
A Walk Through Combinatorics, Miklós Bóna

Chapters 3–4, 9 meetings: Counting Techniques and Binomial Identities

Counting concepts: permutations, multisets, multiset permutations, strings,
bijection, subsets, permutations of n objects chosen k at a time, subsets of
size k chosen from n elements, set complement, binomial coefficients, number
of multisets of size k from an n-element set.

Counting technique concepts organized:

1. List, string, permutation, rearrangement.

2. Set, multiset, multiset permutation, subset.

3. Representation of objects and bijections. (a) Subsets correspond to binary
strings. (b) Multisets correspond to non-negative integer solutions to x1 +
x2 + · · · + xk = n. (c) Multisets correspond to strings of dots and bars.
(d) Multisets of k items from [n] correspond to weakly increasing sequences
1 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ n, which correspond to strictly increasing
sequences 1 ≤ x1 + 0 < x2 + 1 < · · · < xk + (k − 1) ≤ n + k − 1, which
correspond to k-element subsets of [n+ k − 1].

4. Decision trees. (a) Permutations of [n]: first element, second element,
... (b) Permutations of n objects chosen k at a time: first element, second
element, ... (c) Permutations of n objects chosen k at a time: subset of k,
permutation of k (d) All subsets of [n]: is 1 in, is 2 in, ... (e) Rearrangements
of xn1

1 x
n2
2 · · · x

nk
k : subset of x1 positions, subset of x2 positions, ...

5. Formulas corresponding to decision trees: (a) n! (b) n(n− 1) · · · (n− k +
1) (c)

(
n
k

)
k!, yielding formula for

(
n
k

)
(d) 2n (e)

(
n
n1

)(
n−n1

n2

)(
n−n1−n2

n3

)
· · · =

n!
n1!n2!···nk!

.

6. BOOKKEEPER problems: (a) all rearrangements (b) OO together: glue-
ing technique (c) OO not present: set complement (d) Os separated by at
least 1 letter: Os positions, rearrangements of what’s left (e) Es separated by
at 2 letters: E positions, rearrangements of what’s left (f) consonants consec-
utive: where they are, how they are arranged, how the rest is arranged (g)
consonants in alphabetical order: where they are, how they are arranged, how
the rest is arranged (h) consonants all separated: where they are, how they
are arranged, how the rest are arranged (i) first letter must be a vowel: must
consider two cases and add the results (j) first letter must be a consonant:
add cases or use set complement.
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Exercises, page 49: (1) skip (2) map from odd to even: if it contains n,
take it out. If it doesn’t contain n, put it in. (3) Select 5 people, through
out all male/all female committees. (4) If there are fewer than 49 flags, then
some countries have same flag. How many possible flags? XYZ from RWBG
is 24. If no flag used 3 times then each flag used at most 2 times, representing
only 48 countries. Oops. (5) skip (6) skip (7) skip (8) set complement (9)
glue (10) 5-subsets of [7] not containing both 6 and 7: set complement (11)
x1+ · · ·+x5 = 7 (12) First consider rearrangements of 15253545, then toss out
the bad ones. (13) If there are fewer than 60 2-course combinations, then the
professor had two similar semesters. The number of 2-course combinations is(
15
2

)
= 105. (14) Label the soup options 0-5, the main-course options 0-10, the

dessert options 0-6, then choose one of each. (15) Decide where she is in the
first 95 days. Rearrangements of L5O90 beginning with L, every L followed
by at least 6 Os. (16) skip (17) Count rearrangements of 1b12b2 · · · kbk . (18)
skip (19a) Choose soccer team, then choose basketball team from the rest
(19b) choose soccer team, then choose basketball team (19c) add ways to
choose two disjoint teams and ways to choose teams sharing one member.
Sharing one member: choose the member, then round out the teams. (20)
Total number of licence plates: 106. Number of these of this special type:
choose the repeated digit, choose the other digits, form all rearrangements.
Compare to 10% of the total. (21) skip (22) skip (23) First, decide which
rows are occupied. Second, decide which columns are occupied. Toss out the
other rows and columns and look at the resulting 8× 8 board. Decide which
column corresponds to each row. (24) skip

Supplementary exercises, page 53: (25) Count all 3-digit strings, toss
out those starting with 0. Choose the digit appearing twice (10), choose the
other digit (9), count the rearrangements (3). Toss out 0X0, 00X, 0XX. Total
10 ·9 ·3−9−9−9 = 243. (26) Rearrangements formula yields 7!

4!
= 210. (27)

Decide if 1 or 2 is in, then fill out the rest of the subset: 2 ·2n−2 = 2n−1. (28)
Toss out those that don’t contain 1 or 2: 2n − 2n−2 = 3 · 2n−2. (29) Choose
each digit: 4 ·10 ·5 = 200. (30) Choose each digit: 9 ·9 ·8 ·7 = 4536. (31) Toss
out those that omit 1. All not starting with 0: 9 · 10 · 10 · 10 = 9000. Those
not starting with 0 and not containing 1: 8 ·9 ·9 ·9 = 5832. Difference is 3168.
(32) If we don’t worry out leading 0s, we can calculate en = number of n-digit
strings in 0-9 with an even sum and on = number of n-digit strings in 0-9
with an odd sum using a recurrence relation. Then we want to calculate e3
and toss out strings beginning with 0, which leaves e3−e2 = 1000

2
− 100

2
= 450.
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(33a) First choose a subset of 2 positions for 1/2, then 2 remaining positions
for 3/4, then permute the remaining digits:

(
n
2

)(
n−2
2

)
(n − 4)! = n!

4
. (33b)

Choose a subset of 3 positions for 1, 2, 3, then decide on the relative order
of 2/3, then permute the rest:

(
n
3

)
· 2 · (n − 3)! = n!

3
. (34) If n is odd

the answer is 0. If n = 2k then consider k consecutive pairs of positions.
Choose one of each pair to hold the even number. Then permute the even
numbers in these positions, then permute the odd numbers in the remaining
positions. 2k · k! · k! = 2k(k!)2. (35) Choose each exponent in the given
range: (a1 + 1)(a2 + 1) · · · (ak + 1). (36) skip (37) skip (38) Let the couples
be numbers 1 through n. Assign to each couple a random number in the
range 0,1,2. 0 indicates nobody is chosen, 1/2 indicates who is chosen. 3n.
(39) skip (40) Given A, the number of pairs (A,B) can be obtained from
all (A,X) by subtracting those X disjoint from A. Now sum over all A.
Alternatively, assign to each number in [n] the symbol a, b, ab, x. If a
number is assigned a, place in A. If a number is assigned b, place in B. If a
number is assigned ab, place in both sets (the intersection). If a number is
assigned x, don’t place it in either set. Total number of strings is 4n. Bad
strings are those that don’t contain an ab symbol, of which there are 3n. Total
is 4n − 3n. (41) Use symbols ac, bc, abc, c, x, toss out strings not containing
abc symbol. Total is 5n − 4n. (42) Assign each person a number indicating
what that person did (gave a talk or not, talk selected or not). There are
5 categories, and we must avoid sequences where 2 categories are absent.
Hence 5n− 3n. (43) Assign students to faculty. 13 · 12 · 11 · 10 = 17160. (44)
skip (45) Rearrangements of 444455 or 444446. Adding, obtain 6!

4!2!
+ 6!

5!
= 21.

(46) The probability that a string of length 4 in 1–6 will not show a 6 is
54

64
= 48.2253%. Brenda has better odds. (47) In other words, what is the

average smallest element in a subset of size k chosen from [n]. Number
of subsets of size k beginning with a is number of subsets of size k − 1
chosen from [n − a], namely

(
n−a
k−1

)
. So the average is

∑n−k+1
a=1 a

(
n−a
k−1

)
/
(
n
k

)
.

Using Mathematica this seems to simplify to n+1
k+1

. To prove this one can

attempt induction on k or try to simplify
∑n−k+1

a=1 a
(
n−a
k−1

)
using generating

functions. Note that
∑∞

a=0 ax
a = x

(1−x)2 and
∑∞

a=0

(
a
b

)
xa = xb

(1−x)b+1 , therefore∑n−b
a=0 a

(
n−a
b

)
= [xn] xb+1

(1−x)b+3 = [xn+1] xb+2

(1−x)b+3 =
(
n+1
b+2

)
. Setting b = k − 1 we

obtain
(
n+1
k+1

)
. So the average is

(
n+1
k+1

)
/
(
n
k

)
= n

k+1
. (48) Choosing one column

for each row we obtain n!. (49) Sophomore 1 picks a junior and a senior in
n2 ways. Sophomore 2 picks a junior and senior in (n− 1)2 ways, etc: (n!)2.
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(50) First choose 16 teams to place in the American Conference, thereby
determining the teams in the National Conference:

(
32
16

)
. Number of ways

to form a sequence of four divisions:
(
16
4

)(
12
4

)(
8
4

)(
4
4

)
= 16!

(4!)2
. Final result is(

32
16

)
16!
(4!)2

2
= 2390461829733887910000000. (51) We must replace

(
32
16

)
by 2

(
30
15

)
,

which changes the final result to 2
(
30
15

)
16!
(4!)2

2
= 1233786750830393760000000.

Binomial identities concepts: counting things in two different ways, binomial
theorem, binomial theorem evaluations, Pascal’s triangle and identity, assign-
ing a combinatorial interpretation to a summation formula, simplifying a sum
using a combinatorial interpretation, binomial coefficient inequalities (skip),
multinomial theorem, generalized binomial theorem (defer until generating
functions).

Binomial identities concepts organized:

1. Binomial Theorem:

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k

Proof: Multiplying (x + y)n out we obtain every possible string of length n
in x and y. The number of these that contain k x’s and n− k y’s is equal to(
n
k

)
.

2. Multinomial Theorem:

(x1 + x2 + · · ·+ xk)
n =

∑
e1+e2+···+ek=n

n!

e1!e2! · · · ek!
xe11 x

e2
2 · · ·x

ek
k

Proof: Multiplying (x1 + x2 + · · ·+ xk)
n out we obtain every possible string

of length n in x1 through xk. The number of these that contain e1 x1’s, ...,
ek xk’s is n!

e1!e2!···ek!
.

3. Binomial identities via evaluation: choose numerical values for x and y.
Or: use differentiation and integration. To prove a formula, figure out what
operations to perform on the binomial theorem identity. This yields proofs
of Theorem 4.2 (p. 68), Theorem 4.4 (p. 68), Theorem 4.6 (p. 70).

4. Combinatorial proofs: one can take a known formula and supply a proof
that does not involve binomial evaluation or algebra. To prove Theorem
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4.2, prove that there are an equal number of even and odd subsets. To prove
Theorem 4.4, count all subsets of [n] using multiplication principle (LHS) and
counting subsets of each size (RHS). To prove Theorem 4.6, count all subsets
that have an element circled by choosing the circled element first (RHS),
then count these subsets by choosing the circled element second (LHS).

Identities inspired by combinatorial proofs: why not count all subsets that
have two different circled elements. Choosing the elements to circle first
yields

(
n
2

)
2n−2. Choosing the elements to circle second yields

∑n
k=2

(
n
k

)(
k
2

)
.

c circles:
(
n
c

)
2n−c =

∑n
k=c

(
n
k

)(
k
c

)
.

To prove theorem 4.7 (p. 71), count subsets of [n + m] of size k directly
(LHS) or by deciding how many elements fall in [n] (RHS).

A variation on this: count k-subsets of [n + m] with an element in [n]
circled. Choosing the circle first: n

(
n+m−1
n−1

)
. Choosing the circle second:∑n

i=1 i
(
n
i

)(
m
k−i

)
.

c circles:
(
n
c

)(
n+m−c
k−c

)
=
∑n

i=c

(
i
c

)(
n
i

)(
m
k−i

)
.

a circles from [n], b circles from {n + 1, . . . , n + m}:
(
n
a

)(
m
b

)(
n+m−a−b
k−a−b

)
=∑n

i=a

(
i
a

)(
k−i
b

)(
n
i

)(
m
k−i

)
.

Pascal’s triangle: rows 0, 1, 2, ..., n. In row n, columns 0, 1, ..., n. If we left-
justify, we see evidence for Pascal’s identity, Theorem 4.3 (p. 68). Proving it:
count (k + 1)-subsets of [n + 1] directly (RHS) and by organizing according
to presence or absence of the number n+ 1 (LHS).

Generalizing this: we can either use this as a recurrence relation to expand
it out, or we can count (k+1)-subsets of [n+1] according to largest element.
This yields Theorem 4.5 (p. 69).

5. Another combinatorial identity: non-negative integer solutions to x1 +
· · · + xk = n organized in various ways. For example, organized by value of
x1: directly yields n dots, k−1 bars,

(
n+k−1
k−1

)
. But when x1 = i we have n− i

dots and k − 2 bars, which yields
(
n−i+k−2
k−2

)
. Hence(

n+ k − 1

k − 1

)
=

n∑
i=0

(
n− i+ k − 2

k − 2

)
.

Equivalently, (
N + 1

K + 1

)
=

N−K∑
i=0

(
N − i
K

)
.
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Number of n dot, k bar diagrams where one of the dots before the first bar
is circled: interpreting the circled dot as a bar we obtain an n− 1 dot, k+ 1
bar diagram, hence

(
n+k
k+1

)
. But when x1 = i we have i ways to choose the

circled dot and n − i dots and k − 1 bars left over, which yields i
(
n−i+k−1
k−1

)
.

Hence (
n+ k

k + 1

)
=

n∑
i=1

i

(
n− i+ k − 1

k − 1

)
.

Equivalently, (
N + 1

K + 2

)
=

N−K∑
i=1

i

(
N − i
K

)
.

Challenge: obtain a binomial identity by counting n-dot, k-bar diagrams
where c of the dots before the first bar are circled.

Exercises, p. 76: (1) skip (2) skip (3) Subsets of [n] with one element
circled and another element squared (4) Choose m elements from [n], then
circle k of these (LHS), choose the k circled elements first, then round out
the subset (RHS). (5) skip (6) skip (7) skip (8) The sum of the binomial co-
efficients is 22n = 4n. (9) skip (10) skip (11) skip (12) skip (13) skip (14) skip
(15) skip (16) skip (17) Multinomial Theorem evaluation with variables equal
to 1 (18) Multinomial Theorem evaluation with variables 1,−1, 1 (19) skip
(20) skip (21) skip (22) skip (23) skip (24) skip (25) Derivative of geometric
series (26) skip (27) skip.

Supplementary Exercises, p. 79: (28) skip (29) skip (30) skip (31) skip
(32) We are counting sequences of Xs and Ys where X means go right and
Y means go up. These contain n Xs and k Ys, hence

(
n+k
n

)
. (33) skip (34)

skip (35) skip (36) skip (37) skip (38) Special case of Theorem 4.7 (p. 71)
with

(
n
n−i

)
replaced by

(
n
i

)
. (39) Same as (38) but now introducing a circled

dot where needed. (40) Binomial Theorem evaluation. (41) skip (42) Taking

the definite integral between 0 and t yields (1+t)n+1

n+1
− 1

n+1
=
∑n

k=0

(
n
k

)
tk+1

k+1
.

(43) Use t = −1 in (42). (44) See (42). (45) Add the Binomial Theorem
evaluation with (x, y) = (2, 1) to the Binomial Theorem evaluation with
(x, y) = (−2, 1) and cancel out terms with opposite sign. (46) Same idea as
in (45). (47) Expand (xi + y)n + (−xi + y)n using the Binomial Theorem,

6



where i represents the complex number
√
−1. Cancel out terms with opposite

sign. Now choose x and y appropriately. (48) – (60) skip.

Additional problems:

61. Evaluate
∑n

k=1 k
(
n
k

)
3k.

62. Evaluate
∑n

k=1 k
2
(
n
k

)
4k.

63. Evaluate
∑n

k=1

(
n
k

)
5k

(k+1)(k+2)
.

64. Find the binomial identity that can be obtained by counting subsets of
[n] that contain a red number, a blue number, a green number (all other
numbers colored black).

65. Find the binomial identity that can be obtained by counting subsets
of [n] that contain a circled number and a squared number, allowing the
possibility that a number can be both circled and squared at the same time
as long as the square goes around the circle).

66. Find the binomial identity that can be obtained by counting dots and
bars diagrams with n dots and k bars where two of the dots before the first
bar are circled.

Chapters 5 and 7, 9 meetings: Partitions, Inclusion-Exclusion

Concepts: Compositions, weak compositions, set partitions, Stirling numbers
of the second kind, surjective functions, Bell numbers, integer partitions, Fer-
rers diagram, restricted integer partitions, identities involving set partitions
and restricted integer partitions.

Concepts organized: A partition of a collection of objects is a way of or-
ganizing them into parts. A general model is distributing balls into boxes.
The balls can be identical or distinct (numbered or given different names).
The boxes can be identical or distinct. Moreover, the boxes can be wide or
narrow. When the balls are distinct, the order of the balls inside a wide box
doesn’t matter, but when the order of the balls inside a narrow box (like a
Pringle’s container or a test tube) does matter.

1. Compositions. Consider organizing n identical balls into k distinct boxes.
Since the balls are identical, we disregard the order of balls in a box and
just keep track of number of balls in each box. So we are counting solutions
to x1 + · · · + xk = n. When each xi ≥ 1 these are called compositions
(non-empty boxes). When each xi ≥ 0 these are called weak compositions
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(empty boxes allowed). If comp(n, k) represents number of compositions of
n identical balls into k distinct boxes, then by keeping track of the number
of balls in the first box we obtain

comp(n, k) =
n−k+1∑
i=1

comp(n− i, k − 1).

Of course, we know that comp(n, k) can be represented by diagrams with
n− k dots and k − 1 bars (after adding a dot before each bar and after the
last bar), hence comp(n, k) =

(
n−1
k−1

)
. Making the substitution we obtain(

n− 1

k − 1

)
=

n−k+1∑
i=1

(
n− i+ k − 2

k − 2

)
.

2. Set partitions. S(n, k) is the number of ways n distinct balls can be
distributed into k identical boxes where each box contains at least one ball
and the order of the balls in the boxes is not relevant and the arrangement
of the boxes is not relevant. In other words, all sets of sets A1, . . . , Ak where
each set is non-empty, no two sets intersect, and their union is {1, 2, . . . , n}.
It is not easy to find a formula for S(n, k), but we can calculate the numbers
using a recurrence relation. Clearly we must have n ≥ k as in the binomial
coefficients, so we can arrange all these numbers as in Pascal’s Triangle. We
have S(1, 1) = 1. Having computed rows 1 through n − 1 in the triangle,
we can calculate S(n, k) as follows: If n is in a box by itself, there are
S(n − 1, k − 1) ways to distribute the remaining balls. If n is not in a box
by itself there are S(n − 1, k) ways to distribute the remaining balls and
k ways to decide which set of these n belongs to. So we obtain S(n, k) =
S(n− 1, k − 1) + kS(n− 1, k).

3. Surjections. A surjection f : A → B is any function that maps onto B.
When A = {1, 2, . . . , n} and B = {1, 2, . . . , k} we can think of f as distribut-
ing n distinct balls into k distinct boxes with no box empty. Analogous to
the way we computed

(
n
k

)
, we can count surjections by a two step decision

process: first count set partitions of [n] into k non-empty disjoint identical
sets, then arrange them into every possible order. The number of surjections
is k!S(n, k). Since we can generate S(n, k) algorithmically, we can generate
the number of surjections algorithmically.

4. Counting all functions via surjections: Every function f : A → B can be
regarded as a surjection onto some non-empty subset of B. When A = [n] and
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B = [k] there are kn functions, since there are k choices for each f(i). We can
organize functions into categories, where category i functions are surjective
onto a subset of size i in [k]. To count these, first choose the i elements, then
choose a surjection. Total:

(
k
i

)
S(n, i). Adding up the categories,

kn =
k∑
i=1

(
k

i

)
i!S(n, i) =

k∑
i=1

k(k − 1) · · · (k − i+ 1)S(n, i).

Now if we form the polynomial

xn −
k∑
i=1

x(x− 1) · · · (x− i+ 1)S(n, i),

we have shown that it has a root at k for k = 1, 2, 3, . . . . Hence the poly-
nomial is zero, because non-zero polynomials have a finite number of roots.
This implies that

xn =
k∑
i=1

x(x− 1) · · · (x− i+ 1)S(n, i)

for any arbitrary numerical value for x.

5. Bell numbers. B(n) counts all the ways to partition n distinct balls into
any arbitrary number of identical non-empty boxes. To obtain a recurrence
relation for B(n), we have B(1) = 1 and, for n ≥ 1, first decide which
i balls accompany n + 1 in

(
n
i

)
ways, then partition the remaining n − i

balls: B(n + 1) =
∑n

i=0

(
n
i

)
B(n− i) =

∑n
i=0

(
n
n−i

)
B(n− i) =

∑n
i=0

(
n
i

)
B(i)

assuming B(0) = 1.

6. Integer partitions of n. These are weakly descending sequences a1 ≥ a2 ≥
· · · of positive integers whose sum is n. p(n) is the number of partitions of
n. People who have looked at partitions have found that there are many
subcategories of partitions of equal size. Examples:

a. p(n, odd) = p(n, distinct).

b. p(n, no part divisible by 3) = p(n, no part appears more than 2 times).

c. p(n, k parts) = p(n, largest part k).

Many partition identities can be proved by manipulating Ferrers diagrams.
Represent a1 +a2 + · · · by rows of the corresponding number of squares, left-
justified. The conjugate partition is obtained from counting the squares in
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each column. We obtain a bijection from partitions to partitions by forming
the conjugate. Under this bijection, partitions with k parts get mapped to
partitions with largest part k.

Self-conjugate partitions are those that are equal to their own conjugate.
These are in one-to-one correspondence with partitions with distinct odd
parts: decompose odd numbers into L shapes.

Counting partitions that have all parts ≥ 2: bad partitions have smallest
part 1. There are p(n− 1) of these. So partitions of n with all parts of size
≥ 2 are counted by p(n)− p(n− 1).

7. Number of set partitions of [n] of type a1+a2+ · · ·+ak: we seek partitions
where the numbers record the different occupancies. The occupancies are
listed in descending order. Let’s write the integer partition equivalently in
the form 1m12m2 · · ·nmn , meaning there are i boxes of size i. First we will
count set partitions of type imi by counting ordered set partitions (boxes
have identities): choose i balls for box 1 in

(
n
i

)
ways, then choose i balls

for box 2 in
(
n−i
i

)
ways, etc. This yields n!

i!···i! = n!
(i!)mi

. A second way to
count these: first choose an unordered set partition, then choose an identity
for each box: Xmi!. Given n!

(i!)mi
= Xmi!, there are n!

(i!)mimi!
unordered set

partitions of type imi . More generally, to generate unordered set partitions
of type 1m12m2 · · ·nmn , choose m1 balls for use in a set partition of type 1m1 ,
then choose 2m2 balls for use in a set partition of type 2m2 , and so forth,
then choose sequence of unordered set partitions. This yields

n!

m1!(2m2)! · · · (nmn)!
× m1!

(1!)m1m1!
× (2m2)!

(2!)m2m2!
× · · · × (nmn)!

(n!)mnmn!
=

n!

(1!)m1(2!)m2 · · · (n!)mnm1!m2! · · ·mn!
.

Exercises, p. 105: (1) Using the recurrence relation,

S(n, 3) = S(n− 1, 2) + 3S(n− 1, 3).

To count S(n, 2), choose a subset of [n− 1] of size ≤ n− 1 to accompany n:
2n−1 − 1. So we have

S(n, 3) = 2n−2 − 1 + 3S(n− 1, 3).
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We will guess a solution of the form S(n, 3) = a2n + b3n + c. Plugging in
n = 3, 4, 5 yields a = −1

2
, b = 1

6
, c = 1

2
. This yields

S(n, 3) =
−3 · 2n + 3n + 3

2
.

(2) skip (3) skip (4) (skip) (5) Iterate the recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

We obtain
S(n, k) = S(n− 1, k − 1) + kS(n− 1, k) =

S(n− 1, k − 1) + kS(n− 2, k − 1) + k2S(n− 2, k) =

S(n− 1, k − 1) + kS(n− 2, k − 1) + k2S(n− 3, k − 1) + k2S(n− 3, k) = · · ·

Keep on going until the last two terms are kn−1S(0, k−1)+knS(0, k). Drop-
ping the zero summands, we obtain

S(n, k) =
n−k+1∑
a=1

ka−1S(n− a, k − 1).

(6) See notes above. (7) p(n + k, k parts) = p(n + k, largest part k) =
p(n, largest part ≤ k), the last equality by stripping off the part of size k.
(8) skip (9) skip (10) skip (11) p(n) − p(n − 1) = p(n, smallest part 2) =
p(n, first 2 parts equal), the last equality by looking at the conjugate parti-
tions. (12a) Looking at the conjugate partition, the three smallest parts are
1, so ignoring them we obtain p(n − 3). (12b) After stripping off the three
smallest parts of 1 and looking at the conjugate partition, we see partitions
of n − 3 with the first 2 parts equal. By (11) this is p(n − 3) − p(n − 4).
(13) The conjugate partitions have smallest part of size 3. To obtain these,
subtract from p(n) the partitions of n with smallest part 2 and with smallest
part 1. Smallest part 1: p(n − 1). Smallest part 2: Removing the last 2 we
obtain partitions of n−2. We want to discard any that have smallest part 1.
So we get p(n−2)−p(n−3). Altogether p(n)−p(n−1)−p(n−2)+p(n−3).
(14) skip (15) skip (16) skip.

Supplementary Exercises, p. 106: (17) Composition of 15: a solution
to x1 + · · · + xk = 15 where each xi ≥ 1 and k ≥ 1. We proved above that
comp(15, k) =

(
14
k−1

)
. Summing over all k yields 214. We want to discard
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compositions that start with 1. These correspond to compositions of 14, of
which there are 213. So we obtain 214− 213 = 213 = 8192. (18) Set partitions
oxf [10] with {1} as a part correspond to set partitions of {2, . . . , 10}, which
are counted by B(9). So we want B(10)−B(9) = 94828, using the recurrence
relation to compute Bell numbers. (19) All partitions of [8] into two sets:
S(8, 2) = 127. Partitions of [8] of type 4 + 4: 8!

(4!)2·2! = 35. Subtracting,

obtain 92. (20) skip (21) Divide each even part by 2. (22) skip (23) Dividing
x1 + · · · + xk = 10 by 2 we see a composition of 5. There are 24 = 16
such compositions. (24) Subtracting 1 from each part we see solutions to
x1 + x2 + x3 + x4 + x5 = 20 with non-negative even solutions. Dividing by 2
we see solutions to y1 +y2 +y3 +y4 +y5 = 10 with non-negative solutions. 10
dots and 4 bars yields

(
14
4

)
= 1001 solutions. (25) skip (26) Did this already

in Problem (1). (27) At least 1 and at most 2 sets in the partition can have
more than one ball in it. Exactly 1: choose 3 balls to place in the same set,
then put the remaining balls in singleton sets. Exactly 2: Choose 4 balls,
create a set partition of type 2 + 2 using these, then place the rest of the
balls in singleton sets. Hence

S(n, n− 2) =

(
n

3

)
+

(
n

4

)
4!

(2!)2 · 2
=

3n4 − 14n3 + 21n2 − 10n

24
=

(n− 2)(n− 1)n(3n− 5)

24
.

(28) At least 1 and at most 3 sets in the partition can have more than one
ball in it. Exactly 1: choose 4 balls to place in the same set, then put
the remaining balls in singleton sets. Exactly 2: choose 5 balls, create a set
partition of type 2+3 using these, then place the rest of the balls in singleton
sets. Exactly 3: choose 6 balls, create a set partition of type 2 + 2 + 2 using
these, the place the rest of the balls in singleton sets. Total:

S(n, n− 3) =

(
n

4

)
+

(
n

5

)
5!

2!3!
+

(
n

6

)
6!

(2!)33!
=

n6 − 11n5 + 47n4 − 97n3 + 96n2 − 36n

48
=

(n− 3)2(n− 2)2(n− 1)n

48
.

(29) skip (30) skip (31) skip (32) Given an arbitrary set partition of [n],
merge all the singleton blocks together and toss in n + 1 to create a set
partition of [n+ 1] in which the only singleton block (potentially) is {n+ 1}.

12



This implies B(n) = F (n+ 1) + F (n), since set partitions of [n+ 1] with no
singleton blocks are counted by F (n + 1) and set partitions of [n + 1] with
only {n+1} as a singleton block are in 1:1 correspondence with set partitions
of [n] with no singleton blocks, and the latter are counted by F (n). (33) We
can organize set partitions of [n + 1] with no singleton blocks according to
how many elements accompany n + 1. For i = 1 to n, choose i elements to
accompany n+ 1, then form a set partition of the remaining n− i elements
with no singleton blocks. This yields

F (n+ 1) =
n∑
i=1

(
n

i

)
F (n− i) =

n∑
i=1

(
n

n− i

)
F (n− i) =

n−1∑
i=0

(
n

i

)
F (i).

This requires F (0) = 1. (34) skip (35) Let An be the set of all compositions
of n with parts of size ≥ 2. We can decompose this into the union of Bn and
Cn, where Bn contains compositions in An with first part 2 and Bn contains
compositions in An with first part ≥ 3. We obtain a bijection between Bn

and An−2 by dropping the first part of each composition in Bn. We obtain
a bijection between Cn and An−1 by subtracting 1 from the first part of
each composition in Cn. Therefore |An| = |An−2| + |An−1|, which implies
an = an−2 + an−1. (36) Let A′n be the set of all compositions of n with parts
of size ≥ 3. We can decompose this into the union of B′n and C ′n, where B′n
contains compositions in A′n with first part 3 and C ′n contains compositions
in A′n with first part ≥ 4. We obtain a bijection between B′n and A′n−3
by dropping the first part of each composition in B′n. We obtain a bijection
between C ′n and A′n−1 by subtracting 1 from the first part of each composition
in C ′n. Therefore |A′n| = |A′n−3|+ |A′n−1|, which implies bn = bn−3 + bn−1.

Inclusion-Exclusion concepts: inclusion-exclusion formula, derangements, set
partitions

1. Union of sets.

2. Intersection of sets.

3. Permutations containing a fixed point: union of sets.

4. Derangements: intersection. Can be expressed as universe minus union.
5. Compositions with upper limits: intersection (upper limits imposed). Can
be expressed as universe minus union.

6. Ordered set partitions of [n] into k non-empty sets: intersection (each set
non-empty). (Think of ways to load n people onto k numbered buses, no
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bus empty.) Can be expressed as universe minus union. To obtained S(n, k),
divide by k!.

7. Let A1, . . . An be sets. Name the elements in A1 ∪ · · · ∪ An 1 through u.
We wish to calculute u, the number of elements in the union. Let Mk be the
multiset obtained by tossing all the k-fold intersections of sets together, with
multplicity. Let i ∈ [u] be given. How many times does i appear in Mk?
Say that i belongs to exactly s(i) of the sets A1, . . . , An. Is s(i) < k then i
doesn’t appear at all, so 0 times. If s(i) ≥ k, i appears as many times as one
can choose k of these sets and form an intersection. So the answer is always(
s(i)
k

)
. This yields

|Mk| =
u∑
i=1

(
s(i)

k

)
.

We will prove that

u =
n∑
k=1

(−1)k−1|Mk|.

We have
n∑
k=1

(−1)k−1|Mk| =
n∑
k=1

(−1)k−1
u∑
i=1

(
s(i)

k

)
.

The sum on the right-hand side can be reorganized into

u∑
i=1

n∑
k=1

(−1)k−1
(
s(i)

k

)
.

Each of the expressions
∑n

k=1 (−1)k−1
(
s(i)
k

)
is equal to 1 by the Binomial

Theorem. Hence we obtain

n∑
k=1

(−1)k−1|Mk| =
u∑
i=1

1 = u.

Exercises, p. 142: (1) skip (2) skip (3) We are counting positive integers
≤ 210 that have no common divisor with 210. Since 210 = 2 · 3 · 5 · 7, we
want to discard numbers that are divisible by 2 or 3 or 5 or 7. We can count
the numbers we are discarding by a union. (4) Discard numbers that are
divisible by p or q or r. (5) Discard numbers that are divisible by p1 or p2
or ... or pk. (6) skip (7) skip (8) Do an example, then derive the formula.
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In general, if n is divisible by the primes p1 through pk, we want to discard
numbers divisible by one of these. (9) skip (10) We are seeking permutations
where p1 > p2 and p4 > p5 and p6 > p7. So we must discard permutations
where p1 < p2 or p4 < p5 or p6 < p7. Label the sets A1, A4, A7. Size of Ai:
choose a subset of 2 elements to place in positions i and i+ 1, then permute
the remaining elements:

(
8
2

)
6!. Size of Ai∩Aj: choose a subset of 2 elements

to place in positions i and i + 1, choose a subset of 2 elements to place in
positions j and j + 1, then permute the remaining elements:

(
8
2

)(
6
2

)
4!. Size

of Ai ∩ Aj ∩ Ak:
(
8
2

)(
6
2

)(
4
2

)
2!. (11) A4 ∩ A5: 3 positions determined, and the

elements must be in descending order, so we choose a subset of 3. (12)-(14)
skip

Supplementary Exercises, p. 143: (15) A1 = set of partitions containing
{1}, A2 = set of partitions containing {n}, A1 ∩ A2 = set of partitions
containing both {1} and {n}, |A1∪A1| = |A1|+|A2|−|A1∩A2| = 2B(n−1)−
B(n−2). (16) Ai = set of permutations containing (i), Ai∩Aj∩· · ·∩Ak = set
of permutations containing (i)(j) · · · (k), hence |A1∪A2∪A3| = n1−n2+n3 =
3(n−1)!−3(n−2)!+(n−3)! (17) skip (18) A1 = set of permutations containing
(12), A2 = set of permutations containing (34), A1∩A2 = set of permutations
containing (12)(34), |A1∩A2| = |A1|+ |A2|− |A1∩A2| = 2(n− 2)!− (n− 4)!
(19) First consider n = 2k where k ≥ 1. Bad permutations are in A1 ∪ A2

where A1 = set of permutations where p1 ∈ {2, 4, . . . , 2k} and A2 = set of
permutations where pn ∈ {2, 4, . . . , 2k}. Good permutations = all minus bad
= (2k)!− |A1| − |A2| + |A1 ∩ A2| = (2k)!− k(2k − 1)!− k(2k − 1)! + k(k −
1)(2k − 2)! = (2k)!− (2k)(2k − 1)! + k(k − 1)(2k − 2)! = k(k − 1)(2k − 2)!.
Second, consider n = 2k + 1 where k ≥ 1. Bad permutations are in A1 ∪ A2

where A1 = set of permutations where p1 ∈ {2, 4, . . . , 2k} and A2 = set of
permutations where pn ∈ {2, 4, . . . , 2k}. Good permutations = all minus
bad = (2k + 1)! − |A1| − |A2| + |A1 ∩ A2| = (2k + 1)! − k(2k)! − k(2k)! +
k(k − 1)(2k − 1)! = (2k + 1)! − 2k(2k)! + k(k − 1)(2k − 1)!. (20) skip (21)
First choose the identity of the n-cycle, then choose a derangement of the
remaining elements: nD(n− 1). (22) skip (23) This is obtained from S(n, k)
by subtracting set partitions of [n] where part 1 is singleton or part 2 is
singleton or ... . Setting Ai = set partitions of [n] into k parts where part i
is singleton, the intersection of any j of these is a set partition of [n] into k
parts where the j corresponding parts are singleton, and the number of these
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is S(n− j, k − j). So in all we have

Fk(n) = S(n, k)−
k∑
j=1

(−1)j−1
(
n

j

)
S(n− j, k − j) =

k∑
j=0

(−1)j
(
n

j

)
S(n− j, k − j).

(24) skip (24) skip (26) All minus rearrangements where 11 appears or where
22 appears. All: 7!

2!2!
. Bad: A1 + A2 − A12 = 6!

2!
+ 6!

2!
− 5!. Total = all -

bad = 660. (27) – (31) skip (32) F (n) = B(n)− number of set partitions
of [n] containing at least one singleton blocks. To count the latter, let Ai
be the set of set partitions of [n] with block {i}. Then the intersection
of k of these sets contain set partitions with k prescribed blocks, and the
rest of the elements of [n] fall into set partitions of n − k elements. This
yields Nk =

(
n
k

)
B(n − k), hence F (n) =

∑n
k=0 (−1)k

(
n
k

)
B(n− k). (33)–(35)

skip (36) A permutation of [n] has anywhere from 0 to n fixed points. To
generate the typical permutation with k fixed points, first choose a subset of
k elements out of [n] to be fixed points, then derange the remaining n − k
elements. The number of these is

(
n
k

)
D(n − k). Counting permutations by

how many fixed points they contain we obtain

n! =
n∑
k=0

(
n

k

)
D(n− k) =

n∑
k=0

(
n

n− k

)
D(n− k) =

n∑
i=0

(
n

i

)
D(i).

Chapter 8, 11 meetings: Generating Functions

Generating function concepts: sequence of numbers, recurrence relation, or-
dinary generating function, closed (or explicit) formula for a generating func-
tion, geometric series, partial fraction decomposition, coefficient extraction,
products of generating functions, substitutions, differentiation, partition gen-
erating functions, partition identities via generating functions, planar binary
trees, powers of a generating function with zero constant term, composition
of two generating functions (both with constant term 0), exponential gen-
erating function, product of exponential functions, the exponential formula,
exponential composition.

Generating function concepts organized:

1. Formal power series: geometric series, powers of a geometric series, dots-
and-bars evaluation of coefficients.
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2. Generating function for a sequence of numbers, closed formula for a re-
currence relation generating function.

3. Operations on generating functions: substitution, multiplication by x,
differentiation.

4. Extracting coefficients, partial fraction decomposition.

5. Cauchy product formula. Application: counting Catalan trees.

6. Interpretation of A(x)B(x)C(x) · · · where each F (x) is an ordinary gen-
erating function satisfying F (0) = 0: number ways to separate [n] into k
consecutive intervals and do something to each interval.

6a. Example: organize books in alphabetical order on three distinct shelves,
no shelf empty. Then F (x) is the generating function for the sequence

1, 1, 1, . . . and we obtain
(

x
1−x

)3
. Another solution: compositions of n into 3

non-zero parts.

6b. Example: organize books in alphabetical order on three distinct shelves,
no shelf empty, then choose a book on each shelf to put a bookmark in. Now
F (x) =

∑∞
k=1 kx

k = x
(1−x)2 and we obtain x3

(1−x)6 .

7. Interpretation of F (x)
1−F (x)

where F (x) is a ordinary generating function

with F (0) = 0: number of ways to separate [n] into k ≥ 1 intervals and do
something to each interval.

7a. Example: Total number of compositions of n: use any number of shelves.
We obtain

x
1−x

1− x
1−x

=
x

1− 2x
.

Compare the earlier derivation.

7b. Example: organize books in alphabetical order on any number of distinct,
no shelf empty, then choose a book on each shelf to put a bookmark in. Now
F (x) =

∑∞
k=1 kx

k = x
(1−x)2 and we obtain x

1−3x+x2 . An exact formula for the
coefficients can be found using partial fraction decomposition.

8. Exponential generating function for a sequence.

9. Interpreting A(x)B(x)C(x) · · ·Z(x) as an exponential generating function
where each F (x) is the exponential generating function for the sequence
a1, a2, a3, . . . : form an ordered set partition of [n] into k non-empty sets,
then do something to each set as described by F (x). First, form an ordered
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set partition of given sizes: n!
e1!e2!···ek!

where e1 + e2 + · · · + ek = n. Next, do
something to the first set in one of ae1 ways, then something to the second
set in one of be2 ways, etc. The result is

n!

e1!e2! · · · ek!
ae1be2 · · · zek .

The exponential generating function for all of this is∑
e1+···+ek=n

ei≥1

ae1 · · · bek
e1!e2! · · · ek!

xn = A(x)B(x)C(x) · · ·.

When unordered set partitions into k parts are called for, divide by k!.

9a. Example: find the exponential generating function for the number of
ways to place n distinct balls into 3 identical boxes, no box empty: there
is only one way to do something to the balls in the box, so the exponential
generating function for balls in a box is ex − 1. The exponential generating

function for n balls into 3 identical boxes is therefore (ex−1)3
3!

. Compare with
the formula for S(n, 3) obtained using inclusion-exclusion.

9b. Example: find the exponential generating function for the number of
ways to organize n distinct balls into 3 identical tubes, no tube empty: the
number of tubes on n ≥ 1 elements is n!, and its exponential generating func-
tion for tubes is

∑∞
n=1

n!
n!
xn = 1

1−x − 1 = x
1−x . So the exponential generating

function for the n balls into 3 identical tubes is 1
3!

x3

(1−x)3 . This enables us to
count the number of configurations. A different counting argument would be
to (1) choose a permutation (2) choose a spacing (3) divide by 3!.

9c. Example: find the exponential generating function for the number of
permutations of n with 3 cycles: the number of cycles on n ≥ 1 elements is
(n − 1)!, and its exponential generating function is

∑∞
n=1

xn

n
. Note that the

derivative of this is 1
1−x , so

∞∑
n=1

xn

n
= − ln(1− x).

So the exponential generating function for permutations with 3 cycles is
−(ln(1−x))3

3!
. The coefficients can be extracted using Mathematica.
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9d. Example: same as 9c, but each cycle has at least 2 elements. The cycle
generating function is now − ln(1− x)− x.

10. Interpreting eF (x) as an exponential generating function where F (x) is
the exponential generating function for the sequence a1, a2, a3, . . . : no limit
to the number of parts in the set partitions.

10a. Example: n distinct balls into any number of non-empty identical boxes.
We obtain ee

x−1 − 1, which yields a very complicated formula for B(n).

10b. Example: n distinct balls into any number of identical tubes: e
x

1−x − 1.
Another complicated formula.

10c. Example: number of permutations: e− ln(1−x) − 1 = x
1−x yields n! per-

mutations.

10d. Example: number of derangements: e− ln(1−x)−x−1 = e−x

1−x−1. Compare
with the formula derived using inclusion-exclusion.

Exercises, p. 174: (1)
∑∞

k=0 ak+1x
k = a1 + a2x + a3x

2 + · · · = F (x)
x

,∑∞
k=0 akx

k = F (x),
∑∞

k=0 2kxk = 1
1−2x . Solving, F (x) = x

(1−x)(1−2x) . Formula:
1

(1−ax)(1−bx) = 1
a−b

(
a

1−ax −
b

1−bx

)
. Hence F (x) = x

( −1
1−x + 2

1−2x

)
and ak =

[xk−1]F (x) = −1 + 2k. (2) b0 = a0 and bn+1 = bn + an+1. Multiplying by

xn and summing over n ≥ 0 we obtain B(x)−b0
x

= B(x) + A(x)−a0
x

. Hence

B(x) = A(x)
1−x . A general formula for

∑∞
k=0 ak+ix

k is F (x)−(a0+a1x+···+ai−1x
i−1)

xi
.

(3) skip (4) We are counting strings of 1s and 2s that sum to n. Recurrence
relation: fn = fn−1 + fn−2 when n ≥ 3 and f1 = 1 and f2 = 2. Equivalently
fn+3 = fn+2 + fn+1 when n ≥ 0. We set f0 = 0 for convenience. Hence
F (x)−0−1x−2x2

x3
= F (x)−0−1x

x2
+ F (x)−0

x
, F (x) = x2+x

1−x−x2 = −1 + 1
1−x−x2 . Formula:

1
ax2+bx+c

= 1
a(x−α)(x−β) = 1

a(β−α)

(
1/α

1−x/α −
1/β

1−x/β

)
. Note that aαβ = c, so once

you find α and β you have 1/α = (a/c)β and 1/β = (a/c)α. Simplifying, we

obtain 1
ax2+bx+c

= 1
c(α−β)

(
α

1−(a/c)αx −
β

1−(a/c)βx

)
. (5) Let F (x) = H(x)− 1 be

the non-trivial generating function. This follows from F (x)(1 − 3x + x2) =
1, since extracting [xn+2] we obtain hn+2 − 3hn+1 + hn = 0. (6) skip (7)
Imagine a sequence of 10s, 5s, and 1s, adding up to n. The number of these
is an. Organizing these by first number, this is equal to an−10 + an−5 +
an−1, valid for n ≥ 11. We can compute the lower numbers directly. This
yields an+11 = an+1 + an+6 + an+10 and is going to yield p(x)

1−x−x6−x10 . (8)
Geometric sequence has terms xn. Differentiating and multiplying by x yields
nxn. Differentiating and multiplying by x yields n2xn. (9) The formula
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in the book is incorrect. A division of [n] approach: circle the numbers
in the subset. Then put a circled n + 1 last and form the corresponding
division of [n + 1]. The first and last parts have size at least 1 and the
other parts have size at least 3. So we are seeking the coefficient of xn+1 in
A(x)C(x) +A(x)B(x)C(x) +A(x)B(x)2C(x) + · · · = A(x) 1

1−B(x)
C(x) where

A(x) = x
1−x , B(x) = x3

1−x , C(x) = x
1−x . In other words, the coefficient of xn in

1
x
A(x) 1

1−B(x)
C(x) = x

(1−x)(1−x−x3) . Mathematica yields x+ 2x2 + 3x3 + 5x4 +

8x5 + 12x6 + 18x7 + 27x8 + 40x9 + 59x10 + · · · . (10) Count partitions with
largest part k instead using a segmenting approach. To ensure at least one
partition component of each size, add the parts 1, 2, . . . , k − 1. Now use the
generating functions x

1−x , x2

1−x2 , ... xk

1−xk . Multiplying, we are segmenting [n]
into subintervals of sizes in {1, 2, 3, . . . }, {2, 4, 6, . . . }, ..., {k, 2k, 3k, . . . }. We
want the coefficient of xn+1+2+···+(k−1). Equivalently, we want the coefficient
of xn in xk

(1−x)(1−x2)···(1−xk) . (11)–(18) skip (19) We are counting permutations

with cycles of length ≤ 2. We need an ordered set partition of [n] with

an arbitrary number of non-empty parts of size ≤ 2. This yields e
x
1!
+x2

2! .
(22) Segment [n] into parts of sizes {1, 3, 5, . . . }. This yields A(x)

1−A(x) where

A(x) = x
1−x2 . Simplifying, we obtain x

1−x−x2 . This yields b(n) = f(n− 1) for
n ≥ 2.

Supplementary Exercises, p. 176: (23) The recurrence relation implies
f(x)−1

x
= 3f(x) + 1

1−2x . Hence f(x) = 1−x
1−5x+6x2

= −1
1−2x + 2

1−3x . Hence an =

−1(2n) + 2(3n). (24) f(x)−1−4x
x2

= 8f(x)−1
x
− 16f(x), f(x) = 1

1−4x , an = 4n.
(25) The recurrence relation is a0 = 50 and an+1 = 2an + 1000 for n ≥ 0.

This yields f(x)−50
x

= 2f(x) + 1000
1−x , f(x) = 50+950x

(1−x)(1−2x) = −1000
1−x + 1050

1−2x , an =

−1000+1050(2n). (26) skip (27) an+1

(n+1)!
= an

n!
+2 with a0 = 0. Setting bn = an

n!

we obtain bn+1 = bn + 2 with b0 = 0. B(x)−0
x

= B(x) + 2
1−x , B(x) = 2x

(1−x)2 ,

bn = 2n, an = (2n)n!. (28) an
n!

= an−1

(n−1)! + an−2

(n−2)! yields bn = bn−1 + bn−2 or

bn+2 = bn+1 + bn with b0 = b1 = 1. B(x)−1−x
x2

= B(x)−1
x

+B(x), B(x) = 1
1−x−x2 .

(29) an+1

(n+1)!
= an

n!
+ 1

n+1
, bn+1 = bn + 1

n+1
, B(x)−0

x
= B(x) +

∑∞
n=0

xn

n+1
, B(x) =∑∞

n=1
xn

n

1−x , bn = 1+1
2
+· · ·+ 1

n
, an = n!(1+1

2
+· · ·+ 1

n
). (30)–(32) skip (33) Choose

an unordered set partition where each part has size k. The exponential
generating function for the parts of size ≥ 1 is 1

1!
x+ 1

2!
x2 + 1

3!
x3 + · · · = ex−1.

So we obtain (ex−1)k
k!

. (34) We are segmenting [n] into an arbitrary number

subintervals of length 2 or 3. So we obtain 1 + x2+x3

1−(x2+x3) = 1
1−x2−x3 . (35)
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We are segmenting [n] into subintervals of size 1 or 2. There are two things
we can do to a subinterval of size 1: color it red or blue. there are three
things we can do to a segment of size 2: color it green or yellow or white.
So H(x) = 2x+3x2

1−2x−3x3 . (36) The typical sequence of length ≥ 3 begins with B
or AB. This yields hn = hn−1 + hn−2 for n ≥ 3 with h1 = 2 (the sequences
A and B) and h2 = 3 (the sequences AB, BA, BB). In other words, hn+3 =

hn+2 +hn+1. This yields H(x)−0−2x−3x2
x3

= H(x)−0−2x
x2

+ H(x)−0
x

, H(x) = 2x+x2

1−x−x2 .
(37) –(38) skip (39) Choose an ordered set partition of [n] into 2 sets, and
with each set form a permutation of its elements. The exponential generating

function for permutations is 1!
1!
x+ 2!

2!
x2 + · · · = x

1−x . So T (x) =
(

x
1−x

)2
. This

implies tn
n!

= n − 1 and tn = n!(n − 1). Another proof: form a permutation
of [n], then decide how to separate into two non-empty intervals. There
are n! was to form a permutation, and n − 1 ways to separate (separation
occurs after book 1 or book 2 or ... or book n − 1). (40) Derangements
are permutations with cycles of length ≥ 2. First form an unordered set
partition of arbitrary size, then arrange the elements of each set into a cycle.
The exponential generating function for arranging elements into a cycle is
1!
2!
x2+ 2!

3!
x2+· · · =

∑∞
k=2

xk

k
= log( 1

1−x)−x, so D(x) = e(log(
1

1−x )−x) = e−x

1−x . (41)
It suffices to show that the exponential generating function for the implied
recurrence relation is ex

1−x . (42) skip (43) Form an ordered set partition
into three sets (empty sets allowed). The first set must have odd size, the
second set must have even size, and the third set can have any size. We
must form a permutation of each set since the people are arranged in a line.
The exponential generating function for this process is A(x)B(x)C(x), where
A(x) is the exponential generating function for permutations of sets of even
size, B(x) is the exponential generating function for permutations sets of
odd size, and B(x) is the exponential generating function for permutations
sets of arbitrary size. We have A(x) = 1 + 2!x2

2!
+ 4!x4

4!
+ · · · = 1

1−x2 , B(x) =
1!x1

1!
+ 3!x3

3!
+ · · · = x

1−x2 , C(x) = 0!x0

0!
+ 1!x1

1!
+ · · · = 1

1−x . Given F (x) =

A(x)B(x)C(x) = x3

(1−x2)(1−x) = x
(1−x)2(1+x) = x

(
1/4
1−x + 1/2

(1−x)2 + 1/4
1+x

)
, we have

fn
n!

= [xn−1]
(

1/4
1−x + 1/2

(1−x)2 + 1/4
1+x

)
= (1/4)(1)+(1/2)

(
n−1+1

1

)
+(1/4)(−1)n−1 =

1+2n−(−1)n
4

. Hence fn = n!1+2n−(−1)n
4

. (44) Form an ordered set partition into
two sets, the first non-empty, the second possibly empty. If the first set has
even size, do nothing, but if it has odd size, choose an even-sized subset.
The exponential generating function for this process is F (x) = A(x)B(x)
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where A(x) = 20

1!
x1 + 22

3!
x3 + 24

5!
x5 + · · · = 1

2

(
e2x−e−2x

2

)
and B(x) = ex. Hence

F (x) = e3x−e−x
4

, fn = 3n−(−1)n
4

. (45) – (50) skip

Chapters 9 and 10: Graph Theory and Trees (15 meetings)

Graph Theory Concepts: Graph, vertices, edges, vertex degree, trail, walk,
closed trail, Eulerian Trail, path, connected graph, complete graph, con-
nected components, Hamilton Cycle, Hamilton Path, directed graph, di-
rected trails/walks/paths, strongly-connected directed graph, in-degrees and
out-degrees, balanced directed graph, tournament, graph isomorphism.

1. Definitions.

Graph: (V,E).

Vertex degree: number of edges containing vertex.

Trail of length k: (e1, e2, . . . , ek), distinct edges, consecutive edges sharing a
vertex.

Walk of length k: (e1, e2, . . . , ek), edges, consecutive edges sharing a vertex,
edges not necessarily distinct.

Closed trail of length k: return to vertex in e1 that is not in e2. Also called
a cycle.

Eulerian Trail: every edge in graph appears.

Path of length k: trail, no self-intersections.

Trail/walk/path between vertices of length k: (x1, e1, x2, e2, . . . , xk, ek, xk+1)
xi ∈ ei, 1 ≤ i ≤ k, and xk+1 ∈ ek. This allows us to talk about trails/walks/paths
of length 0 and between a vertex and itself.

Connected graph: every pair of vertices are the endpoints of some walk. A
single-vertex graph is considered to be connected.

Connected component of a graph: form an equivalence relation on V : x ≡ y
iff x, y are the endpoints of a walk in the graph. Now form the equivalence
classes. A connected component of a graph G = (V,E) is Ci = (Vi, Ei) where
Vi is an equivalence class and Ei = {e ∈ E : e ⊆ Vi}.
Complete graph: Kn = ([n],

(
[n]
2

)
).

Hamilton Cycle: A closed trail (cycle) in the graph that contains every vertex
in the graph.
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Hamilton Path: A path in the graph that contains every vertex in the graph.

Directed graph: a graph with edge directions.

Directed trail/walk/path from x to y: edge joining xi to xi+1 points from xi
to xi+1.

Strongly-connected graph: For every pair of vertices x and y there is a di-
rected walk from x to y and a directed walk from y to x.

Out-degree of a vertex x: number of edges of the form x→ y.

In-degree of a vertex x: number of edges of the form y → x.

Balanced directed graph: indegree(x) = outdegree(x) for every vertex x.

Tournament: Kn with edge directions.

Graph isomorphism: two graphs G and H are isomorphic iff they can be
superimposed.

2. Theorems.

1. Theorem: : Let G be a graph. Then
∑

x∈V deg(x) ≡ 0 mod 2.
Proof: Place a dot on either end of every edge. 2e dots. Dots per vertex x:
deg(x).

2. Theorem: : Let G be a graph. Let V0 be the set of vertices with degree
≡ 0 mod 2. Let V1 be the set of vertices with degree ≡ 1 mod 2. Then
|V1| ≡ 0 mod 2.

Proof: 0 ≡
∑

x∈V0 deg(x) +
∑

x∈V1 deg(x) ≡
∑

x∈V1 1 = |V1| mod 2.

3. Theorem: : If V = V0 and |E| > 0 then G contains a cycle.

Proof: Extend an edge to a path of maximal length. The endpoint has
degree ≥ 2, so another edge, which by maximality can only point to another
vertex on the graph. This yields a cycle.

4. Theorem: : Every connected component of G has a closed Euler Trail
iff V = V0.

Proof: Assume every connected component of G has closed Euler Trail.
Walking along Euler Trails, distribute dots as follows: drop a dot just after
departing a vertex and just before arriving at a vertex. Except for the first
vertex in a trail, every vertex gets 2 dots at a time, and since every edge is
used, every vertex gets one dot per edge it belongs to. Hence even degree.
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The first vertex gets 1 dot on departure, then dots in pairs, then 1 more dot
on the last arrival, so an even number of dots. It has even degree.

Conversely, suppose V = V0 in G. Proceed by induction on number of edges
in G. Base case: e = 0. Every component has a single vertex, hence a closed
Euler trail. e = 1: not possible. e = 2: not possible. e = 3: graph must be
a triangle plus any number of isolated vertices. Induction hypothesis: For
graphs with up to e vertices, the statement is true. Now let G be a graph
with e + 1 vertices satisfying V = V0. By Theorem 3, G has a cycle C. Let
H = G−C. Then H satisfies V = V0, and has e−2 edges, so every connected
component of H has a closed Euler Trail. C glues some of these together
into a closed trail, so every edge in G belongs to exactly one closed trail.

5. Theorem: : Let G be a connected graph. Let s 6= t be vertices in G.
Then there is an Euler Trail with endpoints s and t iff V1 = {s, t}.

Proof: Assume the Euler Trail exists. Create a new graph H by adding
to G a new vertex x and the edges {x, s} and {x, t}. H has a closed Euler
Trail (walk through all edges from s to t, then travel to x, then travel to s).
V = V0 in H implies V1 = {s, t} in G.

Conversely, assume V1 = {s, t}. Create H as before. It satisfies V = V0 and
is connected, so has an Euler Trail. Picking up the trail at x it travels first
to s (WLOG) and cannot return to x until it has visited every other edge
first (otherwise we get stuck at x before visiting all edges). The last edge is
t to x. This implies an Euler Trail in G from s to t.

6. Theorem: : Let G be a graph with n vertices. If deg(x) ≥ n−1
2

for each
vertex x then G is connected.

Proof: Suppose G has at least two connected components. Choose x1 ∈ C1

and x2 ∈ C2. C1 has at least 1+deg(x1) vertices and C2 has at least 1+deg(x2)
vertices, therefore C1∪C2 has at least 2+deg(x1)+deg(x2) ≥ 2+ n−1

2
+ n−1

2
=

n+ 1 vertices. Contradiction. Therefore G must be connected.

7. Theorem: : Let G be a graph with n ≥ 3 vertices. If deg(x) ≥ n
2

for
each vertex x then G has a Hamilton Cycle.

Proof: Pick a path of maximum possible length k in the graph and say that
it has vertices x0, x1, . . . , xk. By maximality of the path length, every edge
out of x0 has endpoint in {x1, x2, . . . , xk}. Similarly, every edge out of xk
has an endpoint in {x0, x1, . . . , xk−1}. Now suppose that whenever xk − xi
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is an edge, x0 − xi+1 is not an edge. This implies that if deg(xk) = a then
deg(x0) ≤ k − a. Therefore

k = a+ (k − a) = deg(xk) + (k − a) ≥ deg(xk) + deg(x0) ≥ n.

However, this implies there are ≥ n + 1 vertices on the path, which is too
many. So there must be an instance where xk − xi and x0 − xi+1 are both
edges in the graph. Use this to construct a cycle of k + 1 vertices: x0 to xi
along the path, then to xk, then backward along the path to xi+1, then back
to x0. Our last step is to show that k + 1 = n. If k + 1 < n then there has
to be an edge from a cycle vertex to a non-cycle vertex, otherwise no path
in the graph can escape the cycle and travel to a vertex off the cycle. This
edge, plus the cycle edges, implies the existence of a path of length k + 1
in the graph: contradiction. Hence k + 1 = n and the cycle we constructed
incorporates every vertex.

8. Theorem: : A directed graph G decomposes into closed Eulerian Trails
iff it is balanced and and each underlying connected component is strongly
connected.

Proof: If the decomposition exists then dot-depositing implies balanced and
the underlying connected components must be strongly connected because
we can circulate around the trails to form directed paths. Conversely, if the
graph is balanced and the underlying connected components are strongly
connected, use a directed version of the proof (requires a directed version
of Theorem 3). Note that for the converse we don’t need the assumption
that the underlying components are strongly connected (so this condition is
forced by the balanced hypothesis).

9. Theorem: : Every tournament has a Hamilton path.

Proof: We will prove that there exist directed paths of length k edges for
every k ≤ n−1 by induction on k. Base case: pick an arbitrary directed edge.
Induction hypothesis: for some k there exists a directed path x0 → x1 →
· · · → xk. If k = n− 1 we’re done, so suppose k < n− 1. We will show that
there is a directed path of length k+1. Pick an arbitrary vertex y not on the
path and form the sequence D0, D1, . . . , Dk, where each Di ∈ {T, F}, where
Di = T means xi → y and Di = F means y → xi. If our sequence contains
a TF in it then our new directed path is x0 →→ xi → y → xi+1 →→ xk. If
our sequence does not contain a TF in it, it is either T k+1 or F aT b for a ≥ 1,
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so it either ends with T or begins with F . If it it begins with T , append
xk → y. It it begins with F , prepend y → x0.

10. Theorem: : A tournament has a Hamilton cycle iff it is strongly
connected.

Proof: If a tournament has a Hamilton cycle then it is strongly connected:
just follow the cycle from one vertex to another one. Conversely, suppose a
tournament is strongly connected. The tournament has at least one cycle in
it: find a path of maximal length. The last vertex on the path has an edge
out of it because there has to be a path back to the first vertex. This edge
points to a vertex along the maximal path, so there is a cycle. Now let C be
a cycle with the maximum possible number of vertices in it. We will argue
that it must contain all the vertices of the tournament. Suppose it doesn’t.
Then there must be an edge pointing from a cycle vertex c to a non-cycle
vertex x, otherwise there is no way to leave the cycle and travel to a non-
cycle vertex. Now if the cycle is c → c′ → c′′ → · · · , then c′ → x, otherwise
we could create a longer cycle. Similarly, c′′ → x, c′′′ → x, etc. All the cycle
vertices point to x. Let X be the set of all vertices of this description, namely
non-cycle vertices x such that c→ x for all c ∈ C. If every edge out of every
x ∈ X pointed back into X, there would be no way to escape X, so no way
to return to C, which contradicts strong connectedness. So there has to be
an edge of the form x→ y where x ∈ X and y 6∈ X. We know c→ x because
every cycle vertex points to x. We can’t have y → c′ by maximality of the
cycle, and we can’t have c′ → y since once any one cycle vertex points to y,
they all do. So there can’t be any edge between y and c′, which contradicts
the fact that our graph is a tournament. So C must include all vertices.

Chapter 9 Exercises, p. 202: (1) Pick an arbitrary vertex in each con-
nected component and label them with consecutive names: x1, x2, . . . . Re-
peat the following step until all vertices have been labeled: find the smallest
labeled vertex that has edges to unlabeled vertices and direct all of these
edges outward, labeling the vertices on the other end of these edges with the
smallest available unused label. When done, all edges point from a smaller
vertex to a larger vertex, so there can’t be any directed cycles. (2) No: C3.
(3) Skip (4) Let ∆ be the maximum vertex degree. Adding the degrees to-
gether, 27 ≤ 9∆, therefore 3 ≤ ∆. If ∆ = 3 then all 9 vertex degrees are
3. Impossible: there must be an even number of odd degrees. So ∆ ≥ 4.
(5) For each subset S of 4 vertices let E(S) denote the set of edges among
vertices in S. Every |E(S)| is between 0 and

(
4
2

)
= 6, and we want one of
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them to equal 6. Let the maximum value of |E(S)| be ∆. Add all these
numbers up. What do we get? Label an edge with S, S ′, S ′′ · · · whenever it
belongs to S, S ′, S ′′, . . . . Then ∑

S⊆V
|S|=4

|E(S)|

is the total number of edge labels. Each edge is labeled with
(
8
2

)
different

labels because that’s how many 4-element subsets its vertices belongs to,
given |V | = 10. Hence ∑

S⊆V
|S|=4

|E(S)| = 38

(
8

2

)
= 1064.

On the other hand, ∑
S⊆V
|S|=4

|E(S)| ≤
(

10

4

)
∆,

so we get 1064 ≤ 210∆, ∆ ≥ 5.06667, which implies ∆ = 6 since ∆ is
an integer. So there is an S with |E(S)| = 6. (6) The graph decomposes
into closed Eulerian Trails. Walks around the edges and assign alternating
color edges. (7) We must decide which of the edges in Kn belong to the

graph. 2 choices for each edge. So 2(n2). (8) Think of a graph isomorphism
between G to H as a function f : V (G) → V (H). After the graphs are
superimposed, f(x) = vertex in VH that x is on top of. An automorphism of
a graph with vertex set [n] can be thought of as a permutation that preserves
structure. Counting automorphisms: (a) Any vertex permutation of Kn

yields Kn, so n! (b) All we can do is rotate, or rotate and then flip, so 2n.
(c) All we can do is reverse order. So 2 if n ≥ 2. (d) In Sn the central
vertex cannot change but the outer vertices can be permuted at will, so
(n−1)!. (9) Say that two graphs with vertex set [8] are equivalent iff they are
isomorphic. This is an equivalence relation. Organize into equivalence classes

C1, C2, . . . , Ch. We want h ≥ 6600. We have |C1|+ |C2|+ · · · |Ch| = 2(8
2). To

show that h is large we must show that each |Ci| is small. Given any graph
in Ci, we can obtain the others in Ci by applying an isomorphism to these,

and there are ≤ 8! of them. So we have 2(8
2) = |C1| + · · · + |Ch| ≤ h(8!),

therefore h ≥ 2(8
2)/8! = 6657.63. (10) Yes, by Theorem 2 above. (11) (a)
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No: butterfly graph. (b) No: K4. (12) Vertex degree sum yields 44 =
|V |deg, so |V | ∈ {1, 2, 4, 11, 22, 44}. Not all number are possible, because(|V |

2

)
≥ 22. We actually need |V | ∈ {11, 22, 44}. But we’re not done until we

actually construct the graph. If |V | = 11 then all degrees are 4. Use Harary
construction. If |V | = 22 then all degrees are 2. Big cycle. If |V | = 44 then
all degrees are 1, which implies 22 disjoint edges, which is not connected. (13)
skip (14) If it does, then exploring the possibilities we get a contradiction
in every case. So it doesn’t. (15) skip (16) The number of parts of the
partition is the number of non-isolated neighbors, say k. The largest part of
the partition is the largest degree, which is at most k − 1. So no. (17) skip
(18) skip (19) skip (20) skip (21) C3 +C3 and C6 both have degree sequence
26. (22) A graph is a collection of connected components. To create one,
form a set partition on [n] and construct a connected graph on each. Hence
is F (x) is the exponential generating function for all graphs, F (x) = eC(x).

The coefficients of F (x) are 2(
n
2)
n!

.

Supplementary Exercises, p. 205: (23) (a) Number of directed graph
with k edges: First choose k edges out of N =

(
n
2

)
available, then assign an

orientation to these. This yields
(
N
k

)
2k. Total is

∑N
k=0

(
N
k

)
2k = 3N = 3(n2).

(b) This is equal to the last term in the sum, namely 2N = 2(n2). (24) skip
(25) skip (26) Yes. Form directed path of maximal length. To avoid cycle,
last vertex must have out-degree 0. (27) By induction on n ≥ 1, n = 2:
There are two non-isomorphic graphs on [2], and 2 =

(
2
2

)
+ 1. Now assume

one can find
(
n
2

)
+ 1 non-isomorphic graphs on [n]. We can consider these

as non-isomorphic graphs on [n + 1] by adding n + 1 as an isolated vertex.
We need to find at least n more. So we can try to find n non-isomorphic
graphs on [n + 1] that have no isolated vertex. Try Pn+1, Pn+1 + 12, Pn+1 +
12 + 13, . . . , Pn+1 + 12 + 13 + · · · + 1(n + 1). (28) A path is a walk with no
self-intersections. Given a walk from A to B, the first time you encounter a
vertex a second time, cut out all edges of the walk after the first encounter
and before the second encounter. Obtain a shorter AB walk. Repeat as
necessary until no self-intersections. (30) In an n vertex graph, degrees range
from 0 to n − 1. If all degrees are different there are one of each, including
n − 1, which precludes 0. Contradiction. (31) We have a graph in which
deg(x) = deg(y) and x 6= y implies N(x)∩N(y) = ∅. We wish to prove that
some vertex has degree 1. Use induction on number of edges. If there is just
1 edge, no problem. Now assume the property is true for n edges. Consider
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n+ 1 edges. Delete an arbitrary edge. If we generate a graph satisfying the
same condition, then the induction hypothesis guarantees the existence of a
degree 1 vertex in the smaller graph. If it is not an endpoint of the edge
we deleted, then the original graph has a degree 1 vertex. But if it is an
endpoint of the edge we deleted, then the vertex it is joined to has degree
1 in the original graph. Now suppose we delete an edge and do violate the
condition. Then there is an edge in the original graph with endpoints of
degree k and k − 1 for some k ≥ 2. Now if we choose our edge carefully we
can avoid this second scenario: just choose an edge containing a vertex of
minimal degree. (31) skip (32) skip (33) Model what has happened so far as
a graph on 10 vertices with 11 edges. We want a vertex to have degree ≥ 3.
If all degrees are ≤ 2 then the vertex degree sum is at most 20, which implies
at most 10 edges. Contradiction. (34) Just do it. (35) In other words, find
the smallest value of n ≥ 2 such that there exists a graph with only the trivial
automorphism. This is a trial and error process. Probably n = 4. (36) First
consider one r-cycle C. Draw it so that vertex 1 is on top and vertex 2 is
clockwise from 1. Every automorphism of C is determined by the resulting
positions of 1 and 2. There are r choices for where to send 1 and 2 choices for
where to send 2, given that it is joined to 1. The remaining vertex positions
are determined. So there are 2r automorphisms of C. Now consider cycles
C1, . . . , Ck. Any permutation of vertices that preserves the graph will have
to do something to each cycle and permute the order of the cycles. Hence
there are k!(2r)k automorphisms. (37) skip (38) skip (39) Number of directed
cycles starting at 1: (n − 1)!. But as distinct graphs, only (n − 1)!/2. (40)
Any cycle must have an equal number of vertices from A and from B, so
m = n is required for existence. Counting directed cycles starting at a1, we
will encounter the vertices in A in (n− 1)! ways and the vertices in B in n!
ways, for a total of (n− 1)!n!. Number of distinct subgraphs is (n− 1)!n!/2.
(41) Q2 = C4, so it has a Hamilton cycle. Assuming Qn does, Qn+1 can be
described as two copies of Qn plus edges joining 0v to 1v where v ∈ Qn. Find
a Hamilton path in each copy of Qn with endpoints u1, u2 on one side and
endpoints v1, v2 on the other side, then create a Hamilton cycle in Qn+1 by
introducing edges 0u1−1v1 and 1v2−0u2. (42) Q2 has 2, which is more than
enough. Assuming Qn has at least n!/2, the construction in (41) yields at
least n(n!/2)2 Hamilton cycles in Qn+1, which is also enough (first few cases
must be checked). (43) skip (44) skip (45) Find path of maximal length.
Last vertex has k edges to vertices on the path. So one of them reaches back
at least k vertices, yielding a (k + 1)-cycle. (46) Suitably modify Theorems
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6 and 7 above. (47) To create a counter-example, add a vertex to Kn−1 and
create a single edge out of this vertex. (48) skip (49) skip (50) skip.

Tree concepts: Tree, forest, number of edges in a tree or forest, number
of trees, spanning trees, minimal weight spanning trees, Kruskal’s algorithm,
adjacency matrix, counting walks using the adjacency matrix, counting span-
ning trees using the Matrix-Tree Theorem.

1. Definitions.

Tree: Connected graph, no cycles.

Forest: Graph, no cycles. Each component is a tree.

Leaf: Degree one vertex.

Bridge edge: An edge whose removal from a graph increases the number of
connected components.

Rooted tree: tree with one vertex designated the root.

Doubly-rooted tree: tree with a circled vertex and a boxed vertex (they can
be the same vertex).

Spanning tree: subgraph which contains all vertices (spanning) and is a tree.

Adjacency matrix: 0-1 matrix with rows and columns representing vertices
and entries representing edges.

Weighted graph: edges have positive weights. Alternatively, complete graph
with non-negative weights.

Kruskal’s Algorithm: Let G be a connected graph of order n with edge
weights. Choose an edge e1 of smallest possible weight. Having found the
acyclic collection of edges e1, . . . , ek, choose ek+1 of minimum weight that
extends the acyclic collection. Keep on going until no longer possible.

2. Theorems.

1. Theorem: Let G be connected. e is a bridge edge iff e does not belong
to a cycle.

Proof: If e belongs to a cycle then its removal does not disconnect G so it is
not a bridge. Conversely, if e is not a bridge then G−e is connected, so there
is a path between the endpoints of e in G− e, forming a cycle containing e.
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2. Theorem: A graph is a tree iff every pair of vertices is joined by a unique
path.

Proof: Tree implies no cycles implies unique paths. Unique paths implies
no cycles implies tree.

3. Theorem: Every nontrivial tree contains at least two leaves.

Proof: Find a maximal path. Endpoints are leaves, otherwise there’s a
cycle.

4. Theorem: Let G be a connected graph. Then G is a tree if and only if
e = v − 1.

Proof: Let G be a tree. We will prove e = v− 1 by induction on v. If v = 1
then e = 0 and we are done. Assume when v = n, e = n− 1. Now consider
v = n+ 1. Find a leaf vertex. The edge it belongs to cannot be a bridge, so
its deletion leaves a connected graph which is still acyclic, hence still a tree.
This tree has n vertices, hence n− 1 edges, therefore the original graph has
n edges.

Conversely, assume only that G is connected and satisfies e = v − 1. Since
deletion of cycle edges leaves a connected graph and all vertices intact, we
can successively delete cycle edges until what’s left has none and is still
connected. At this point we have arrived at a tree, which has v− 1 edges. In
other words, we didn’t delete any edges to begin with, so G itself is a tree.

5. Theorem: A forest has v − e trees in it.

Proof: Say that the forest has k trees in it. Adding k − 1 edges produces a
tree with E = e + k − 1. The identity E = v − 1 implies e + k − 1 = v − 1
implies k = v − e.
6. Theorem: Let G be acyclic. Then e = v − 1 implies G is a tree.

Proof: G is a forest consisting of v − e = 1 trees.

7. Theorem: Any connected collection of n edges encompassing n + 1
vertices is a tree.

Proof: Let G be the resulting graph. By Theorem 4 it is a tree.

8. Theorem: Let G be a graph and assume that every vertex degree is ≥ k.
Then G contains an isomorphic copy of every tree on k edges.

Proof: By induction on k. If k = 0 then G consists of isolated vertices, each
of which is a tree on 0 edges. If k = 1 then G consists of isolated edges, each
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of which is a tree on 1 edge. Now consider k ≥ 2. Let T be an arbitrary
tree with k edges. Delete a leaf edge {t, t′} from T , producing T ′ with k − 1
edges. By the induction hypothesis, G contains a copy of T ′. At the copy of
t′ there must be an edge of G that does not appear in the copy of T ′. Use
another edge of G to produce a copy of the edge {t, t′}. So there is a copy of
T in G.

9. Theorem: There are nn doubly-rooted trees in Kn, hence nn−2 trees in
Kn.

Proof: Given a doubly-rooted tree, form a forest of rooted trees by deleting
the edges along the path between the circled and boxed vertex and using
the vertices along this path as the roots of the trees in the forest. Orient all
the remaining edges towards the roots and interpret as a function from the
non-root vertices to the non-leaf vertices. Extend the inputs of the function
to the root vertices by defining the permutation in two-line format where the
top line is the list of root vertices in increasing order and the bottom line
is the list of root vertices in the order in which they appear along the path.
We have created a function f : [n]→ [n]. Different doubly-rooted trees give
rise to different functions. The mapping between doubly-rooted trees and
functions is surjective: given a function f : [n]→ [n], create a directed graph
D with vertex set [n] and edges i → f(i). The function f combined with
the cycle vertices C form a permutation of σ of C which can be represented
in two-line format. The order of the vertices in the bottom line of σ can be
represented by a path graph, and we can create a doubly-rooted tree which
gives rise to f by adjoining to this path the edges in D out of non-C vertices.

10. Cauchy-Binet Theorem: Assume p ≤ q. Let A = (aij) be an p × q
matrix, let B = (bij) be a q × p matrix, and write AB = C = (cij). Then

det(AB) = det(C1, . . . , Cp) = det(

q∑
i=1

bi1Ai, . . . ,

q∑
i=1

bipAi) =

∑
1≤i1,...,ip≤q

bi11 · · · bipp det(Ai1 , . . . , Aip) =

∑
1≤i1<i2<···<ip≤q

∑
σ∈Sp

biσ(1)1 · · · biσ(p)p det(Aiσ(1) , . . . , Aiσ(p)) =

∑
1≤i1<i2<···<ip≤q

∑
σ∈Sp

biσ(1)1 · · · biσ(p)p sgn(σ) det(Ai1 , . . . , Aip) =
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∑
I∈([q]

p )

det(AI) det(BI)

where for a subset I of [q] of size p, AI is the submatrix of A using the p
columns from I and BI is the submatrix of B using the p rows from I.

11. Matrix-Tree Theorem: Given a graphG with vertex set V = {x1, . . . , xn}
and edge set E = {e1, . . . , em}, the number of spanning trees inG is det(CCT ),
where

C = ((−1)χ(xi=min ej)χ(xi ∈ ej))

and 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m.

Example:

G =

1 2

3 54

1

2

3

4 5

6

C =


−1 0 0 −1 0 0
1 −1 0 0 −1 0
0 0 −1 1 1 0
0 1 1 0 0 −1


det(CCT ) = 8

Spanning trees:

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5
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Proof of the Matrix-Tree Theorem: The number of spanning trees of
G is ∑

H∈( E
n−1)

χ(H is a spanning tree).

We have

det(CCT ) =
∑

I∈( [m]
n−1)

det(CI) det(CT
I ) =

∑
I∈( [m]

n−1)

det(CI)
2.

We will prove that

det(CI)
2 = χ({ei : i ∈ I} is a spanning tree)

for each I ∈
(
[m]
n−1

)
.

Let I ∈
(
[m]
n−1

)
be given. Name the corresponding edges f1, . . . , fn−1. Then

the ij-entry of CI is 0 if xi 6∈ fj and is ±1 if xi ∈ fj. These edges form a
spanning tree if and only if they are connected and encompass n vertices.

Case 1: {f1, . . . , fn−1} does not incorporate all n vertices. If xn is isolated
then each column of CI has a 1 and a −1 in it, so the sum of its rows is the
0 vector, so its rows are linearly dependent and det(CI) = 0. If some other
vertex xk is isolated then row k in CI is the 0 vector, which again implies
det(CI) = 0.

Case 2: {f1, . . . , fn−1} encompasses all n vertices but is not connected. Each
component has at least two vertices. The sum of all the rows corresponding
to vertices in a component not containing xn is 0, hence the rows are not
linearly independent and det(CI) = 0.

Case 3: {f1, . . . , fn−1} incorporates all n vertices and is connected. The
collection of edges forms a spanning tree. Clipping leaf vertices and edges,
we can permute the rows and columns of CI to produce a lower-triangular
matrix with ±1 in each diagonal entry. This implies det(CI) = ±1.

Example: G = Kn. The rows of C are indexed by 1, 2, . . . , n − 1 and the
columns are indexed by all (p, q) where 1 ≤ p < q ≤ n. The (i, j)-entry of
CCT is ∑

1≤p<q≤n

Ci,(p,q)Cj,(p,q).
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When i < j the only non-zero contribution is Ci,(i,j)Cj,(i,j) = (−1)(1) = −1
and when i = j the only non-zero contributions are C2

i,(i,q) where i < q and

C2
i,(p,i) where p < i, for a total of n− 1. Hence CCT is the matrix with n− 1

down the diagonal and −1 elsewhere. This has determinant nn−2.

12. Theorem: Kruskal’s Algorithm produces a minimum weight spanning
tree.

Proof: First note that when Kruskal’s algorithm terminates, all vertices
have been incorporated by connectedness. So the result is a spanning tree.
We will prove that {e1, . . . , ek} is a subset of a minimum weight spanning
tree Tk for each k using an induction argument.

Base Case: Let T0 be any minimum weight spanning tree. If includes e1,
then set T1 = T0. If it doesn’t include e1, the subgraph T0 + e1 contains
a cycle of ≥ 3 edges. Delete any one of these cycle edges not equal to e1.
Call it t0 to emphasize that it belongs to T0. By minimality of weight(e1),
weight(T0 + e1 − t0) ≤ weight(T ). Since T0 + e1 − t0 consists of n− 1 edges
and encompasses all vertices, it is a tree. So in fact T0 +e1− t0 is a minimum
weight spanning tree. We set T1 = T0 + e1 − t0.

Induction hypothesis: There exists a minimum weight spanning tree Tk that
contains the edges e1, . . . , ek.

We must now construct a minimum weight spanning tree Tk+1 that contains
e1, . . . , ek+1. If ek+1 ∈ Tk then we set Tk+1 = Tk. But if ek+1 6∈ Tk then
Tk + ek+1 contains a cycle. One of the edges in this cycle is ek+1. Since the
collection {e1, . . . , ek+1} is acyclic, one of the edges in the cycle cannot be in
this set. Call it tk to emphasize that it belongs to Tk. Then Tk + ek+1 − tk
is a spanning tree. Since {e1, . . . , ek, tk} ⊆ Tk, the collection is acyclic. By
the way ek+1 was chosen by Kruskal’s Algorithm, weight(ek+1) ≤ weight(tk).
Therefore weight(Tk + ek+1 − tk) ≤ weight(Tk). Hence Tk + ek+1 − tk is a
minimum weight spanning tree. We set Tk+1 = Tk + ek+1 − tk.

13. Theorem: Let G be a graph and let A be its adjacency matrix. Then
the entries of An record the number of walks of length n between vertices.

Proof: Use induction and a counting argument.

Chapter 10 Exercises, p. 234: (1) We must an = 1, otherwise the sum
is too large. Now discard an and replace an−1 by an−1 − 1. The sum is
now 2n − 4. Use an induction argument. (2) Each non-leaf accounts for
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k edges, so there are km edges. Hence km = e = v − 1, v = km + 1.
Hence there are v − m = m(k − 1) + 1 leaf edges. (3) Using (1), have
have at least p(2n − 2, n parts) distinct degree sequences. Hence at least
p(2n − 2, first part n) trees. Hence at least p(n − 2) trees. (4) Let there be
tn non-isomorphic trees. Picking one of each class, we can generate all the
others by applying vertex permutations. Hence there are at most n!tn trees.
In other words, n!tn ≥ nn−2. This says tn ≥ nn−2

n!
. Setting f(n) = nn−2

n!
and

g(n) = p(n − 2) and graphing f(n)/g(n) versus n we can see that f(n) is
growing much more quickly than g(n), hence f(n) is the better lower bound:

5 10 15
n

10

20

30

40

50

60

f HnL�gHnL

(9) It suffices to prove that if G is not connected then G′ is connected. Write
G = G1 +G2 + · · ·+Gk, where Gk ≥ 2 and the Gi are connected components
of G. Then there is an edge in G′ between every vertex of Gi and every
vertex of Gj where i 6= j. Now consider two vertices x and y in G′. If
they are in different Gi then they are joined by an edge in G′. But if they
are both in some Gi, they are both joined to the same vertex in Gj where
j 6= i, so there is a path of length 2 between x and y in G′. (10) Write
G = G1 +G2 + · · ·+Gk, connected component decomposition. Assume that
Gi has ni vertices and that G has n vertices. Then G can have at most(
n1

2

)
+ · · · +

(
nk
2

)
edges. We wish to find the maximum value of such a sum.

We can obviously increase the sum by adding edges to form a complete graph
out of the first k−1 components and still have a disconnected graph. We are
reduced to computing the maximum value of

(
a
2

)
+
(
b
2

)
where a+ b = n and

a, b ≥ 1. If a ≥ b ≥ 2 then removing a vertex from the smaller component we
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lose b− 1 edges, and adding this vertex to the larger component and adding
all possible edges we gain a edges, with a net gain of a − b + 1 ≥ 1 edges.
Keep on going until we obtain G = Kn−1 +K1 having

(
n−1
2

)
edges. (11) Let

the connected component decomposition of G be G1 + · · · + Gk and let a
corresponding forest be F1 + · · ·+ Fk. This forest satisfies v(F )− e(F ) = k.
Therefore e(F ) = v(F )− k = n− k, which implies e(G)− e(F ) = m−n+ k.
Every edge in E(G)−F (G) that we add to F creates a cycle, so there are at
least m−n+k cycles in the graph. (15) (a) This says their is a walk of length
4 from a vertex to itself, which is true. (b) There is a closed walk of length
11 from i to i. So we just have to show that a closed walk of odd length
produces a cycle of odd length. Proceed along the walk until the first time
you meet a vertex for the second time. Between the first and second time
is a cycle. If odd, great. If even, chop it out and deal with a smaller closed
walk of odd length. Keep on going. (c) The shortest walk between i and j,
if there is one, has length n. Chopping out cycles we find a path of length
n, which is too long since there are only n vertices. So there are no walks
at all between i and j. (16) Walks of even length join two vertices on the
same side only, and walks of odd length join two vertices on opposite sides.
This gives information about the entries in Am. (19) To create a forest, form
an unordered set partition and place a tree structure on each part. (20) To
create a rooted tree, create an ordered set partition where the first part has
size 1 only and the second one is used to create a forest. To create a forest,
form an unordered set partition and place a rooted tree structure on each
part.

Supplementary Exercises, p. 237: (21) A forest creates a set partition.
(23) These are path graphs. Choose the two endpoints in

(
n
2

)
ways, then

choose the order of n−2 vertices from smaller endpoint to larger endpoint in
(n − 2)! ways. Total: n!

2
. (24) Use a brute-force argument. (25) Keep track

of the number of vertices in each tree. (26) If they don’t, draw two parallel
paths. Connected forces a path between them. Find a longer path in this
structure. (30) Join vertices 1 through n − 1 to vertex n. Then any subset
of vertices that includes n will have induced subgraph which is a tree. There
are 2n−1 of these. (31) I’m guessing 7: a vertex of degree 3 with paths of
lengths 1, 2, and 3 away from it. (33) Just do it. (34)–(45) skip.

Chapters 12 and 18: Planar Graphs, Counting Unlabeled Struc-
tures (11 meetings)
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Planar Graphs concepts: Planar graph, circle-chord method for prov-
ing/disproving planarity, Kuratowski’s theorem, planar graph regions, Eu-
ler’s Formula, dot-counting argument, Euler’s inequality, numerical methods
for disproving planarity, polyhedron, the five regular polyhedra, the five-color
theorem.

Planar graph: Can be drawn in plane with no crossing edges.

K5 is non-planar using circle-chord method. K33 is non-planar.

Kuratowski’s Theorem: a graph is planar if and only if it does not have a
subgraph which can be described as a subdivision of K5 or K33.

Example: the Petersen graph has a K33 configuration, so it is non-planar.

Planar graphs define regions. It turns out that all possible planar represen-
tations of a connected graph create the same number of regions.

Lemma 1: A planar graph containg a cycle can be redrawn so that the cycle
bounds the remaining vertices and edges and the number of regions does not
change.

Proof: Find a cycle of minimal size. There will be no chords. Stuff every-
thing inside this cycle (imagine drawing the image on a rubber ball, then
puncturing the ball inside the cycle then tearing and spreading out flat.
Things will deform but the number of regions will remain the same).

Theorem 2: For a connected planar graph, r = e− v + 2. (Note: r is f in
this textbook (face).)

Proof: If the graph is a tree, there is one region, which satisfies the formula.
If the graph is not a tree, there is a cycle somewhere. Stuff everything inside
a minimal cycle as in Lemma 1. Delete one of the edges of the outer cycle. In
the process, lose one interior region and lose one edge. Keep on going until
you obtain a tree. We have r′ = e′ − v + 2 in the tree, hence r = e− v + 2.

Example: two different representations of K4.

Theorem 3: If a connected planar graph contains a cycle then e ≤ 3v − 6.

Proof: Stuff everything inside the cycle as before. Now place 2 dots about
every edge near the middle. The dots are partitioned by region, and each
region is bounded by a cycle. So each region contributes at least 3 dots. So
the number of dots is ≥ 3r. On the other hand, the number of dots is 2e,
therefore 2e ≥ 3r. That is, 2e ≥ 3e− 3v + 6. This yields e ≤ 3(v − 2).
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Application: K5 has e = 10 and 3v − 6 = 9, therefore it is not planar.

Note: K33 is non-planar, yet e = 9 and 3v − 6 = 12, so it is one of the many
non-planar graphs that also satisfy this inequality.

Theorem 4: If a connected planar graph contains a cycle and every cycle
has at least k edges then e ≤ k

k−2(v − 2).

Proof: We can replace 2e ≥ 3r by kr. Hence 2e ≥ k(e−v+2). Rearranging,
e ≤ k

k−2(v − 2).

Application: K33 satisfies k = 4. If it is planar it must satisfy e ≤ 2(v − 2).
But it doesn’t: e = 9, 2(v − 2) = 8.

Application: the Petersen graph satisfies k = 5. If it is planar it must satisfy
e ≤ 5

3
(v − 2). But it doesn’t: e = 15, 5

3
(v − 2) = 40

3
= 131

3
.

Polyhedron: a solid whose boundary is a union of polygons. Can be associ-
ated with a planar graph by projecting onto surface of sphere, then punctur-
ing the sphere and laying out flat.

Example: the cube. Draw as one square inside another, with corresponding
vertices joined by edges. Can be identified with Q3.

Regular polyhedron: all vertices have the same degree and every region has
the same number of edges.

Theorem 5: There are exactly 5 regular polyhedra. (p. 287: tetrahedron,
cube, dodecahedron, octahedron, icosahedron.)

Proof: To prove that there are no others, note that if degrees are d and
bounding cycle lengths are k then 2e = vd = rk by a dot counting argument.
Combined with r − e+ v = 2 we obtain

2
e

k
− e+ 2

e

d
= 2

2

k
− 1 +

2

d
=

2

e

2

k
− 1 +

2

d
> 0

2

k
+

2

d
> 1

2d+ 2k > dk
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(d− 2)(k − 2) = dk − 2d− 2k + 4 < 4.

Since d ≥ 3 and k ≥ 3 the only solutions to this inequality are

(d, k) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}.

Theorem 6: Every planar graph contains a vertex of degree ≤ 5.

Proof: We can assume without loss of generality that the graph is connected.
It cannot be a tree since a tree has at least one degree ≤ 1 vertex. Hence
the graph must satisfy e ≤ 3v − 6. If all vertex degrees are ≥ 6 then the
vertex-degree sum yields 2e ≥ 6v or e ≥ 3v: contradiction. So there has to
be a degree ≤ 5 vertex.

Theorem 7: Every planar graph is 5-colorable.

Proof: By induction on number of vertices. If there is one vertex, fine. If
there is more than one vertex, pick one (v) of degree ≤ 5 and delete it. The
resulting graph G−v is planar and 5-colorable. If the degree of v is 4 or less,
we can assign v a color to avoid a color-conflict. If the degree of v is 5 but
is only joined to 4 or less colors, then we can still assign v a color to avoid
a color-conflict. In the worst-case scenario, v is joined to vertices of colors 1
through 5. In this case we will modify the colors in G − v first so that v is
joined to at most 4 different colors.

How to do this: imagine that v is joined to vertices v1, v2, v3, v4, v5 colored
1,2,3,4,5 (reading the vertices clockwise). Let G[{1, 3}] be the subgraph
induced by vertices colored 1 and 3. No color conflicts result by swapping
the colors 1 and 3 in any connected component of G[{1, 3}] and leaving the
other colors alone. Similarly, let G[{2, 4}], the subgraph induced by vertices
colored 1 and 3. No color conflicts result by swapping the colors 2 and 4 in
any connected component of G[{2, 4}] and leaving the colors alone. So these
are safe color modifications in G− v.

Case 1: v1 and v3 are in the same connected component of G[{1, 3}]. So
there is a path from v1 to v3 in which all vertex colors are 1 and 3. Since
every path from v2 to v4 has to intersect a vertex in this path from v2 to
v4 by planarity, v2 and v4 cannot be in the same connected component of
G[{2, 4}]. Swap the colors 2 and 4 in the component of G[{2, 4}] containing
v2. Then v is joined to colors 1,3,4,5 and can be safely colored 2.

40



Case 2: v1 and v3 are not in the same connected component of G[{1, 3}].
Swap the colors 1 and 3 in the component of G[{1, 3}] containing v1. Then
v is joined to the colors 2, 3, 4, 5 and can be safely colored 1.

Chapter 12 Exercises, p. 290: (1) Adapt the proof given. In the case
of a forest, we know that there are v − e trees and exactly one region, so we
have r = e−v+k+1 where k is the number of connected components. More
generally, starting with a graph with k connected components, stuff each
inside a cycle and cut a bounding cycle edge. Lose an edge and lose a region.
Keep on going until down to a forest, satisfying r′ = e′−v+k+1. This implies
r = e−v+k+1. (2) We did this by associating the polyhedron with a planar
graph. (3) To satisfy 3r = 2e, every region must be bounded by exactly 3
edges. This implies e = 3v − 6 using Euler’s formula. In a polyhedron, each
vertex degree is at least 3, so 2e ≥ 3v. Combining e = 3v − 6 with 2e = 3v
yields e = 6, v = 4. So the graph in question is K4, drawn like a triangle with
central vertex joined to each of the three vertices of the triangle. (4) The
degrees in any graph are in the range 0 through v − 1. But in polyhedron,
there degrees are ≥ 3, so two of the degrees must be the same by the Pigeon-
hole principle. (5) Create the dual of the polyhedron, which has vertex set
consisting of faces and edge set consisting of pairs of neighboring faces. We
get another polyhedron, so we can apply (4). To illustrate, do this to the
cube. (6) We just did. (7) skip (8) skip (9) skip (10) In a bipartite graph
with a cycle, cycle lengths are ≥ 4, so using Theorem 4, e ≤ 2(v−2). On the
other hand, by the vertex degree sum 2e ≥ dv. Hence dv ≤ 2e ≤ 4(v − 2).
This rearranges to (4 − d)v ≥ 8. This forces d ≤ 3. We can obtain d = 3
using Q3.

Chapter 12 Supplementary Exercises, p. 290: (11) There exist planar
graphs with all vertices of degree 5. (17) No: K33. (18) K6− e1− e2 violates
e ≤ 3v − 6. There is a planar K6 − e1 − e2 − e3: triangulate C6 both inside
and outside. (19) I’m assuming a 6= b. On the one hand, 2e = 3n by the
vertex-sum theorem. On the other hand, 2e = apa + bpb by a dot-counting
argument. So we have 3n = apa + bpb. A third relation we can apply is
r = e − v + 2, which yields pa + pb = 3

2
n − n + 2 = n

2
+ 2. So we have

(6− a)pa + (6− b)pb = 6(pa + pb)− (apa + bpb) = (3n+ 12)− (3n) = 12. (20)
No, because a < b is required. Do all of the latter exist? We can calculate
(6− a)pa + (6− b)pb by brute force and see when it equals 12. The number
of vertices is 1

3
(apa + bpb). (3, 4) exists using p3 = 2 and p4 = 3 (see figure).
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(4, 5) exists using p4 = 5 and p5 = 2 (see figure). (3, 5): haven’t been able to
do it so far.

Digraph Model of Equivalent Colorings

Review of graph automorphisms: vertex permutations that preserve graph
structure. Composition, identity, inverses, cancellation law.

There are two types of graph colorings: vertex colorings and edge colorings.
We will start with vertex colorings.

Let G be a graph with vertex set [n]. A k-coloring of the vertices of a graph
G is simply a function c : [n] → [k], which can be viewed as an assignment
of one color from [k] to each vertex of G. A counting argument shows that
there are kn k-colorings of G.

Now let Dk be the directed graph with vertex set consisting of k-colorings of
G and a directed edge of the form c→σ d whenever c and d are colorings, σ
is a graph automorphism of G, and permuting the vertices in G using σ and
leaving the color labels from c in place produces the coloring d. This can be
expressed symbolically as c ◦ σ = d.

We will say that c ≡ d if and only if c →σ d for some σ ∈ aut(G). Viewing
c ≡ d as a process of permuting vertices while leaving color labels in place,
it is easy to see that c ≡ c, that c ≡ d implies d ≡ c, and that c ≡ d and
d ≡ e implies c ≡ e. Hence ≡ is an equivalence relation. If c and d are not
equivalent, we will call them inequivalent.

Observations about the structure of Dk:

1. Dk has kn vertices and |aut(G)|kn edges.

2. There is a directed edge of the form c →σ d if and only if c and d are
equivalent, so the connected components of Dk are strongly connected with at
least one directed edge connecting every pair of vertices, including a vertex
to itself. All colorings in a given component are equivalent to each other.
The number of inequivalent colorings of G is defined to be m, the number of
strongly connected components of Dk.

3. Loop edges are edges of the form c→σ c. There is at least one loop edge
at each vertex, using the identity automorphism. We will prove that there
are m|aut(G)| loop edges in D.
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Lemma: Let c, d, and e be equivalent colorings of G. Then

|c→ d| = |c→ e|,

where x→ y is notation for the set of all edges of the form x→σ y in Dk.

Proof: Since d ≡ e, there is a graph automorphism τ such that d →τ e.
This gives rise to a function from c→ d to c→ d via

f(c→σ d) = c→τσ e.

The function f is surjective, because if c→σ e then c→τ−1σ d and

f(c→τ−1σ d) = f(c→σ e).

Therefore |c → d| ≥ |c → e|. Reversing the roles of d and e, we also have
|c→ e| ≥ |c→ d|. Therefore |c→ d| = |c→ e|.

Corollary: For each c ∈ Dk, |c → c| = |aut(G)|
|V (C)| , where C is the strongly

connected component containing c.

Proof: Since the number of edges from c to d is equal to the number of
edges from c to c for every d ∈ C, the total number of edges out of c is
|V (C)| × |c → c|. On the other hand, we know that the total number of
edges out of c is |aut(G)|, hence

|V (C)| × |c→ c| = |aut(G)|,

hence the formula.

Corollary: Let C be a connected component of Dk. Then C has |aut(G)|
loop edges.

Proof: The number of loop edges in C is∑
c∈V (C)

|c→ c| =
∑

c∈V (C)

|aut(G)|
|V (C)|

= |V (C)| |aut(G)|
|V (C)|

= |aut(G)|.

Corollary: Dk has m|aut(G)| loop edges.

4. For each σ ∈ aut(G) let FixedBy(σ) be the set of colorings c that satisfy
c→σ c ∈ D. Then

m =
1

|aut(G)|
∑

σ∈aut(G)

|FixedBy(σ)|.
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Proof: Each σ ∈ aut(G) contributes |FixedBy(σ)| loop edges. Since the
total number of loop edges in Dk is m|aut(G)|, we obtain∑

σ∈aut(G)

|FixedBy(σ)| = m|aut(G)|.

Dividing by |aut(G)| we obtain the formula.

5. For each σ ∈ aut(G),

|FixedBy(σ)| = k# cycles in σ.

Proof: If a cycle in σ is (x1, x2, x3, . . . ), and σ fixes the coloring c, then the
color of x1 has to be the color of x2, which has to be the color of x3, etc. In
other words, all the vertices in the cycle have to be assigned the same color
by c. So we obtain all possible colorings fixed by σ by assigning one color
per cycle of σ in all possible ways. If σ has p cycles in it then the number of
k-colorings of G fixed by σ is equal to kp.

6. Combining (4) and (5), we obtain

m =
1

|aut(G)|
∑

σ∈aut(G)

k# cycles in σ.

7. If we restrict ourselves to a subgroup H of aut(G), then all the same
arguments above apply and we obtain

m =
1

|H|
∑
σ∈H

k# cycles in σ.

8. If we restrict ourselves to colorings with n1 vertices of color 1, n2 vertices
of color 2, ..., nk vertices of color k, then all the same arguments above apply
and we obtain

m(n1, n2, . . . , nk) =
1

|H|
∑
σ∈H

|FixedBy(σ)|.
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But the formula for FixedBy(σ) has to be adjusted.

Let σ be permutation with x1 1-cycles, x2 2-cycles, ..., xn n-cycles. Place a zi
underneath each vertex colored i. Under the 1-cycles we have a sequence of
x1 variables. Under the 2-cycles we have a sequence of x2 squared variables.
... Under the n-cycles we have a sequence of xn variables raised to the nth

power. The product of these variables is zn1
1 z

n2
2 · · · z

nk
k . We can count these

sequences by expanding the product

(z + 1 + z2 + · · ·+ zk)
x1(z21 + z22 + · · ·+ z2k)

x2 · · · (zn1 + zn2 + · · ·+ znk )xn

and taking the coefficient of zn1
1 z

n2
2 · · · z

nk
k . This yields

|FixedBy(σ)| = [zn1
1 · · · z

nk
k ]Z

#1-cycles of σ
1 Z

#2-cycles of σ
2 · · ·Z#k-cycles of σ

k

where
Zi = zi1 + zi2 + · · ·+ zik.

Hence
m(n1, n2, . . . , nk) =

[zn1
1 z

n2
2 · · · z

nk
k ]

1

|H|
∑
σ∈H

Z
#1-cycles of σ
1 Z

#2-cycles of σ
2 · · ·Z#k-cycles of σ

k .

A generating for all these numbers is the polynomial

1

|H|
∑
σ∈H

Z
#1-cycles of σ
1 Z

#2-cycles of σ
2 · · ·Z#k-cycles of σ

k .
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