
Power Series Methods

1. Let

y =
∞∑

n=0

an

n!
xn.

Then

dky

dxk
=

∞∑
n=0

n(n− 1) · · · (n− k + 1)an

n!
xn−k =

∞∑

n=k

an

(n− k)!
xn−k =

∞∑
n=0

an+k

n!
xn.

Also,

xky =
∞∑

n=0

an

n!
xn+k =

∞∑

n=k

an−k

(n− k)!
xn =

∞∑
n=0

an−k

(n− k)!
xn

if we insist that a−1 = a−2 = · · · = 0. Combining these two operations, we get the general
formula

y =
∞∑

n=0

an

n!
xn, xp dqy

dxq
=

∞∑
n=0

an+q−p

(n− p)!
xn.

2. Example: consider the differential equation

y′′ − (x3 + 2)y′ − 6x2y = 0, y(0) = y′(0) = 1.

Then x0 = 0 is an ordinary point, and we can expand in powers of x. Setting y =∑∞
n=0

an

n! x
n, we see that a0 = a1 = 1. Substituting

y =
∞∑

n=0

an

n!
xn

into the differential equation, we get

∞∑
n=0

an+2

n!
xn −

∞∑
n=0

an+1−3

(n− 3)!
xn − 2

∞∑
n=0

an+1

n!
xn − 6

∞∑
n=0

an−2

(n− 2)!
xn = 0.

Therefore
an+2

n!
− an−2

(n− 3)!
− 2

an+1

n!
− 6

an−2

(n− 2)!
= 0.

Multiplying through by n! we obtain

an+2 − n(n− 1)(n− 2)an−2 − 2an+1 − 6n(n− 1)an−2 = 0.

Therefore
an+2 = 2an+1 + n(n− 1)(n + 4)an−2 n ≥ 0.
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Hence
a0 = 1
a1 = 1
a2 = 2a1 = 2
a3 = 2a2 = 4
a4 = 2a3 + 6a0 = 14
a5 = 2a4 + 42a1 = 50

. . .

y =
1
0!

+
1
1!

x +
2
2!

x2 +
4
3!

x3 +
14
4!

x4 +
50
5!

x5 + · · · .

3. Next consider the differential equation

2x2y′′ + 3xy′ + (4x− 6)y = 0.

Then x0 = 0 is a regular singular point, and we use the method of Frobenius. We will first
make the change of variables y = xrz, then determine r using the indicial equation. Then
we solve for z =

∑∞
n=0

an

n! x
n.

We have
y′ = (xrz)′ = rxr−1z + xrz′

and
y′′ = (xrz)′′ = r(r − 1)xr−2z + 2rxr−1z′ + xrz′′,

therefore

2x2(r(r − 1)xr−2z + 2rxr−1z′ + xrz′′) + 3x(rxr−1z + xrz′) + (4x− 6)xrz = 0.

Cleaning this up and factoring we obtain

xr[2xz′′ + (4r + 3)xz′ + (4x + 2r2 + r − 6)z] = 0.

If we expand z as a power series as above, then the lowest power of x in this equation is
(2r2 + r − 6)xr, which we want to be equal to zero. Therefore the indicial equation

2r2 + r − 6 = 0

determines two solutions for r, namely r = −2 and r = 3
2 . Using r = −2 we obtain

x−2[2xz′′ − 5xz′ + 4xz = 0.

Therefore
2z′′ − 5z′ + 4z = 0,
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which by some miracle is a constant coefficients equation (this is not always the case).
We can determine the coefficients for z as above, or we can solve this constant coefficients
equation by the method of guessing z = emx. Choosing the former method, we obtain

2
∞∑

n=0

an+2

n!
xn − 5

∞∑
n=0

an+1

n!
xn + 4

∞∑
n=0

an

n!
xn = 0,

which implies
2
an+2

n!
− 5

an+1

n!
+ 4

an

n!
= 0.

Therefore
an+2 =

5an+1 − 4an

2
, n ≥ 0.

Hence
a2 = −2a0 + 2.5a1

a3 = −5.0a0 + 4.25a1

a4 = −8.5a0 + 5.265a1

· · ·

.

Hence

z =
a0

0!
+

a1

1!
x +

−2a0 + 2.5a1

2!
x2 +

−5.0a0 + 4.25a1

3!
x3 +

−9.5a0 + 5.265a1

4!
x4 + · · · =

a0(1− 2
2!

x2 − 5
3!

x3 − 9.5a0

4!
x4 + · · ·)+

a1(
1
1!

x +
2.5
2!

x2 +
4.25
3!

x3 +
5.265

4!
x4 + · · ·).

Since this z is a linear combination of two linearly independent functions (use Wronksian),
this is the general solution for z. Hence the general solution for y is

y = xrz =

a0x
−2(1− 2

2!
x2 − 5

3!
x3 − 9.5a0

4!
x4 + · · ·)+

a1x
−2(

1
1!

x +
2.5
2!

x2 +
4.25
3!

x3 +
5.265

4!
x4 + · · ·).
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