
To see this, suppose δ|π and δ|α. Write π = π0δ and α = α0δ. If δ is not a
unit then π0 is a unit and α = α0π

−1
0 π hence π|α: contradiction. Therefore δ

must be a unit, hence a divisor of 1. Given that π and α are coprime, there
exist µ and ν such that µπ + να = 1, which yields µπβ + ναβ = β, and
since π|αβ, π|β. Hence π is prime. We have shown that all irreducibles are
primes, so there is unique factorization in Rd when it is Euclidean.

Our task now is to identify d such that Rd is Euclidean.

Necessary conditions for Rd to be Euclidean:

First consider d ≡ 2, 3 mod 4. Then Rd = Z[1,
√
d] and there exist integers

x1, y1, x2, y2 such that
√
d = 2(x1 + y1

√
d) + (x2 + y2

√
d)
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where |x2
2− dy2

2| < 4. When d ≤ −5 we have x2
2 + 5y2

2 < 4, hence y2 = 0 and

√
d = (2x1 + x2) + 2y1

√
d,

which is not possible because 2y1 6= 1. Hence d ≥ −2 is necessary.

Next consider d ≡ 1 mod 4. Then Rd = Z[1, 1+
√
d

2
], and there exist integers

x1, y1, x2, y2 such that

1 +
√
d

2
= 2

(
x1 + y1

1 +
√
d

2

)
+

(
x2 + y2

1 +
√
d

2

)

where |(x2 + y2)2 − dy2
2/4| < 4. When d ≤ −15, y2 = 0. This yields

1 +
√
d

2
= (2x1 + x2) + 2y1

1 +
√
d

2
,

which forces 2y1 = 1, which is not possible. Hence d ≥ −11 is necessary.

Sufficient conditions for Rd to be Euclidean:

Let α, β ∈ Rd with β 6= 0. Write α/β = u + v
√
d where u, v ∈ Q. Consider

the cases.

d ≡ 2, 3 mod 4: Algebraic integers are of the form x + y
√
d where x, y ∈ Z.

Choosing x closest to u and y closest to v we have

α = (x+ y
√
d)β + (r + s

√
d)β

where |r|, |s| ≤ 1
2
. Restricting d to |d| ≤ 3 we have d ∈ {−2,−1, 2, 3}. When

|d| ≤ 2 we have

|r2 − ds2| ≤ r2 + 2s2 ≤ 3

4
.

When d = 3 we have

−3/4 ≤ −3s2 ≤ r2 − 3s2 ≤ r2 ≤ 1

4
.

In all cases

|N((r + s
√
d)β)| ≤ 3

4
|N(β)| < |N(β)|.

Conclusion:
Q(
√
−2),Q(

√
−1),Q(

√
2),Q(

√
3)
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are Euclidean.

d ≡ 1 mod 4: Algebraic integers are of the form x+ y
2

+ y
2

√
d where x, y ∈ Z.

Choose y so that y
2

is closest to v, then choose x so that x + y
2

is closest to
u, i.e. x is closest to u− y

2
. This yields

α = (x+ y
1 +
√
d

2
)β + (r + s

√
d)β

where |r| ≤ 1
2

and |s| ≤ 1
4
. Restricting d to |d| ≤ 13 we have d ∈ {−11,−7,−3, 5, 13}.

When |d| ≤ 11,

|r2 − s2d| ≤ r2 + 11s2 ≤ 15

16
.

When d = 13,
−13

16
≤ −13s2 ≤ r2 − 13s2 ≤ r2 ≤ 1

4
.

In all cases

|N((r + s
√
d)β)| ≤ 15

16
|N(β)| < |N(β)|.

Conclusion:

Q(
√
−11),Q(

√
−7),Q(

√
−3),Q(

√
5),Q(

√
13)

are Euclidean.

Section 7.6: The Gaussian Field

The Gaussian Field Q(i) is Euclidean and has ring of algebraic integers R =
Z[1, i]. We will give a complete description of the units and primes in R.

Units: As determined above, 1,−1, i,−i.
Primes: Any irreducible π divides its norm, therefore divides a prime number,
which must be unique (π|p and π|q where p 6= q implies π|(px + qy) and in
particular π|1: contradiction). We will characterize irreducibles according to
the prime numbers they divide.

Let p be a prime number. Write p = π1 · · · πn (factored into irreducibles).
Taking norms, p2 = N(π1) · · ·N(πn), hence n ≤ 2. There are two cases to
consider.

Case 1: −1 is a quadratic residue mod p. Then we have x2 + 1 divisible by
p, which rules out p irreducible (lest p|(x +

√
−1) or p|(x −

√
−1), which
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impossible). Hence p = (a1 + b1

√
−1)(a2 + b2

√
−1), which forces p = (a +

b
√
−1)(a − b

√
−1) = a2 + b2. The corresponding irreducibles are associates

of a+ b
√
−1 where a2 + b2 = p.

Case 2: When−1 is not a quadratic residue mod p we cannot have a2+b2 = p,
so p is irreducible.

The prime numbers p for which −1 is a quadratic residue mod p are 2 and
odd primes of the form p ≡ 1 mod 4. So the irreducibles in R−1 are associates
of a+b

√
−1 whenever a2 +b2 = p for some prime p, which occurs when p = 2

and p ≡ 3 mod 4, and all primes p ≡ 3 mod 4.

Chapter 7 Exercises

(i) N(1 +
√

2) = −1, hence 1 +
√

2 is a unit in Q(
√

2). It is certainly the
smallest unit greater than 1 of the form x + y

√
d where x, y > 0 belong to

Z, hence it generates all the units as described in Section 7.3 above. Also,
N(2 +

√
3) = 1 and N(1 +

√
3) = −2 and 1 + k

√
3 > 2 +

√
3 when k ≥ 2,

hence the units in Q(
√

3) are ±(2 +
√

3)n, n ∈ Z. Just out of curiosity, we
have (2 +

√
3)5 = 362 + 209

√
3, and 3622 − 3(209)2 = 1.

(ii) By construction, α = 1+n
√
d

1−n
√
d

satisfies N(α) = 1. We just have to verify

that it can expressed in terms of the appropriate integral basis, {1,
√
d} if d ≡

2, 3 mod 4 or {1, 1+
√
d

2
} if d ≡ 1 mod 4. Checking cases yields a finite number

of values of n and d. Examples are α = 1,−3− 2
√

2,−2−
√

3, −3−
√

5
2

, i.

(iii) Let p be a prime number. Then p is divisible by at least one irreducible πp
and we can write p = αpπp. If p and q are distinct primes with πp = πq then,
choosing integers r and s such that rp+ sq = 1, we have rαpπp + sαqπp = 1,
hence πp(rαp + sαq) = 1, hence πp is a unit. Contradiction. So the πp are
distinct.

(iv) 2 = (−1 +
√

3)(1 +
√

3). Factors have norm −2, hence are not units.
Therefore 2 is not irreducible.

(v) 2 is irreducible: If 2 = αβ then 4 = N(α)N(β). If neither α nor β
is a unit then ±2 = N(α) = x2 + 6y2, which is impossible. Similarly 3 is
irreducible.

√
−6 is irreducible: suppose

√
−6 = αβ. Then 6 = N(α)N(β).

We have seen that neither norm in the product is 2 or 3, which just leaves
1 or 6. The numbers 2 and 3 are not associates of the numbers

√
−6 by

comparison of norms. So R−6 does not have unique factorization.
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(vi) Write (x1 + y1

√
−17)(x2 + y2

√
−17) = 1 +

√
−17. Taking norms, (x2

1 +
17y2

1)(x2
2 + 17y2

2) = 18. The only possibilities for x2
1 + 17x2

2 are divisors of
18, namely 1, 2, 3, 6, 9, 12 or 18. The divisors 2, 3, 6, 9 and 12 are not
possible, hence one of the two factors is a unit. This implies 1 +

√
−17 is

irreducible. Similarly, 1−
√
−17 is irreducible. On the other hand, we have

2 ·32 = (1 +
√
−17)(1−

√
−17). The number 2 is irreducible: 2 = αβ implies

N(α)|4, the only possibilities being N(α) ∈ {1, 4}. By comparison of norms,
2 is not an associate of 1 ±

√
−17. Hence we have non-unique factorization

into irreducibles.

(vii) −2 · 5 =
√
−10
√
−10 and no integer solution to x2 + 10y2 = 2, 5.

2 · 7 = (1 +
√
−13)(1 −

√
−13) and no integer solution to x2 + 13y2 = 2, 7.

−2 · 7 =
√
−14
√
−14 and no integer solution to x2 + 14y2 = 2, 7. −3 · 5 =√

−15
√
−15 and no integer solution to (x+ y/2)2 + 15y2/4 = 3, 5 because no

integer solution to (2x+ y)2 + 15y2 = 12, 20.

(viii) We have N(x + y
√

10) = x2 − 10y2 ≡ x2 ≡ 0, 1, 4 mod 5, hence there
is no solution to N(x + y

√
10) = ±2,±3. This implies that 4 +

√
10 is

irreducible: (x1 + y1

√
10)(x2 + y2

√
10) = 4 +

√
10 implies, after computing

norms, (x2
1−10y2

1)(x2
2−10y2

2) = 6. Hence each norm is a divisor of 6, hence±1
or ±6, hence one of the factors is a unit. Given that 2·3 = (4+

√
10)(4−

√
10)

and that none of the irreducible divisors of 2 is an associate of 4 +
√

10, we
have non-unique factorization into irreducibles.

(ix) Applying Euclid’s Algorithm we have

5 + 4
√

3 = (2 + 0
√

3)(1 + 2
√

3) + (3 + 0
√

3)

1 + 2
√

3 = (0 +
√

3)(3 + 0
√

3) + (1−
√

3)

2 + 0
√

3 = (−2− 2
√

3)(1−
√

3)− 1

1−
√

3 = (−1 +
√

3)(−1) + 0.

This yields[
−1
0

]
=

[
0 1

1 1−
√

3

] [
0 1

1 2 + 2
√

3

] [
0 1

1 0−
√

3

] [
0 1

1 −2 + 0
√

3

] [
5 + 4

√
3

1 + 2
√

3

]
,

(5 + 2
√

3)(5 + 4
√

3) + (−12− 6
√

3)(1 + 2
√

3) = 1.
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(x) Any irreducible divides its norm, therefore divides a prime number, which
must be unique because if π divides distinct primes then it divides their
greatest common divisor 1. We will characterize irreducibles according to
the prime numbers they divide. Let p be a prime. Write p = π1 · · · πn.
Taking norms, p2 = N(π1) · · ·N(πn), hence n ≤ 2. When 2 is a quadratic
residue mod p we have x2 − 2 divisible by p, which rules out p irreducible
(lest p|(x+

√
2) or p|(x−

√
2), which impossible given that algebraic integers

are of the form a + b
√

2 for integers a and b). Hence p = (a1 + b1

√
2)(a2 +

b2

√
2), which forces p = (a + b

√
2)(a− b

√
2) = a2 − 2b2. The corresponding

irreducibles are associates of a+b
√

2 where a2−2b2 = p. In short, expressions
of the form (1+

√
2)k(a+b

√
2) where a2−2b2 = p. When 2 is not a quadratic

residue mod p we cannot have a2 − 2b2 = p, so p is irreducible. The prime
numbers p for which 2 is a quadratic residue mod p are 2 and odd primes of
the form p ≡ ±1 mod 8.

(xi) The problem statement is not quite right. Let π be a Gaussian prime.
If π = p, a prime number, then writing α = (px + r) + (py + s)i, we have
α ≡ r + is mod p, where 0 ≤ r < p, 0 ≤ s < p. The representatives r + is
are distinct mod π. Now suppose (α, p) = 1. Then α(r1 + s1i) ≡ α(r2 + s2i)
mod π implies p|α((r2 − r1) + (s2 − s1)i) implies p|((r2 − r1) + (s2 − s1)i)
implies r1 + s1i = r2 + s2i. Hence multiplication by α permutes the non-zero
r + si mod π. Forming the product of all p2 − 1 expressions of the form
α(r + si) where r + si 6= 0 yields the product of all p2 − 1 of the non-zero
class representatives, hence αN(π)−1 = αp

2−1 ≡ 1 mod π.

Next, consider π = a + bi where a2 + b2 = p, a prime number. Then b 6≡ 0
mod p. We claim that every Gaussian integer is equivalent to some element
in {0, 1, . . . , p − 1} mod π. Given α = x + yi we have α ≡ α − zπ =
(x−az)+(y− bz)i mod π for any integer z. There is a solution to y− bz ≡ 0
mod p, hence mod π. Using this value of z we obtain α ≡ x − az mod π.
We also have x − az ≡ r mod p, hence mod π, for some 0 ≤ r < p. The
representatives 0, 1, . . . , p−1 are distinct mod π: π|(r−s) implies r−s = κπ
implies (r − s)2 = N(κ)p implies p|(r − s)2 implies p|(r − s) implies r = s.

Now consider (α, π) = 1. Then {π, 2π, . . . , (p − 1)π} is a permutation of
{1, 2, . . . , p− 1} mod π: αr ≡ αs mod π implies π|α(r− s) implies π|(r− s)
implies r ≡ s mod π. Hence (1α)(2α) · · · ((p− 1)α) ≡ (p− 1)! mod π, which
implies π|(αp−1 − 1)(p − 1)!. Since ((p − 1)!, p) = 1, a(p − 1)! + bππ = 1
for integers some pair of integers a, b, hence ((p − 1)!, π) = 1. Therefore
π|(αp−1 − 1). Hence αN(π)−1 = αp−1 ≡ 1 mod π.
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Chapter 8: Diophantine Equations

Section 8.1: The Pell Equation

The Pell equation is x2 − dy2 = 1 where d is a non-square positive integer.
We will consider more generally solutions to x2 − dy2 = ±1 where x and y
are positive integers. Since we have already found all units in Q(

√
2) and

Q(
√

3) in Exercise 7.1, we will assume without loss of generality that d ≥ 5
when considering the equation x2 − dy2 = −1.

When x2 − dy2 = 1 then we have we have

x− y
√
d = 1/(x+ y

√
d) > 0,

hence x > y
√
d and x/y >

√
d. Substituting this into

x− y
√
d = 1/(x+ y

√
d)

yields
|x− y

√
d| < 1/2y

√
d.

This implies x/y = pn/qn, one of the convergents to
√
d. Since (x, y) = 1

and (pn, qn) = 1, this forces x = pn and y = qn. Since pn/qn >
√
d, n must

be an odd number.

When x2 − dy2 = −1 we have (2−
√
d)y < 0 < x hence 2y < x+ y

√
d hence

|x − y
√
d| = 1

x+y
√
d
< 1

2y
hence |

√
d − x

y
| < 1

2y2
hence x/y is a convergent of

the form pn/qn. We also have x− y
√
d = −1

x+y
√
d
< 0, hence

√
d > pn

qn
, hence

n must be even.

We next consider which convergents pn/qn satisfy p2
n − dq2

n = ±1. Let θ =√
d+ [
√
d]. Then θ′ = −

√
d+ [
√
d]. In other words, θ > 1 and −1 < θ′ < 0.

Therefore θ is purely perodic and we have

θ = [b0, · · · , bm−1]

for some minimal value of m ≥ 1. This implies
√
d = [b0 − [

√
d], b1, . . . , bm] = [a0, a1, . . . , am].

In other words, ak = ak+m = ak+2m = · · · for all k ≥ 1. When p2
n − dq2

n = 1
we have n odd and

an+1 +
1

θn+2

= θn+1 =
pn−1 − qn−1

√
d

qn
√
d− pn

=
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(−pn−1 + qn−1

√
d)(pn + qn

√
d) =

−pn−1pn + dqn−1qn + (pnqn−1 − pn−1qn)
√
d =

−pn−1pn + dqn−1qn + (−1)n+1
√
d =

−pn−1pn + dqn−1qn + a0 +
1

θ1

.

Comparing the expressions that are less than 1, 1/θn+2 = 1/θ1, hence θn+2 =
θ1. This implies a period of n+ 1 in the sequence a1, a2, a3, . . . , which forces
m|(n+ 1). Hence we have n = km− 1 for some k.

When p2
n − dq2

n = −1 we have n even and

an+1 +
1

θn+2

= θn+1 =
pn−1 − qn−1

√
d

qn
√
d− pn

=

(pn−1 − qn−1

√
d)(pn + qn

√
d) =

pn−1pn − dqn−1qn − (pnqn−1 − pn−1qn)
√
d =

−pn−1pn + dqn−1qn + (−1)n+2
√
d =

−pn−1pn + dqn−1qn + a0 +
1

θ1

.

Comparing the expressions that are less than 1, 1/θn+2 = 1/θ1, hence θn+2 =
θ1. This implies a period of n+ 1 in the sequence a1, a2, a3, . . . , which forces
m|(n+ 1). Hence we have n = km− 1 for some k. Since n must be even, m
must be odd, so there is no solution to x2 − dy2 when the period of the

√
d

is even.

We next show that every n = km − 1 of the right parity is a solution to
x2 − y2 = ±1. By periodicity we have θn+2 = θ1, hence

√
d =

θn+2pn+1 + pn
θn+2qn+1 + qn

=
θ1pn+1 + pn
θ1qn+1 + qn

.

Substituting 1/θ1 =
√
d− a0 we obtain

√
d =

pn+1 + pn(
√
d− a0)

qn+1 + qn(
√
d− a0)

,
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and rearranging we obtain
√
d(qn+1 − qna0 − pn) = pn+1 − pna0 − qnd.

Hence both sides are zero. Equating the two resulting expressions for a0

yields
qn+1 − pn

qn
=
pn+1 − qnd

pn
.

Rearranging this yields

p2
n − q2

nd = −(pn+1qn − qn+1pn) = −(−1)n+2 = (−1)n+1.

Theorem: pmk−1 + qmk−1

√
d = (pm−1 + qm−1

√
d)k for all k ≥ 1.

Proof: We have Ud ∩ (1,∞) = {ηk : k ≥ 1}. Let k0 be the least positive
integer such that ηk0 has integer coefficients of 1 and

√
d. Then for k ≥ 1,

ηk has integer coefficients if and only k0|k. This is clearly sufficient. To
prove necessity, suppose ηk has integer coefficients and write k = qk0 + r
with 0 ≤ r < k0. Then ηr = ηkη−qk0 . Since ηqk0 = (ηk0)q, ηqk0 has integer
coefficients, and since it has norm ±1, η−qk0 also has integer coefficients.
Hence ηr has integer coefficients, which forces r = 0. Hence the set of units
in (1,∞) with integer coefficients is {µk : k ≥ 1} where µ = ηk0 . So the
solutions to |x2 − dy2| = 1 are embedded as the coefficients in the list µ <
µ2 < µ3 < · · · . But this list is equal to pm−1 +qm−1

√
d < p2m−1 +q2m−1

√
d <

p3m−1 + q3m−1

√
d · · · , hence the theorem is true.

An example is given in the textbook to the fundamental solutions to x2 −
97y2 = −1 and x2 − 97y2 = 1. It is hard enough to find the fundamental
solution to the first equation by looking at convergents. It would be much
harder to find the fundamental solution to the second equation by convergents
(at least by hand), but having found the first solution we just square it to
produce the second solution.

When p ≡ 1 mod 4 is a prime number, then x2 − py2 = −1 always has a
solution. Reason: First choose a solution to x2−py2 = 1 with x, y > 0. Then
x2− y2 ≡ 1 mod 4, which forces y even and x odd. Write x = 2k+ 1, y = 2j.
Then x2 − 1 = py2 yields k(k + 1) = pj2. There are two cases to consider.

Case 1: p|k. Write k = k0p. Then we have k0(k + 1) = j2. Since k and
k + 1 are coprime, k0 and k + 1 are coprime, and we have k0 = Y 2 and
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k + 1 = X2. This yields X2 = k + 1 = pY 2 + 1, X2 − pY 2 = 1. Note that
X ≤ X2 = k + 1 = x+1

2
< x since x > 1.

Case 2. p|(k + 1). Write k + 1 = k0p. Then kk0 = j2, and since k and
k + 1 are coprime, k and k0 are coprime, and we have k = X2, k0 = Y 2,
X2 + 1 = k + 1 = pk0 = pY 2, X2 − pY 2 = −1.

So a solution to x2 − py2 = 1 yields either another solution X2 − pY 2 = 1
with x < X or to a solution X2 − pY 2 = −1. We cannot fall into Case 1
indefinitely, so eventually we will arrive in Case 2 and produce the desired
solution.

Section 8.3: The Mordell Equation y3 = x2 + k

1. Chords and tangents in projective space.

Homogenous polynomials F (x, y, z) satisfy F (λx, λy, λz) = λnF (x, y, z) where
n is the total degree of F (x, y, z). Solutions to a polynomial equation f(x, y) =
0 can be embedded in the set of solutions to a polynomial equation F (x, y, z) =
0 where F (x, y, z) is homogeneous and F (x, y, 1) = f(x, y). Solutions to
F (x, y, z) = 0 with z = 0 are called points at infinity. Any rational solu-
tion (x, y, z) to F (x, y, z) = 0 with z 6= 0 gives rise to the rational solution
(x/z, y/z) to f(x, y) = 0 since f(x/z, y/z) = F (x/z, y/z, 1) = z−nF (x, y, z) =
0.

On page 80 it is stated that for any non-zero integer k the curve y2 = x3 + k
has the property that the chord joining any two rational points on the curve
y2z = x3 + kz3 intersects the curve again at a rational point. For example,
the curve y2 = x3 + 17 is associated with the homogeneous equation y2z =
x3+17z3 and two of its rational points are (0, 1, 0) and (−2,−3, 1). The chord
between them has coordinates (1− t)(0, 1, 0) + t(−2,−3, 1) = (−2t, 1−4t, t).
Solutions to the homogeneous equation on this chord satisfy (1 − 4t)2t =
(−2t)3 + 17t3, i.e. t(t− 1)(7t− 1) = 0. There are three solutions, t = 0, 1, 1

7
.

Solutions t = 0 and t = 1 correspond to (0, 1, 0) and (−2,−3, 1) while t = 1
7

yields (−2
7
, 3

7
, 1

7
), which yields the solution (x, y) = (−2, 3). Of course, this

example is trivial because when (a, b) is a solution, so is (a,−b). To take
another example, two rational solutions are (2, 5, 1) and (−2, 3, 1). The chord
between them is (2 − 4t, 5 − 2t, 1). Solutions to the homogeneous equation
satisfy t(t − 1)(16t − 7) = 0 and t = 7

16
yields the solution (1

4
, 33

8
, 1). Hence

we obtain the solution (1/4, 33/8). Another way to generate new solutions
from old is to find the point of intersection between an existing solution and
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the tangent to the curve at that solution. Apparently the rational solutions
on the Mordell curve y2 = x3 + k satisfy a kind of group law.

Solutions to a homogeneous equation live on lines through the origin. The
set of all non-trivial lines forms projective space and one can study solutions
to polynomial equations in this context.

2. Quadratic residues.

Rearranging y2 = x3 + k into

y2 = x3 − a3 + a3 + k = (x− a)(x2 + ax+ a2) + (a3 + k)

and reducing by a prime that divides x− a or x2 + ax+ a2 yields y2 ≡ a3 + k
mod p. Hence a3 + k is a quadratic residue mod p and we can ask if such a
thing is possible.

For example, suppose there is a solution to y2 = x3 + 11. As x and y range
through 0, 1, 2, 3 mod 4, y2 ranges through 0, 1, 0, 1 mod 4 and x3 +11 ranges
through 3, 0, 3, 2 mod 4, hence we must have y ≡ 0, 2 mod 4 and x ≡ 1 mod
4. Choosing a = −3 we obtain a3 + k = −16 and x2 + ax + a2 ≡ 3 mod 4.
Therefore x2 + ax + a2 has a prime divisor p ≡ 3 mod 4. Reducing mod p
we find that −16 is a quadratic residue mod p, which implies that −1 is a
quadratic residue mod p, which is not possible given p ≡ 3 mod 4. So there
is no solution.

3. Factorization in Q[
√
k].

Consider the equation y2 = x3− 11. We will establish some necessary condi-
tions on x and y, assuming that there is a solution. We have

(y −
√
−11)(y +

√
−11) = x3.

We will show that the two factors y+
√
−11 and y−

√
−11 are coprime, then

exploit unique factorization to determine x and y.

By unique factorization in Q(
√
−11), any common irreducible divisor π of

y −
√
−11 and y +

√
−11 is a divisor of x3, hence of x by primality. Since

π must be a divisor of (y +
√
−11) − (y −

√
−11) = 2

√
−11, we must have

N(π)|44. Hence N(π) ∈ {1, 2, 4, 11, 22, 44}. We also have N(π)|x2, which
implies that any prime divisor of N(π) is a divisor of x. We can rule out
some of the prime divisors of N(π) by considering the prime divisors of x. If
2|x then y2 ≡ −11 ≡ 5 mod 8, which is not possible. Also, if 11|x then 11|y
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and the equation implies 11y2
0 = 112x3

0 − 1, which is also not possible. So in
fact N(π) = 1 and y −

√
−11 and y +

√
−11 must be coprime.

Irreducible factorizations yield y−
√
−11 = α1 · · ·αj, y+

√
−11 = β1, . . . βk,

x = γ1 · · · γl. This yields

α1 · · ·αjβ1, . . . βk = γ3
1 · · · γ3

l .

By unique factorization, any irreducible appears a multiple of 3 times (up
to associates) in y +

√
−11, hence y +

√
−11 is a perfect cube times a unit.

Given that the units in Q(
√
−11) are ±1, this implies

y +
√
−11 = (a+

b

2
(1 +

√
−11))3 =

a3 + (3a2b)/2− (15ab2)/2− 4b3 + (3/2a2b+ 3/2ab2 − b3)
√
−11

for some pair of integers a and b. Since a basis for Q(
√
−11) is {1,

√
−11},

comparing coefficients we obtain

1 = 3/2a2b+ 3/2ab2 − b3

and
y = a3 + (3a2b)/2− (15ab2)/2− 4b3.

Taking norms in y +
√
−11 = (a+ b

2
(1 +

√
−11))3 we obtain

x3 = (a2 + ab+ 3b2)3,

hence
x = a2 + ab+ 3b2.

Multiplying the first equation by 2 and substituting the expression for x
yields

2 = 3bx− 11b3 = b(3x− 11b2),

therefore b ∈ {−2,−1, 1, 2}. Chasing through the possibilities, x = 3, 15.
This yields y2 = 33 − 11 = 42, y2 = 153 − 11 = 582. We have proved
that if (x, y) is a solution to y2 = x3 − 11 then it must satisfy (x, y) ∈
{(3,±4), (15,±58)}. Conversely, one can check that these are all in fact
solutions.

Section 8.4: The Fermat Equation
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The equation xn + yn = zn has no non-trivial integer solutions for an integer
n ≥ 3: Conjectured by Fermat in 1637, proved by Wiles in 1995.

1. x2 + y2 = z2.

A modulus 4 argument shows that x and y cannot both be odd. Given a so-
lution (x, y, z) with (x, y) = d > 1, we can obtain another solution (x0, y0, z0)
after division by d2. So it suffices to characterize primitive solutions (x, y, z)
where x, y, z > 0, (x, y) = 1, and x is odd and y is even and z is odd. A
solution satisfies (z + x)(z − x) = y2 = 4y2

0. The factors z − x and z + x
are even. Any prime divisor p of z + x and z − x must be a divisor of
(z + x)− (z − x) = 2x. It cannot divide x, otherwise it divides z and there-
fore y. Hence p = 2. Writing z + x = 2u and z − x = 2v we have uv = y2

0.
This yields u = a2, v = b2, hence (x, y, z) = (a2 − b2, 2ab, a2 + b2) where
a > b have opposite parity and are coprime. Conversely, every such triple is
a reduced solution: If p is a common prime divisor of a2 − b2 and 2ab then
it must divide a or b, but if so then it divides both a and b: contradiction.
Therefore a2 − b2 and 2ab are coprime.

REMARK: The first element x in a primitive Pythagorean triple (x, y, z) is
a difference of squares a2 − b2 where a and b are coprime and of opposite
parity. When x itself is a perfect square X2 we obtain another Pythagorean
triple (X, b, a). It is primitive: X and b are coprime since a and b are, and
X2 = a2 − b2 forces b to be even.

2. x4 + y4 = z4.

The method of infinite descent can be used to show that x4 + y4 = z2 has no
non-trivial solutions. If there is a solution then (x2, y2, z) is a Pythagorean
triple. Choose a primitive solution in which x2 is odd, y2 is even, and x2, y2, z
are coprime in pairs. Then there exists a coprime pair a, b of opposite parity
such that x2 = a2 − b2, y2 = 2ab, and z = a2 + b2. By the remark above,
(x, b, a) is a primitive Pythagorean triple and there is a coprime pair A,B of
opposite parity such that x = A2 − B2, b = 2AB, a = A2 + B2. This yields
y2 = 2ab = 4AB(A2 + B2). Since A, B, and A2 + B2 are coprime in pairs,
A = u2, B = v2, A2 + B2 = w2. That is, u4 + v4 = w2. This yields another
primitive solution with w < z since w2 = A2 + B2 = a < a2 + b2 = z. This
can’t continue forever, so there were no solutions to begin with.

3. x3 + y3 = z3.

Suppose there is a positive integer solution to x3 +y3 = z3. Then x3 +y3 ≡ z3

mod 9, which is only possible if one of x, y, z is divisible by 9 in Z. Let
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λ = 3−
√
−3

2
∈ R−3. Since N(λ) = 3, λ is irreducible in R−3. Moreover

λ4 = −9
2
− 9i

√
3

2
= 9ω where ω = −1−

√
−3

2
is a unit. We have found non-

zero α, β, γ in R−3 such that α3 + β3 + γ3 = 0 where λ4|γ. In other words,
α3 + β3 + λ12γ3

1 = 0. This justifies Baker’s statement that a positive integer
solution to x3+y3 = z3 gives rise to a non-zero solution to α3+β3+ηλ3nγ3 = 0
in R−3 where η is a unit and n ≥ 2 and γ is not divisible by λ. We can assume
further that α and β have no common factors. To complete the proof, we
should be able to derive another such solution with n replaced by n− 1 with
n− 1 ≥ 2. Iterating this yields a contradiction.

Details: ω is a primitive 3rd root of unity. Hence

(α + β)(α + ωβ)(α + ω2β) = −ηλ3nγ3.

Hence λ divides one of the factors on the left hand side. We claim that λ
divides all three factors and that α+β

λ
, α+ωβ

λ
, α+ω2β

λ
have no common factors

in R−3. To see this, suppose that λ divides α + ωiβ. Then

(α + ωiβ)− (α + ωi+1β) = ωi(1− ω)β = −ωi+1λβ,

hence λ divides α + ωi+1β. This implies λ divides α + ωi+2β. So λ divides
all three factors. Now suppose that an irreducible π divides α + ωiβ and
α+ωi+1β. Then it divides their difference −ωi+1λβ. If π is not an associate
of λ then it must divide β, so it also divides α, a contradiction. Hence the
three algebraic integers α+β

λ
, α+ωβ

λ
, α+ω2β

λ
have no common factors in R−3. So

now we can write
α + ωiβ

λ
= η1α

3
1

α + ωi+1β

λ
= η2β

3
1

α + ωi+2β

λ
= η3γ

3
1λ

3n−3

where η1, η2, η3 are units in R−3 and λ does not divide γ1. Since 1+ω+ω2 = 0,
we have

η1α
3
1 + ωη2β

3
1 + ω2η3γ

3
1λ

3n−3 = 0.

Rescaling,
α3

1 + η1β
3
1 + η2γ

3
1λ

3n−3 = 0.

93



We have 3n− 3 ≥ 3. Reducing by λ3 = 3
√
−3 we obtain

α3
1 + η1β

3
1 ≡ 0 mod 3

√
−3.

Hence
α3

1 + η1β
3
1 ≡ 0 mod 9.

Lemma 1: The distinct congruence class representatives mod
√
−3 in R−3

are −1, 0, 1.

Proof: Given that ω − 1 = (−1
2

+ i
√

3
2

)
√
−3 ≡ 0 mod

√
−3, we have ω ≡ 1

mod
√
−3. Hence x + yω ≡ x + y mod

√
−3. Since every integer is in the

class of −1/0/1 mod 3, it is in these clases mod
√
−3. These classes are

distinct mod
√
−3. So every element in R−3 = Z[ω] falls into one of these

classes.

Lemma 2: When σ ≡ 1 mod
√
−3, σ3 ≡ 1 mod 9.

Proof: σ3 − 1 = (σ − 1)(σ2 + σ + 1). But σ − 1 ≡ 0 mod
√
−3 and

σ2 + σ + 1 ≡ 1 + 1 + 1 ≡ 0 mod
√
−3, so the result follows.

Using the lemmas, we obtain 1 ± η1 ≡ 0 mod 9. The only units in R−3

satisfying this are η1 = ±1. So we can rescale to

α3
1 + β3

1 + η2γ
3
1λ

3n−3 = 0.

To complete the proof we must show that n− 1 ≥ 2. If this is not true then
we have

1 + (±1) + η23
√
−3 ≡ 0 mod 9.

This is not possible in R−3, as can be checked by brute force, checking η2 =
±1,±ω,±ω2.

Section 8.5: The Catalan Equation.

It is conjectured that xp − yq = 1 has only one solution in positive integers,
namely 32−23 = 1. For example, consider the equation x5−y2 = 1. Suppose
there is a solution (x, y). As x ranges through 0, 1, 2, 3 mod 4, x5 ranges
through 0, 1, 0, 3 mod 4. As y ranges through 0, 1, 2, 3 mod 4, y2 ranges
through 0, 1, 0, 1 mod 4. Therefore x and y have the same parity and must
both be odd. We have x5 = y2 + 1 = (y + i)(y− i). We claim that y + i and
y − i are coprime: Suppose π is a common irredicuble divisor of y + i and
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y − i. Then π divides their difference 2i, hence N(π)|4. On the other hand,
π is a divisor of x5, hence of x by primality, given that Q(i) is Euclidean.
This implies N(π)|x2. Since (4, x2) = 1, N(π) = 1: contradiction. Given
that y + i and y − i are coprime, y + i = uz5 for some unit u, and wlog
y + i = z5 after absorbing the unit into the fifth power. Writing z = a + bi
and comparing coefficients in y + i = (a+ bi)5 we obtain

1 = 5a4b− 10a2b3 + b5 = b(5a4 − 10a2b2 + b4).

Hence b = ±1 and 5a4− 10a2 + 1 = ±1. Since there is no integer solution to
the latter equation, there was no solution to x5 − y2 = 1 to begin with.

REMARK: What we seem to be doing here is exploiting unique factorization
in a quadratic field, where we can factor things further than we can in Z,
hence imposing more conditions on a potential solution.

Chapter 8 Exercises:

(i) The positive solutions are of the form xn + yn
√
d = (a + b

√
d)n. Hence

xn+1 + yn+1

√
d = (a+ b

√
d)(xn + yn

√
d). This yields

xn+1 = axn + bdyn,

yn+1 = bxn + ayn.

Using just the first recurrence relation and a2 − b2d = 1 yields

xn+1 = axn + bd(bxn−1 + ayn−1) = axn + b2dxn−1 + a(xn − axn−1) =

2axn + (b2d− a2)xn−1 = 2axn − xn−1,

xn+1 − 2axn + xn−1 = 0.

Similarly,
yn+1 − 2ayn + yn−1 = 0.

Given
√

7 = [2, 1, 1, 1, 4], we have m = 4, hence the convergent p3/q3 = 8/3
yields a+ b

√
7 = 8 + 3

√
7. Hence a = 8.

(ii)
√

31 = [5, 1, 1, 3, 5, 3, 1, 1, 10] has period m = 8, hence there is no solution
to x2 − 31y2 = −1. Another solution is merely that 31 ≡ 3 mod 4, hence 31
is a Gaussian prime and cannot be a divisor of x2 +1 = (x+ i)(x− i) because
it divides neither factor.
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(iii) We should assume p 6= q. We will use an infinite-descent argument.
First find a solution to

x2 − pqy2 = 1

where x > 0, y > 0. This yields x2 − y2 ≡ 1 mod 4, hence x is odd and y is
even. Write x = 2k + 1, y = 2j. Then

k(k + 1) = pqj2.

There are four cases to consider.

Case 1: pq|k. Write k = pqk0. Then we have k0(k + 1) = j2, therefore
k0 = u2, k + 1 = v2, v2 − pqu2 = 1.

Case 2: p|k and q|(k + 1). Write k = pk0 and k + 1 = qh. Then we have
k0h = j2, therefore k0 = u2, k + 1 = qv2, pu2 − qv2 = −1.

Case 3: q|k and p|(k + 1). As in Case 2 this yields qu2 − pv2 = −1, hence
pv2 − qu2 = 1.

Case 4: pq|(k + 1). Write k + 1 = pqh. Then we have kh = j2, k = u2,
k + 1 = pqv2, u2 − pqv2 = −1. This yields u2 + 1 = pqv2, p|(u + i)(u − i),
which is not possible because p is a Gaussian prime and divides neither factor.

Conclusion: finding a solution to x2 − pqy2 = 1 yields another solution with
smaller x > 0, y > 0 or to a solution to px2− qy2 = ±1. Eventually we arrive
at a solution to the latter.

Example: Let p = 3, q = 7. Then 552 − 21(122) = 1 using the continued
fraction expansion of

√
21 and m = 6. Writing 55 = 2k + 1 yields k = 27,

k + 1 = 28. This is Case 2 and yields u = 3, v = 2, 3(32)− 7(22) = −1.

Example: Let p = 31, q = 41. Then 327992 − (31)(41)(9202) = 1 using the
continued fraction expansion of

√
31 · 41 and m = 10. Writing 32799 = 2k+1

yields k = 16399, k + 1 = 16400. This is Case 2 and yields u = 23, v = 20,
31(232)− 41(202) = −1.

A generalization (with Russell Jahn): Let d > 1 be square-free and congruent
to 1 mod 4 and divisible by at least one prime p congruent to 3 mod 4. Then
there is an integer solution to

ax2 − by2 = 1
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for some a > 1, b > 1 satisfying ab = d.

Proof: Start with an integer solution to x2− dy2 = 1 with x > 0, y > 0. By
a mod 4 argument, x is odd and y is even. Write x = 2k + 1, y = 2j. Then

k(k + 1) = dj2.

There are three cases to consider.

Case 1: d|k. Write k = dk0. Then we have k0(k+ 1) = j2, therefore k0 = u2,
k + 1 = v2, v2 − du2 = 1. We have 0 < v < x.

Case 2: d|(k + 1). Write k + 1 = dh. Then we have kh = j2, k = u2,
k+1 = dv2, u2−dv2 = −1. This yields u2+1 = dv2. Therefore p|(u+i)(u−i),
which is not possible because p is a Gaussian prime and divides neither factor.
So Case 2 can’t happen.

Case 3: d = d1d2 where d1, d2 > 1 and d1|k and d2|k+ 1. Write k = d1k1 and
k+ 1 = d2k2. Then we have k1k2 = j2, so we can write k1 = u2

1 and k2 = u2
2.

Therefore k = d1u
2
1 and k + 1 = d2u

2
2, and we have d2u

2
2 − d1u

2
1 = 1.

An infinite descent argument shows that we must eventually arrive in Case
3.

(iv) Suppose there is a rational solution to x4 − ay4 = c. Then there is an
integer solution to x4 = ay4 + cz4 with at least one of x, y, z odd. There
are only two possible congruence classes for n4 mod 16: 0 or 1. This yields
0/1 ≡ 0/a+ 0/c mod 16, which can only be realized with 0 ≡ a+ c mod 16.
Hence x is even, y is odd, z is odd, a+ c = 16. One possible solution is x = 2
and y = z = 1 and a = c = 8. A good trick question.

(v) The only solution to a3 + 2b3 ≡ 0 mod 7 is a, b ≡ 0 mod 7. So if
x3 + 2y3 = 7(z3 + 2w3) then each term is divisible by 7, and an infinite
descent argument shows there is no non-trivial solution. Another good trick
question.

(vi) (2t− 1)4 + (t2 − 1)4 + (t2 − 2t)4 = 2(t2 − t+ 1)4.

(vii) Necessary conditions for y2 = x3 − 17: Reducing mod 4, y2 ≡ x3 − 1.
Since y2 ≡ 0, 1 and x3 − 1 ≡ 0, 3, y must be even and x must be odd. Now
write y2 = (x3 + 8) − 25 = (x + 2)(x2 + 2x + 4) − 25. When x ≡ 1 mod
4, x + 2 ≡ 3, hence x3 + 8 has a prime divisor p ≡ 3 mod 4. This implies
y2 ≡ −25 mod p, which contradicts the fact that −1 is not a quadratic

97



residue mod p. When x ≡ 3, x3 + 8 ≡ 3 mod 4, so again there is no solution.
Hence this equation has no integer solutions.

(viii) The field Q(
√
−2) is Euclidean. If there is any solution to y2 = x3 − 2

then y must be odd and x must be congruent to 3 mod 4 since y2 ≡ 0, 1, 0, 1
and x3 − 2 ≡ 2, 3, 2, 1 mod 4. Rearranging y2 = x3 − 2 to y2 + 2 = x3, we
obtain

(y −
√
−2)(y +

√
−2) = x3.

Now let π be a Gaussian prime divisor of both y −
√
−2 and y +

√
−2.

Then it is a divisor of their difference 2
√
−2, hence N(π)|8, hence |N(π)| ∈

{1, 2, 4, 8}. Since π|x3, N(π)|x6, forcing N(π) to be odd. Hence |N(π)| = 1.
Therefore y −

√
−2 and y +

√
−2 are coprime and by unique factorization

y +
√
−2 = µω3 for some unit µ. Since µ = ±1 in Q(

√
−2), we can write

y +
√
−2 = γ3 = (a+ b

√
−2)3. Comparing coefficients of

√
−2 yields

1 = 3a2b− 2b3 = b(3a2 − 2b2).

This yields (a, b) = (±1,±1). We also have

x3 = (a− b
√
−2)3(a+ b

√
−2)3 = a6 + 6a4b2 + 12a2b4 + 8b6 = 27.

So y2 = x3 − 2 is solvable with x = 3, y = ±5.

(ix) Let S be the set of all coprime and positive (x, y, z) satisfying x4−y4 = z2.
We will show that (x, y, z) ∈ S =⇒ (x′, y′, z′) ∈ S with x′ < x. Hence S
must be empty. We will let P represent the set of primitive Pythagorean
triples.

Suppose (x, y, z) ∈ S. Then x must be odd and y and z must be of opposite
parity.

Case 1: y is odd and z is even. Then (y2, z, x2) ∈ P , hence (y2, z, x2) =
(a2 − b2, 2ab, a2 + b2), hence

a4 − b4 = (a2 − b2)(a2 + b2) = (yx)2,

hence (a, b, yx) ∈ S with a < x.

Case 2: y is even and z is odd. Then (z, y2, x2) ∈ P , hence (z, y2, x2) =
(a2 − b2, 2ab, a2 + b2).

Case 2.1: a is even and b is odd. Then a = 2a2
1 and b = b2

1 and (b2
1, 2a

2
1, x) ∈ P ,

hence (b2
1, 2a

2
1, x) = (a2

2− b2
2, 2a2b2, a

2
2 + b2

2), hence a2 = a2
3 and b2 = b2

3, hence
b2

1 = a4
3 − b4

3, hence (a3, b3, b1) ∈ S with a3 ≤ a2 < x.
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Case 2.2: a is odd and b is even. Then a = a2
1 and b = 2b2

1 and (a2
1, 2b

2
1, x) ∈ P ,

hence (a2
1, 2b

2
1, x) = (a2

2− b2
2, 2a2b2, a

2
2 + b2

2), hence a2 = a2
3 and b2 = b2

3, hence
a2

1 = a4
3 − b4

3, hence (a3, b3, a1) ∈ S with a3 ≤ a2 < x.

(x) If x4 + y4 = z3 has a primitive solution then z is odd. We have

(x2 + iy2)(x2 − iy2) = z3.

If π is a common divisor of x2 + iy2 and x2− iy2 then it divides 2x2 and 2iy2

and z3. Hence N(π) divides 4x4 and 4y2 and z6. If p is a prime divisor of
N(π) then it divides 4x4 and 4y2 and z6. Since z is odd, p is odd and must
divide x and y. Contradiction. Hence N(π) = 1 and x2 + iy2 and x2− iy2 are
coprime. Hence x2 + iy2 = u(a + bi)3 for some u ∈ {1, i,−1,−i} by unique
factorization. Multiplying through by u−1 and absorbing the minus sign into
the cube we can write X2 + iY 2 = (a+ bi)3. We have X2 = a(a2 − 3b2) and
Y 2 = b(3a2 − b2). Suppose p is a prime dividing a and a2 − 3b2. Then p = 3
and in fact (a, a2− 3b2) = 3. Similarly, if q is a prime dividing b and 3a2− b2

then q = 3 and (b, 3a2−b2) = 3. Therefore (a, a2−3b2) = 1 or (b, 3a2−b2) = 1.
If both pairs are coprime then, as we argued before, we can derive a positive
solution to X4−3Y 4 = z2. Now suppose (a, a2−3b2) = 3 and (b, 3a2−b2) = 1.
Then a = 3a1 and |b| = b2

1 and we can write X2 = 3a1(9a2
1 − 3b4

1). Writing
X = 3X1 we obtain X2

1 = a1(3a2
1 − b4

1). Hence we have |a1| = a2
2 and

|3a2
1 − b4

1| = c2 and we have |3a4
2 − b4

1| = c2, which by a mod 4 argument
implies b4

1−3a4
2 = c2. The other case yields the same conclusion. Hence there

is a primitive solution to x4− 3y4 = z2. We will show using computations in
R3 that this gives rise to X4 − 3Y 4 = Z4 with X < x.

Given a primitive solution to x4− 3y4 = z2, a mod 4 argument shows that z
must be odd and that x and y must have opposite parity. We have

(x2 −
√

3y2)(x2 +
√

3y2) = z2.

The two factors are coprime in R3, hence

x2 +
√

3y2 = u(a+ b
√

3)2

for some positive unit u. Since the positive units in R3 are integer powers of
2 +
√

3, by creative grouping we can write

x2 +
√

3y2 = (A+B
√

3)2
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or
x2 +

√
3y2 = (2 +

√
3)(A+B

√
3)2.

The latter equation can be ruled out using congruences mod 4 as follows: it
implies

x2 = 2A2 + 6AB + 6B2

and
y2 = A2 + 4AB + 3B2.

Hence x is even, y is odd. Since y2 ≡ A2 + 3B2 mod 4, A is odd and B is
even. Writing x = 2x0, we have 2x2

0 = A2 + 3AB+ 3B2, which is impossible.

Given that x2 +
√

3y2 = (A+B
√

3)2, we have

x2 = A2 + 3B2

and
y2 = 2AB.

Hence y is even, x is odd, A is odd, B is even, and all four numbers are
coprime in pairs. Writing A = A2

1 and B = 2B2
1 we obtain

x2 = A4
1 + 12B4

1 ,

y2 = 4A2
1B

2
1 .

Factoring,
(x− 2

√
3B2

1)(x+ 2
√

3B2
1) = A4

1,

and repeating the argument above, we arrive at

x = A2
2 + 3B2

2 ,

2B2
1 = 2A2B2,

hence A2 = A2
3, B2 = B2

3 , B2
1 = A2

3B
2
3 ,

x = A4
3 + 3B4

3 ,

A4
1 = x2 − 12B4

1 = (A4
3 + 3B4

3)2 − 12(A2
3B

2
3) = (A4

3 − 3B4
3)2,

hence
A4

3 − 3B4
3 = ±A2

1.

100



A modulo 4 argument shows that in fact we have

A4
3 − 3B4

3 = A2
1.

Given that A3 < x, we have infinite descent. So there is no solution to
x4 − 3y4 = z2 in positive x, y, z.

(xi) For any integer n, n3 ≡ n mod 6, as can be checked directly using
0 ≤ n ≤ 5. Therefore

n = (n− n3) + n3 = 6k + n3 = (k + 1)3 + (k − 1)3 + (−k)3 + (−k)3 + n3.

(xii) Suppose x2 + 7 = 23k+2 has a solution. Then x must be odd. Writing
x = 2X + 1 we have 4X2 + 4X + 8 = 23k+2, which implies X2 +X + 2 = 23k.
We will find all solutions to x2 + x+ 2 = y3.

Assume x2 + x + 2 = y3. A modulus 4 argument shows that x and y must
both be even. Factoring, we obtain

(x+
1

2
+

√
−7

2
)(x+

1

2
−
√
−7

2
) = y3.

Any common divisor δ of x+ 1
2

+
√
−7
2

and x+ 1
2
−
√
−7
2

is a common divisor

of 2x + 1 and 2
√
−7 and y3. Hence N(δ) is a common divisor of (2x + 1)2

and 28 and y6. If p is a prime divisor of N(δ) then p ∈ {2, 7}. But 2 does
not divide (2x+ 1)2 and 7 does not divide y6. So in fact |N(δ)| = 1 and δ is

a unit and x+ 1
2

+
√
−7
2

and x+ 1
2
−
√
−7
2

are coprime. By unique factorization
in R−7, this forces

x+
1

2
+

√
−7

2
= u(a+ b

1 +
√
−7

2
)3

for some unit u, and since the units in R−7 are ±1, we can assume without
loss of generality that u = 1. Given that

(a+b
1 +
√
−7

2
)3 = a3 +

3a2b

2
+

3

2

√
−7a2b− 9ab2

2
+

3

2

√
−7ab2− 5b3

2
− 1

2

√
−7b3,

comparing coefficients of
√
−7 we obtain

1

2
=

3

2
a2b+

3

2
ab2 − 1

2
b3,
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1 = b(3a2 + 3ab− b2).

The only integer solutions to this are (a, b) = (0,−1) and (a, b) = (1,−1).
Given that

x+
1

2
= a3 +

3a2b

2
− 9ab2

2
− 5b3

2
,

x ∈ {−3, 2}.

Hence we obtain solutions (x, y) = (−3, 2) and (x, y) = (3, 2).

In summary, the only integer solution to x2 + x+ 2 = 23k is x ∈ {−3, 2} and
2k = 2, which forces k = 1.
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