## Power Series Methods

1. Let

$$
y=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n} .
$$

Then

$$
\frac{d^{k} y}{d x^{k}}=\sum_{n=0}^{\infty} \frac{n(n-1) \cdots(n-k+1) a_{n}}{n!} x^{n-k}=\sum_{n=k}^{\infty} \frac{a_{n}}{(n-k)!} x^{n-k}=\sum_{n=0}^{\infty} \frac{a_{n+k}}{n!} x^{n}
$$

Also,

$$
x^{k} y=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n+k}=\sum_{n=k}^{\infty} \frac{a_{n-k}}{(n-k)!} x^{n}=\sum_{n=0}^{\infty} \frac{a_{n-k}}{(n-k)!} x^{n}
$$

if we insist that $a_{-1}=a_{-2}=\cdots=0$. Combining these two operations, we get the general formula

$$
y=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}, \quad x^{p} \frac{d^{q} y}{d x^{q}}=\sum_{n=0}^{\infty} \frac{a_{n+q-p}}{(n-p)!} x^{n} .
$$

2. Example: consider the differential equation

$$
y^{\prime \prime}-\left(x^{3}+2\right) y^{\prime}-6 x^{2} y=0, \quad y(0)=y^{\prime}(0)=1 .
$$

Then $x_{0}=0$ is an ordinary point, and we can expand in powers of $x$. Setting $y=$ $\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}$, we see that $a_{0}=a_{1}=1$. Substituting

$$
y=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}
$$

into the differential equation, we get

$$
\sum_{n=0}^{\infty} \frac{a_{n+2}}{n!} x^{n}-\sum_{n=0}^{\infty} \frac{a_{n+1-3}}{(n-3)!} x^{n}-2 \sum_{n=0}^{\infty} \frac{a_{n+1}}{n!} x^{n}-6 \sum_{n=0}^{\infty} \frac{a_{n-2}}{(n-2)!} x^{n}=0 .
$$

Therefore

$$
\frac{a_{n+2}}{n!}-\frac{a_{n-2}}{(n-3)!}-2 \frac{a_{n+1}}{n!}-6 \frac{a_{n-2}}{(n-2)!}=0
$$

Multiplying through by $n$ ! we obtain

$$
a_{n+2}-n(n-1)(n-2) a_{n-2}-2 a_{n+1}-6 n(n-1) a_{n-2}=0 .
$$

Therefore

$$
a_{n+2}=2 a_{n+1}+n(n-1)(n+4) a_{n-2} \quad n \geq 0
$$

Hence

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=1 \\
& a_{2}=2 a_{1}=2 \\
& a_{3}=2 a_{2}=4 \\
& a_{4}=2 a_{3}+6 a_{0}=14 \\
& a_{5}=2 a_{4}+42 a_{1}=50 \\
& \ldots \\
& y=\frac{1}{0!}+\frac{1}{1!} x+\frac{2}{2!} x^{2}+\frac{4}{3!} x^{3}+\frac{14}{4!} x^{4}+\frac{50}{5!} x^{5}+\cdots
\end{aligned}
$$

3. Next consider the differential equation

$$
2 x^{2} y^{\prime \prime}+3 x y^{\prime}+(4 x-6) y=0 .
$$

Then $x_{0}=0$ is a regular singular point, and we use the method of Frobenius. We will first make the change of variables $y=x^{r} z$, then determine $r$ using the indicial equation. Then we solve for $z=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}$.

We have

$$
y^{\prime}=\left(x^{r} z\right)^{\prime}=r x^{r-1} z+x^{r} z^{\prime}
$$

and

$$
y^{\prime \prime}=\left(x^{r} z\right)^{\prime \prime}=r(r-1) x^{r-2} z+2 r x^{r-1} z^{\prime}+x^{r} z^{\prime \prime}
$$

therefore

$$
2 x^{2}\left(r(r-1) x^{r-2} z+2 r x^{r-1} z^{\prime}+x^{r} z^{\prime \prime}\right)+3 x\left(r x^{r-1} z+x^{r} z^{\prime}\right)+(4 x-6) x^{r} z=0 .
$$

Cleaning this up and factoring we obtain

$$
x^{r}\left[2 x z^{\prime \prime}+(4 r+3) x z^{\prime}+\left(4 x+2 r^{2}+r-6\right) z\right]=0 .
$$

If we expand $z$ as a power series as above, then the lowest power of $x$ in this equation is $\left(2 r^{2}+r-6\right) x^{r}$, which we want to be equal to zero. Therefore the indicial equation

$$
2 r^{2}+r-6=0
$$

determines two solutions for $r$, namely $r=-2$ and $r=\frac{3}{2}$. Using $r=-2$ we obtain

$$
x^{-2}\left[2 x z^{\prime \prime}-5 x z^{\prime}+4 x z=0 .\right.
$$

Therefore

$$
2 z^{\prime \prime}-5 z^{\prime}+4 z=0
$$

which by some miracle is a constant coefficients equation (this is not always the case). We can determine the coefficients for $z$ as above, or we can solve this constant coefficients equation by the method of guessing $z=e^{m x}$. Choosing the former method, we obtain

$$
2 \sum_{n=0}^{\infty} \frac{a_{n+2}}{n!} x^{n}-5 \sum_{n=0}^{\infty} \frac{a_{n+1}}{n!} x^{n}+4 \sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}=0
$$

which implies

$$
2 \frac{a_{n+2}}{n!}-5 \frac{a_{n+1}}{n!}+4 \frac{a_{n}}{n!}=0
$$

Therefore

$$
a_{n+2}=\frac{5 a_{n+1}-4 a_{n}}{2}, \quad n \geq 0
$$

Hence

$$
\begin{aligned}
a_{2} & =-2 a_{0}+2.5 a_{1} \\
a_{3} & =-5.0 a_{0}+4.25 a_{1} \\
a_{4} & =-8.5 a_{0}+5.265 a_{1}
\end{aligned} .
$$

Hence

$$
\begin{gathered}
z=\frac{a_{0}}{0!}+\frac{a_{1}}{1!} x+\frac{-2 a_{0}+2.5 a_{1}}{2!} x^{2}+\frac{-5.0 a_{0}+4.25 a_{1}}{3!} x^{3}+\frac{-9.5 a_{0}+5.265 a_{1}}{4!} x^{4}+\cdots= \\
a_{0}\left(1-\frac{2}{2!} x^{2}-\frac{5}{3!} x^{3}-\frac{9.5 a_{0}}{4!} x^{4}+\cdots\right)+ \\
a_{1}\left(\frac{1}{1!} x+\frac{2.5}{2!} x^{2}+\frac{4.25}{3!} x^{3}+\frac{5.265}{4!} x^{4}+\cdots\right)
\end{gathered}
$$

Since this $z$ is a linear combination of two linearly independent functions (use Wronksian), this is the general solution for $z$. Hence the general solution for $y$ is

$$
\begin{gathered}
y=x^{r} z= \\
a_{0} x^{-2}\left(1-\frac{2}{2!} x^{2}-\frac{5}{3!} x^{3}-\frac{9.5 a_{0}}{4!} x^{4}+\cdots\right)+ \\
a_{1} x^{-2}\left(\frac{1}{1!} x+\frac{2.5}{2!} x^{2}+\frac{4.25}{3!} x^{3}+\frac{5.265}{4!} x^{4}+\cdots\right)
\end{gathered}
$$

