Differential Equation Notes

Dan Singer
Minnesota State University, Mankato
dan.singer@mnsu.edu

1 Trajectories

A trajectory in \mathbf{R}^{n} is a function $\alpha:\left[t_{0}, t_{1}\right] \rightarrow \mathbf{R}^{n}$ of the form

$$
\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{n}(t)\right) .
$$

The graph of the trajectory is

$$
\left\{\alpha(t): t \in\left[t_{0}, t_{1}\right]\right\} .
$$

Example 1.1. Let $\alpha:[0,2 \pi] \rightarrow \mathbf{R}^{2}$ be defined by

$$
\alpha(t)=(\cos t, \sin t) .
$$

The graph of α is $\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}=1\right\}$, the unit circle.

Example 1.2. Let $\alpha:[0,2 \pi] \rightarrow \mathbf{R}^{2}$ be defined by

$$
\alpha(t)=(8 \cos t, 3 \sin t)
$$

The graph of α is $\left\{(x, y) \in \mathbf{R}^{2}: \frac{x^{2}}{8^{2}}+\frac{y^{2}}{3^{2}}=1\right\}$, the ellipse with major axis of length 16 and minor axis of length 6 .

Example 1.3. Let $\alpha:[0,13 \pi] \rightarrow \mathbf{R}^{3}$ be defined by

$$
\alpha(t)=(2 \cos t, 2 \sin t, \sqrt{t})
$$

The graph of α is a helix of radius 1 . As t increases the graph becomes increasingly compressed.

2 Direction vectors

Each point $\alpha(t)$ of a trajectory α can be regarded as a vector which begins at the origin and ends at $\alpha(t)$. The displacement from position $\alpha(t)$ to $\alpha\left(t^{\prime}\right)$ is the vector $\alpha(t+h)-\alpha(t)$. The average rate of change of position from time t to time $t+h$ is

$$
\frac{1}{h}(\alpha(t+h)-\alpha(t))
$$

The instantaneous rate of change of the position vector at time t is the limit

$$
\alpha^{\prime}(t)=\lim _{h \rightarrow 0} \frac{1}{h}(\alpha(t+h)-\alpha(t)) .
$$

If

$$
\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{n}(t)\right),
$$

then

$$
\alpha^{\prime}(t)=\left(\alpha_{1}^{\prime}(t), \alpha_{2}^{\prime}(t), \ldots, \alpha_{n}^{\prime}(t)\right)
$$

We can interpret $\alpha^{\prime}(t)$ as the direction a particle is heading in at time t as it is traveling along the trajectory α. If $\alpha(t)=(x(t), y(t))$ then the slope of the direction vector at time t is $\frac{y^{\prime}(t)}{x^{\prime}(t)}$, assuming $x^{\prime}(t) \neq 0$.

Example 2.1. In Example 1.1, $\alpha^{\prime}(t)=(-\sin t, \cos t)$. At time $t=\frac{\pi}{4}$, the particle is in position $\alpha\left(\frac{\pi}{4}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ and is heading in direction

$$
\alpha^{\prime}\left(\frac{\pi}{4}\right)=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
$$

with slope -1 .

Example 2.2. In Example 1.2, $\alpha^{\prime}(t)=(-8 \sin t, 3 \cos t)$. At time $t=\frac{\pi}{4}$, the particle is in position $\alpha\left(\frac{\pi}{4}\right)=\left(8 \frac{\sqrt{2}}{2}, 3 \frac{\sqrt{2}}{2}\right)$ and is heading in direction

$$
\alpha^{\prime}\left(\frac{\pi}{4}\right)=\left(-8 \frac{\sqrt{2}}{2}, 3 \frac{\sqrt{2}}{2}\right)
$$

with slope $-\frac{3}{8}$.

Example 2.3. In Example 1.2, $\alpha^{\prime}(t)=\left(-\sin t, \cos \frac{1}{\sqrt{t}}\right)$. At time $t=k \pi$, $1 \leq k \leq 12$, the particle is in position $\alpha(k \pi)=(-1,0, \sqrt{k \pi})$ and is heading in direction $\alpha^{\prime}(k \pi)=\left(0,-1, \frac{2}{\sqrt{k \pi}}\right)$. Notice that the direction vectors are becoming more horizontal as t increases.

Example 2.4. In Examples 1.1 and 1.2, both trajectories travel exactly once around their graphs in the counter-clockwise direction. At what times are both particles traveling in the same direction?

Answer: at those times t in which the direction vectors are parallel to each other, namely when

$$
(-\sin t, \cos t)=\lambda(t)(-8 \sin t, 3 \cos t)
$$

for some $\lambda(t) \neq 0$. When $\sin t \neq 0$ then we must have $\lambda(t)=\frac{1}{8}$, which forces $\cos t=\frac{3}{8} \cos t$, which forces $\cos t=0$, which forces $\sin t= \pm 1$. This corresponds to $t=\frac{\pi}{2}$ and $t=\frac{3 \pi}{2}$. When $\sin t=0$ we must have $\cos t= \pm 1$ and $\lambda(t)=\frac{1}{3}$. This corresponds to $t=0$ and $t=\pi$.

Exercise 1: Let P be a particle traveling clockwise around the circle $x^{2}+$ $y^{2}=25$.
(a) Find the direction P is traveling in at the moment it passes through the point $(-3,-4)$.
(b) Find both points along the circle at which the particle is traveling in a direction which is parallel to the line $y=2 x$. Hint: the line has direction vector $(1,2)$.
Exercise 2: Let P be a particle traveling clockwise around the ellipse $\frac{x^{2}}{25}+$ $\frac{y^{2}}{100}=1$.
(a) Find the direction P is traveling in at the moment it passes through the point $(3,8)$.
(b) Find both points along the ellipse at which the particle is traveling in a direction which is parallel to the line $y=2 x$.

3 Surfaces

Let $f: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}$ be given. A surface is the set of solutions to

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

Example 3.1. Let $f(x, y)=x^{2}+y^{2}-1$. The surface associated with f is the unit circle (see Example 1.1).

Example 3.2. Let $f(x, y)=\frac{x^{2}}{8^{2}}+\frac{y^{2}}{3^{2}}-1$. The surface associated with f is an ellipse (see Example 1.2).

Example 3.3. Let $f(x, y, t)=\left(x-\cos t^{2}\right)^{2}+\left(y-\sin t^{2}\right)^{2}$. The surface associated with f is

$$
\begin{gathered}
\left\{\left(\cos t^{2}, \sin t^{2}, t\right): t \in \mathbf{R}\right\}= \\
\{(\cos t, \sin t, \sqrt{t}): t \in \mathbf{R}\} \cup\{(\cos t, \sin t,-\sqrt{t}): t \in \mathbf{R}\}
\end{gathered}
$$

This is a helix. Compare with Example 1.3.

4 Partial derivatives and the chain rule

Let $f(x, y, z)=y-2 z x+\frac{2}{3} z^{3}$. The partial derivatives of f are

$$
\frac{\partial f}{\partial x}(x, y, z)=-2 z, \frac{\partial f}{\partial y}(x, y, z)=1, \frac{\partial f}{\partial z}(x, y, z)=-2 x+2 z^{2}
$$

If we assume that x, y, and z are functions of t, then we can define

$$
F(t)=f(x(t), y(t), z(t))=y(t)-2 z(t) x(t)+\frac{2}{3} z(t)^{3} .
$$

The derivative is

$$
F^{\prime}(t)=y^{\prime}(t)-2 z^{\prime}(t) x(t)-2 z(t) x^{\prime}(t)+2 z(t)^{2} z^{\prime}(t)=
$$

$$
\begin{gathered}
-2 z(t) \cdot x^{\prime}(t)+1 \cdot y^{\prime}(t)+\left(-2 x(t)+2 z(t)^{2}\right) \cdot x^{\prime}(t)= \\
{\left[\frac{\partial f}{\partial x}(x(t), y(t), z(t))\right] x^{\prime}(t)+\left[\frac{\partial f}{\partial x}(x(t), y(t), z(t))\right] y^{\prime}(t)+\left[\frac{\partial f}{\partial x}(x(t), y(t), z(t))\right] z^{\prime}(t) .}
\end{gathered}
$$

In short,

$$
\frac{d}{d t} f=f_{x} x^{\prime}+f_{y} y^{\prime}+f_{z} z^{\prime}
$$

5 Calculating direction vectors on a curve defined as a surface

Let $\alpha(t)=(x(t), y(t))$ be a trajectory which traces out the curve defined by the surface

$$
f(x, y)=0 .
$$

Then the direction of the trajectory at time t is the vector $\left(x^{\prime}(t), y^{\prime}(t)\right)$. On the other hand, we know that

$$
F(t)=f(x(t), y(t))=0
$$

for all t, therefore

$$
F^{\prime}(t)=f_{x} x^{\prime}+f_{y} y^{\prime}=0
$$

for all t, therefore $\left(x^{\prime}, y^{\prime}\right)$ is perpendicular to $\left(f_{x}, f_{y}\right)$ and $\left(x^{\prime}, y^{\prime}\right)$ is parallel to $\left(-f_{y}, f_{x}\right)$.

Example 5.1. Let $f(x, y)=x^{2}+y^{2}-1$. The direction of any trajectory along the surface generated by f is parallel to

$$
\left(-f_{y}, f_{x}\right)=(-2 y, 2 x)
$$

with slope $-\frac{x}{y}$ at the point (x, y). In particular, the slope of the direction vector of a particle traveling around the unit circle $x^{2}+y^{2}=1$ at the point $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is -1 . Compare this with Example 2.1.

Example 5.2. Let $f(x, y)=\frac{x^{2}}{8^{2}}+\frac{y^{2}}{3^{2}}-1$. The direction of any trajectory along the surface generated by f is parallel to

$$
\left(-f_{y}, f_{x}\right)=\left(-\frac{2}{9} y, \frac{2}{64} x\right)
$$

with slope $\frac{-9 x}{64 y}$ at the point (x, y). In particular, the slope of the direction vector of a particle traveling around the ellipse $\frac{x^{2}}{8^{2}}+\frac{y^{2}}{3^{2}}=1$ at the point $\left(8 \frac{\sqrt{2}}{2}, 3 \frac{\sqrt{2}}{2}\right)$ is $\frac{-72}{192}=\frac{-3}{8}$. Compare this with Example 2.2.

6 1-parameter families

The function $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ can be used to define a one-parameter family of curves. The curve corresponding to $z=c$ is the graph of all (x, y) satisfying

$$
f(x, y, c)=0 .
$$

Example 6.1. $f(x, y, z)=y-2 z x+\frac{2}{3} z^{3}$. For $c=1$ we get

$$
y=2 x-\frac{2}{3} .
$$

For $c=2$ we get

$$
y=4 x-\frac{16}{3} .
$$

All the curves in this family are straight lines. If we plot the lines corresponding to $c=0.5 k$ for $k \in\{-10,-9, \ldots, 9,10\}$ then we obtain

There seems to be a curve which is tangent to all these lines. This is called the envelope of the 1-parameter family. The envelope is

7 Calculating the envelope of a 1-parameter family

Given a 1-parameter family of curves defined by $f(x, y, z)=0$, we can calculate the envelope (if it exists) as follows: Let $\alpha(t)=(x(t), y(t))$ be a parameterized curve which is a candidate for the envelope. Properties α must have:

1. It must pass through every curve defined by the equation $f(x, y, c)=0$ for each c. Therefore, for each t there must be a number $c(t)$ such that $f(x(t), y(t), c(t))=0$. We can say that α passes through the curve defined by $f(x, y, c(t))=0$ at time t.
2. We will make the assumption that $c(t)$ is a differentiable function of t and that the partial derivatives of f can be computed at all points of α. Since $f(x(t), y(t), c(t))$ is a constant function of t, it must have time derivative equal to 0 . Therefore

$$
f_{x} x^{\prime}(t)+f_{y} y^{\prime}(t)+f_{z} c^{\prime}(t)=0
$$

3. Given a fixed time value t, we will define $F^{(t)}(x, y)=f(x, y, c(t))$. Any trajectory tracing out the curve defined by $F^{(t)}$ must have direction vector parallel to $\left(-F_{y}^{(t)}, F_{x}^{(t)}\right)=\left(-f_{y}, f_{x}\right)$ at the point $(x(t), y(t))$.
4. We want $\alpha(t)$ to be tangent to each curve in the 1 -parameter family defined by f. Therefore we want $\left(x^{\prime}(t), y^{\prime}(t)\right)$ to be parallel to the vector $\left(-f_{y}, f_{x}\right)$ for all t. Hence there must be a number $\lambda(t) \neq 0$ such that

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)=\lambda(t)\left(-f_{y}, f_{x}\right)
$$

at time t.
5. Combining Properties 2 and 4 , we want $f_{z} c^{\prime}(t)=0$. So to find $\alpha(t)$ we will solve the simultaneous equations $f(x, y, z)=0$ and $f_{z}(x, y, z)=0$, eliminate z from this if possible, then parameterize the solutions (x, y) with respect to a time variable t. We must then check that we can define a differentiable function $c(t)$ as in Properties 1 and 2.

Example 7.1. Consider $f(x, y, z)=y-2 z x+\frac{2}{3} z^{3}$ as in Example 6.1. Then we must solve

$$
\begin{aligned}
y-2 z x+\frac{2}{3} z^{3} & =0 \\
-2 x+2 z^{2} & =0 .
\end{aligned}
$$

We can see that $x=z^{2}$, therefore $y=\frac{4}{3} z^{3}$, therefore

$$
y^{2}=\frac{16}{9} z^{6}=\frac{16}{9} x^{3} .
$$

Hence we can set $x(t)=t^{2}, y(t)=\frac{4}{3} t^{3}, c(t)=t$. The envelope traces the curve defined by $9 y^{2}-16 x^{3}=0$ and is tangent to the line $y=2 t x-\frac{2}{3} t^{3}$ at the point $\left(t^{2}, \frac{4}{3} t^{3}\right)$ at time t.

8 Calculating the orthogonal trajectories of a 1-parameter family

Given a 1-parameter family of curves defined by $f(x, y, z)=0$, we can ask which trajectories are perpendicular to each curve in the family. If $\alpha(t)=$ $(x(t), y(t))$ is an orthogonal trajectory, then we know that for each t there must be $c(t)$ such that $f(x(t), y(t), c(t))=0$. In order for $\alpha(t)$ to be heading in a direction perpendicular to the curve defined by $f(x, y, c(t))=0$, we must have

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)=\lambda(t)\left(f_{x}, f_{y}\right)
$$

for each t and some $\lambda(t) \neq 0$. So to find $\alpha(t)$ we must solve the system of equations

$$
f(x(t), y(t), c(t))=0
$$

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)=\lambda(t)\left(f_{x}, f_{y}\right)
$$

when $x=x(t), y=y(t), z=c(t)$.
Example 8.1. Consider $f(x, y, z)=x y-z$. The curve defined by $f(x, y, c)=$ 0 is the hyperbola $x y-c=0$. Plotting these hyperbolas for $c \in\{-4,-3, \ldots, 3,4\}$ we obtain

To find the orthogonal trajectories we must solve the system of equations

$$
\begin{aligned}
x(t) y(t)-c(t) & =0 \\
\left(x^{\prime}(t), y^{\prime}(t)\right) & =\lambda(t)(y(t), x(t))
\end{aligned}
$$

The second equation implies

$$
\begin{gathered}
\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{x(t)}{y(t)}, \\
y^{\prime}(t) y(t)=x^{\prime}(t) x(t), \\
\left(y(t)^{2}\right)^{\prime}=\left(x(t)^{2}\right)^{\prime}, \\
y(t)^{2}=x(t)^{2}+k
\end{gathered}
$$

for any fixed number k. Having chosen k, we can set

$$
c(t)=x(t) y(t)= \pm x(t) \sqrt{x(t)^{2}+k}
$$

The orthogonal trajectories trace the ellipses

$$
y^{2}-x^{2}=k .
$$

The orthogonal trajectories are the 1-parameter family corresponding to $g(x, y, z)=y^{2}-x^{2}-z$. Superimposing the orthogonal trajectories corresponding to $k \in\{0.5,1.0,2.0\}$ we obtain

Superimposing the orthogonal trajectories corresponding to $k \in\{-0.5,-1.0,-2.0\}$ we obtain

9 First order differential equations

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be given. A first order differential equation is an equation of the form

$$
\frac{d y}{d x}=f(x, y) .
$$

A solution is any function $\phi:(a, b) \rightarrow \mathbf{R}$ such that

$$
\phi(x)=f(x, \phi(x)) .
$$

In other words, substituting $y=\phi(x)$ satisfies the equation.
Example 9.1. Let $f(x, y)=x$. A solution to the differential equation

$$
\frac{d y}{d x}=x
$$

is

$$
\phi(x)=\frac{x^{2}}{2}+c, \quad x \in(-\infty, \infty)
$$

for any constant value c.

Example 9.2. Let $f(x, y)=\frac{x}{y}$. A solution to the differential equation

$$
\frac{d y}{d x}=\frac{x}{y}
$$

is

$$
\phi(x)=\sqrt{x^{2}-c}, \quad x \in(\sqrt{c}, \infty)
$$

for any constant value $c \geq 0$. To verify this, observe that

$$
\frac{d y}{d x}=\frac{x}{\sqrt{x^{2}-c}}=\frac{x}{y} .
$$

Example 9.3. In Example 7.1 we derived the envelope to the 1-parameter family of curves defined as all solutions to $f(x, y, z)=0$, where

$$
f(x, y, z)=y-2 z x-z^{3}
$$

The solution turned on finding $\alpha(t)=(x(t), y(t))$ such that

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)=\lambda(t)\left(-f_{y}, f_{x}\right)=\lambda(t)(-1,-2 z(t))
$$

and requiring $x=z^{2}$. This can be reformulated as

$$
\frac{y^{\prime}(t)}{x^{\prime}(t)}=2 z(t)=2 \sqrt{x(t)} .
$$

Setting $x(t)=t$, we are attempting to solve the first order differential equation

$$
\frac{d y}{d t}=2 \sqrt{t}
$$

A solution is

$$
y=\frac{4}{3} t^{\frac{3}{2}}+c
$$

for any constant c. The only solution which satisfies $f(x, y, z)=0$ for the choices $x=t, y=\frac{4}{3} t^{\frac{3}{2}}+c, z=\sqrt{t}$ is to use $c=0$.

Example 9.4. In Example 8.1 we derived the set of orthogonal trajectories to the 1-parameter family of curves defined as solutions to $f(x, y, z)=0$, where

$$
f(x, y, z)=x y-z
$$

The solution turned on finding $\alpha(t)=(x(t), y(t))$ such that

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)=\lambda(t)\left(f_{x}, f_{y}\right)=\lambda(t)(y(t), x(t))
$$

and requiring $x y=z$. This can be reformulated as

$$
\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{x(t)}{y(t)}
$$

Setting $x(t)=t$, we are attempting to solve the first order differential equation

$$
\frac{d y}{d t}=\frac{t}{y} .
$$

A solution to this equation, as we found in Example 9.2, is

$$
y=\sqrt{t^{2}-k}
$$

for an arbitrary k. The graph of y versus t is orthogonal to the curve defined by $f(x, y, c)=0$ at the point $\left(a, \sqrt{a^{2}-k}\right)$, where a is any solution to

$$
a \sqrt{a^{2}-k}=c .
$$

Exercises:

Section 1.1, Problems 1-10
Section 1.2, Problems 1-4, 6, 8
Section 1.3, Problems 1-5, 7

10 Methods for Solving First-Order Differential Equations of the form $M d x+N d y=0$

Let $M: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and $N: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be given. The notation

$$
M d x+N d y=0
$$

is shorthand for the differential equation

$$
\frac{d y}{d x}=-\frac{M(x, y)}{N(x, y)} .
$$

Suppose it is possible to find a function $F: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that

$$
F_{x}(x, y)=M(x, y)
$$

and

$$
F_{y}(x, y)=N(x, y) .
$$

Then any trajectory of the form $\alpha(x)=(x, y(x))$ in the surface defined by $F(x, y)=c$ gives rise to a solution to the differential equation

$$
M d x+N d y=0
$$

To see this, set $f(x)=F(x, y(x))$. Then $f(x)=c$ for all x, therefore $f^{\prime}(x)=0$ for all x. Using the chain rule, we obtain

$$
F_{x}+F_{y} \frac{d y}{d x}=0 .
$$

That is,

$$
\frac{d y}{d x}=-\frac{F_{y}}{F_{x}}=-\frac{M}{N} .
$$

Example 10.1. Let $F(x, y)=x y$. The surface $F(x, y)=c$ determines the trajectory $y(x)=\frac{c}{x}$. Using the formula above with $\frac{\partial F}{\partial x}=y$ and $\frac{\partial F}{\partial y}=x$ we must conclude that $y=\frac{c}{x}$ satisfies the differential equation

$$
y d x+x d y=0 .
$$

To check that this is correct, note that

$$
\frac{d y}{d x}=-\frac{c}{x^{2}}=-\frac{x y}{x^{2}}=-\frac{y}{x} .
$$

Using this idea, we can now solve several types of first-order differential equations of the form $M d x+N d y=0$:

1. Exact. Just find $F(x, y)$ so that $\frac{\partial F}{\partial x}=M$ and $\frac{\partial F}{\partial y}=N$. This requires $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. Then solve for y in terms of x in the equation $F(x, y)=c$.
2. Separable. These are differential equations which can be put into the form

$$
m(x) d x+n(y) d y=0
$$

Equations of this form are exact, because $\frac{\partial m}{\partial y}=0=\frac{\partial n}{\partial x}$. In this case we can use $F(x, y)=\int m(x) d x+\int n(y) d y$.
3. Homogeneous. These are differential equations which can be put into the form

$$
\frac{d y}{d x}=g(y / x)
$$

The change of variables $v=\frac{y}{x}$ converts this equation into

$$
\frac{d v}{v-g(v)}+\frac{d x}{x}=0,
$$

which is separable.
4. Linear. These are differential equations which can be put into the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

Rearranged, this is

$$
(P(x) y-Q(x)) d x+d y=0 .
$$

While this equation may not be exact, if we use the integrating factor $\mu=$ $e^{\int P(x) d x}$ then the equation

$$
\mu(P(x) y-Q(x)) d x+\mu d y=0
$$

is exact. The solution to this equation is the one-parameter family

$$
y=\frac{\int \mu Q(x) d x+c}{\mu} .
$$

5. Bernoulli. These are differential equations which can be put into the form

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

The change of variables $v=y^{1-n}$ converts this to the linear equation

$$
\frac{d v}{d x}+(1-n) P(x)=(1-n) Q(x)
$$

which can be solved using the methods of 4 .
6. Equations in which

$$
\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=f(x)
$$

for some $f(x)$. In this case we look for an integrating factor of the form $\mu(x)$. Since we want

$$
\mu M d x+\mu N d y=0
$$

to be exact, we want

$$
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x}
$$

$$
\begin{gathered}
\mu(x) \frac{\partial M}{\partial y}=\mu^{\prime}(x) N+\mu(x) \frac{\partial N}{\partial x} \\
\frac{\mu^{\prime}(x)}{\mu(x)}=\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=f(x) \\
\frac{d(\ln \mu(x))}{d x}=f(x) \\
\ln \mu(x)=\int f(x) d x \\
\mu=e^{\int f(x) d x}=e^{\int \frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right] d x}
\end{gathered}
$$

Note that 4 is a special case of 6 . In this case we have $M=P(x) y-Q(x)$ and $N=1$, therefore

$$
\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=P(x)
$$

therefore

$$
\mu=e^{\int \frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right] d x}=e^{\int P(x) d x} .
$$

Multiplying

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

by μ we obtain

$$
\begin{gathered}
\left(e^{\int P(x) d x}\right) \frac{d y}{d x}+\left(e^{\int P(x) d x}\right) P(x) y=\left(e^{\int P(x) d x}\right) Q(x), \\
{\left[\left(e^{\int P(x) d x}\right) y\right]^{\prime}=\left(e^{\int P(x) d x}\right) Q(x)} \\
(\mu y)^{\prime}=\mu Q \\
\mu y=\int \mu Q d x+c \\
y=\frac{\int \mu Q d x+c}{\mu}
\end{gathered}
$$

7. Equations in which

$$
\frac{1}{M}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=f(y)
$$

for some $f(y)$. This is just 6 with x and y reversed, and we get the integrating factor

$$
\mu=e^{\int f(y) d y}=e^{\int \frac{1}{M}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right] d y}
$$

8. Equations which can be put into the form

$$
(a x+b y+c) d x+\left(a^{\prime} x+b^{\prime} y+c^{\prime}\right) d y=0
$$

If det $\left|\begin{array}{cc}a & b \\ a^{\prime} & b^{\prime}\end{array}\right| \neq 0$ then the change of variables $u=a x+b y+c$ and $v=$ $a^{\prime} x+b^{\prime} y+c^{\prime}$ results in a homogeneous equation in u and v. If $\operatorname{det}\left|\begin{array}{ll}a & b \\ a^{\prime} & b^{\prime}\end{array}\right|=0$ then the change of variables $u=a x+b y+c$ results a separable equation in x and u.

Exercises:
Section 2.1: Problems: 5, 8, 13, 15, 22-24
Section 2.2: Problems: 5, 11, 12, 14, 17, 25
Section 2.3: Problems: 7, 20, 23, 28, 31, 32, 33, 34, 37, 38, 40
Section 2.4: Problems: 4, 6, 8, 9, 12, 13, 17, 18, 19, 20, 21
Section 3.1: Problems: 5, 6, 9. 10, 11-13, 15, 16, 18
Section 3.2: Problems: 1, 3, 11, 13, 15, 18, 19
Section 3.3: Problems 1, 3, 9, 10, 14, 18, 19, 22, 26, 31, 32

11 Methods for solving general order linear differential equations of the form

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=F(x)
$$

1. First, find n linearly independent solutions $y=f_{1}(x), \ldots, y=f_{n}(x)$ to the homogeneous equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=0 .
$$

The general solution to the homogeneous equation must then be of the form

$$
y_{c}=c_{1} f_{1}(x)+\cdots+c_{n} f_{n}(x),
$$

where c_{1} through c_{n} are arbitrary constants.
2. Second, find one particular solution $y=y_{p}$ to the original differential equation.
3. The general solution to the original differential equation is then

$$
y=y_{p}+y_{c} .
$$

4. Methods for finding linearly independent solutions to $n^{\text {th }}$-order linear homogeneous differential equations:
(4.a) Reduction of order. Assume that $f(x)$ is one solution to

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

Another solution to this differential equation is $g(x) f(x)$, where

$$
g(x)=\int \frac{1}{f^{2} e^{\int \frac{a_{1}(x)}{a_{2}(x)} d x}} d x
$$

More generally, if $f(x)$ is a solution to

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=0
$$

and we want to find $g(x)$ so that $g(x) f(x)$ is another solution, then substituting $y=g f$ into the differential equation and noting that

$$
(g f)^{(k)}=\sum_{i=0}^{k}\binom{k}{i} g^{(i)} f^{(k-i)}
$$

then we can see that g is a solution to the differential equation

$$
\sum_{k=0}^{n} \sum_{i=0}^{k} a_{k}\binom{k}{i} g^{(i)} f^{(k-i)}=0
$$

or

$$
\sum_{i=0}^{n}\left(\sum_{k=i}^{n}\binom{k}{i} a_{k} f^{(k-i)}\right) g^{(i)}=0
$$

Since

$$
\sum_{k=0}^{n} a_{k} f^{(k)}=0
$$

this leaves us with

$$
\sum_{i=1}^{n}\left(\sum_{k=i}^{n}\binom{k}{i} a_{k} f^{(k-i)}\right) g^{(i)}=0
$$

Substituting $G=g^{\prime}$ we obtain

$$
\sum_{i=1}^{n}\left(\sum_{k=i}^{n}\binom{k}{i} a_{k} f^{(k-i)}\right) G^{(i-1)}=0
$$

Therefore G satisfies the $(n-1)^{s t}$-order linear differential equation

$$
b_{n-1}(x) y^{(n-1)}+\cdots+b_{0}(x) y=0
$$

where

$$
b_{i}(x)=\sum_{k=i+1}^{n}\binom{k}{i+1} a_{k} f^{(k-i-1)}
$$

for each i. Solve this for G, then set

$$
g=\int G(x) d x
$$

(4.b) Equations with constant coefficients. If we guess $y=e^{r x}$ as a solution to

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y^{(0)}=0
$$

then after substitution we obtain

$$
a_{n} r^{n} e^{r x}+a_{n-1} r^{n-1} e^{r x}+\cdots+a_{0} e^{r x}=0 .
$$

Dividing by $e^{r x}$, we find that

$$
a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{0}=0
$$

This can be factored into the form

$$
a_{n}\left(r-r_{1}\right)\left(r-r_{2}\right) \cdots\left(r-r_{n}\right)=0
$$

Therefore the solutions are

$$
r=r_{1}, r_{2}, \ldots, r_{n}
$$

Since the coefficients a_{i} are real, any complex roots must occur in complexconjugate pairs. For example, suppose we find are dealing with a $11^{\text {th }}$-order linear homogeneous differential equation with constant coefficients, and we find that the solutions to r are

$$
r=1,1,1,2,2,3+4 i, 3+4 i, 3-4 i, 3-4 i, 5 i,-5 i
$$

Then 11 linearly independent solutions are

$$
e^{x}, x e^{x}, x^{2} e^{x}, e^{2 x}, x e^{2 x}, e^{3 x} \cos (4 x), x e^{3 x} \cos (4 x), e^{3 x} \sin (4 x), x e^{3 x} \sin (4 x), \cos (5 x), \sin (5 x)
$$

5. Methods of finding one particular solution to

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=F(x)
$$

(5.a) Undetermined coefficients. The idea is to guess at the form of the solution, then plug in and determine the unknown coefficients. Example:

$$
y^{\prime \prime}-4 y+4 y=x e^{2 x}
$$

First find the general solution to the homogeneous equation:

$$
y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

Then form the UC set corresponding to $F(x)$:

$$
x e^{2 x} \rightarrow\left\{e^{2 x}, x e^{2 x}\right\} .
$$

Multiply this set by the lowest non-negative power of x needed so that none of the resulting functions is a solution to the homogeneous equation:

$$
x^{2}\left\{e^{2 x}, x e^{2 x}\right\}=\left\{x^{2} e^{2 x}, x^{3} e^{2 x}\right\}
$$

Combine the functions in the UC set to create a particular solution y_{p} with undetermined coefficients:

$$
y_{p}=A x^{2} e^{2 x}+B x^{3} e^{2 x}
$$

Now determine the coefficients by requiring y_{p} to satisfy the differential equation:

$$
\left(A x^{2} e^{2 x}+B x^{3} e^{2 x}\right)^{\prime \prime}-4\left(A x^{2} e^{2 x}+B x^{3} e^{2 x}\right)^{\prime}+4\left(A x^{2} e^{2 x}+B x^{3} e^{2 x}\right)=x e^{2 x} .
$$

After taking all the derivatives and simplifying the left-hand side of this equation, we obtain

$$
2 A e^{2 x}+6 B x e^{2 x}=x e^{2 x}
$$

Equating coefficients, we have

$$
2 A=0,6 B=1
$$

Now we have

$$
y_{p}=\frac{1}{6} x^{3} e^{2 x} .
$$

(5.b) Divide and Conquer. Suppose we need to find a particular solution to

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=F_{1}(x)+F_{2}(x)+\cdots+F_{k}(x) .
$$

Let y_{i} be a particular solution to

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=F_{i}(x)
$$

for $1 \leq i \leq k$. Then

$$
y_{p}=y_{1}+y_{2}+\cdots+y_{k}
$$

is a particular solution to the original differential equation. For example, suppose we want a particular solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}+x^{2} .
$$

We know that

$$
y_{1}=\frac{1}{6} x^{3} e^{2 x}
$$

is a solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}
$$

and it is easy to verify that

$$
y_{2}=\frac{1}{4} x^{2}+\frac{1}{2} x+\frac{3}{8}
$$

is a solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=x^{2},
$$

therefore

$$
y_{p}=y_{1}+y_{2}=\frac{1}{6} x^{3} e^{2 x}+\frac{1}{4} x^{2}+\frac{1}{2} x+\frac{3}{8}
$$

is a solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}+x^{2}
$$

(5.c) Variation of parameters. We will illustrate the method for the secondorder linear equation

$$
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=F(x) .
$$

First find two linearly independent solutions $f_{1}(x)$ and $f_{2}(x)$ to the homogeneous equation

$$
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

Now we attempt to find $g_{1}(x)$ and $g_{2}(x)$ so that

$$
y_{p}=g_{1} f_{1}+g_{2} f_{2}
$$

is a particular solution to the original differential equation. Plugging in y_{p} we obtain

$$
\left(g_{1} f_{1}+g_{2} f_{2}\right)^{\prime \prime}+a_{1}\left(g_{1} f_{1}+g_{2} f_{2}\right)^{\prime}+a_{0}\left(g_{1} f_{1}+g_{2} f_{2}\right)=F(x)
$$

Therefore

$$
\begin{gathered}
\left(g_{1}^{\prime \prime} f_{1}+2 g_{1}^{\prime} f_{1}^{\prime}+g_{1} f_{1}^{\prime \prime}+g_{2}^{\prime \prime} f_{2}+2 g_{2}^{\prime} f_{2}^{\prime}+g_{2} f_{2}^{\prime \prime}\right)+ \\
a_{1}\left(g_{1}^{\prime} f_{1}+g_{1} f_{1}^{\prime}+g_{2}^{\prime} f_{2}+g_{2} f_{2}^{\prime}\right)+ \\
a_{0}\left(g_{1} f_{1}+g_{2} f_{2}\right)=F(x) .
\end{gathered}
$$

However, we know that

$$
f_{1}^{\prime \prime}+a_{1} f_{1}^{\prime}+a_{0} f_{1}=f_{2}^{\prime \prime}+a_{1} f_{2}^{\prime}+a_{0} f_{2}=0
$$

therefore we are left with

$$
\left(g_{1}^{\prime \prime} f_{1}+2 g_{1}^{\prime} f_{1}^{\prime}+g_{2}^{\prime \prime} f_{2}+2 g_{2}^{\prime} f_{2}^{\prime}\right)+a_{1}\left(g_{1}^{\prime} f_{1}+g_{2}^{\prime} f_{2}\right)=F(x) .
$$

To simplify this, we will impose the condition that

$$
g_{1}^{\prime} f_{1}+g_{2}^{\prime} f_{2}=0
$$

This leaves us with

$$
g_{1}^{\prime \prime} f_{1}+2 g_{1}^{\prime} f_{1}^{\prime}+g_{2}^{\prime \prime} f_{2}+2 g_{2}^{\prime} f_{2}^{\prime}=F(x) .
$$

Note however that we have

$$
\begin{gathered}
\left(g_{1}^{\prime} f_{1}+g_{2}^{\prime} f_{2}\right)^{\prime}=0 \\
g_{1}^{\prime \prime} f_{1}+g_{1}^{\prime} f_{1}^{\prime}+g_{2}^{\prime \prime} f_{2}+g_{2}^{\prime} f_{2}^{\prime}=0
\end{gathered}
$$

therefore

$$
g_{1}^{\prime} f_{1}^{\prime}+g_{2}^{\prime} f_{2}^{\prime}=F(x)
$$

In summary, g_{1} and g_{2} must satisfy two equations:

$$
\begin{aligned}
g_{1}^{\prime} f_{1}+g_{2}^{\prime} f_{2} & =0 \\
g_{1}^{\prime} f_{1}^{\prime}+g_{2}^{\prime} f_{2}^{\prime} & =F .
\end{aligned}
$$

Solving for g_{1}^{\prime} and g_{2}^{\prime} we obtain

$$
g_{1}^{\prime}=\frac{-f_{2} F}{f_{1} f_{2}^{\prime}-f_{1}^{\prime} f_{2}}=\frac{-f_{2} F}{W\left(f_{1}, f_{2}\right)}, \quad g_{2}^{\prime}=\frac{f_{1} F}{f_{1} f_{2}^{\prime}-f_{1}^{\prime} f_{2}}=\frac{f_{1} F}{W\left(f_{1}, f_{2}\right)} .
$$

Therefore

$$
g_{1}=\int \frac{-f_{2} F}{W\left(f_{1}, f_{2}\right)} d x, \quad g_{2}=\int \frac{f_{1} F}{W\left(f_{1}, f_{2}\right)} d x
$$

and finally

$$
y_{p}=f_{1} \int \frac{-f_{2} F}{W\left(f_{1}, f_{2}\right)} d x+f_{2} \int \frac{f_{1} F}{W\left(f_{1}, f_{2}\right)} d x .
$$

6. The Cauchy-Euler equation. This is any $n^{\text {th }}$-order linear differential equation of the form

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{0} y^{(0)}=F(x) .
$$

The associated homogeneous linear differential equation is

$$
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{0} y^{(0)}=0 .
$$

If we make the change of variables $x=e^{t}$ and guess $y=e^{r t}$, then we obtain

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d x}}=\frac{r e^{r t}}{e^{t}}=r e^{(r-1) t} \\
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d\left(\frac{d y}{d x}\right)}{d t}}{\frac{d x}{d t}}=\frac{r(r-1) e^{(r-1) t}}{e^{t}}=r(r-1) e^{(r-2) t}
\end{gathered}
$$

and finally

$$
\frac{d^{n} t}{d x^{n}}=r(r-1) \cdots(r-n+1) e^{(r-n) t}
$$

Therefore for all k we have

$$
x^{k} y^{(k)}=r(r-1) \cdots(r-k+1) e^{r t}=r(r-1) \cdots(r-k+1) y .
$$

Therefore the homogeneous equation becomes
$a_{n}[r(r-1) \cdots(r-n+1)] y+a_{n-1}[r(r-1) \cdots(r-n)] y+\cdots+a_{1} r y+a_{0} y=0$,
and letting $r=r_{1}, r_{2}, \ldots, r_{n}$ be the solutions to

$$
a_{n}[r(r-1) \cdots(r-n+1)]+a_{n-1}[r(r-1) \cdots(r-n)]+\cdots+a_{1} r+a_{0}=0,
$$

we can find n linearly independent solutions $y=f_{1}(t), y=f_{2}(t), \ldots, y=$ $f_{n}(t)$ to the homogeneous equation. To solve the original linear differential equation, we can use either undetermined coefficients or variation of parameters.

Example:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=2 x \ln x \text {. }
$$

The homogeneous equation is

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0 .
$$

Setting $x=e^{t}$ and guessing $y=e^{r t}$ for the homogeneous solution we obtain

$$
\begin{gathered}
r(r-1)+r+4=0 \\
r^{2}+4=0 \\
r=0+2 i, 0-2 i
\end{gathered}
$$

Therefore the general solution to the homogenous equation is

$$
y_{c}=c_{1} \cos (2 t)+c_{2} \sin (2 t) .
$$

Since $F\left(e^{t}\right)=2 t e^{t}$, we can use variation of parameters with $W(\cos (2 t), \sin (2 t))=$ 2 to obtain

$$
y_{p}=\cos (2 t) \int \frac{-\sin (2 t) \cdot 2 t e^{t}}{2} d t+\sin (2 t) \int \frac{\cos (2 t) \cdot 2 t e^{t}}{2} d t,
$$

which looks hard to simplify. Another approach is to use undetermined coefficients: the UC set of $2 t e^{t}$ is $\left\{t e^{t}, e^{t}\right\}$, which does not need to be modified. If we guess

$$
y_{p}=A e^{t}+B t e^{t}=A x+B x \ln x
$$

then

$$
x^{2} y_{p}^{\prime \prime}+x y_{p}^{\prime}+4 y_{p}=2 x \ln x
$$

becomes

$$
x^{2} \frac{B}{x}+x(A+B \ln x+B)+4(A x+B x \ln x)=2 x \ln x
$$

Equating coefficients of x and $x \ln x$, we find

$$
5 A+2 B=0,5 B=2
$$

hence

$$
A=-\frac{4}{25}, B=\frac{2}{5},
$$

$$
y_{p}=-\frac{4}{25} x+\frac{2}{5} x \ln x .
$$

In this case the general solution to the original differential equation is

$$
y=y_{p}+y_{c}=-\frac{4}{25} x+\frac{2}{5} x \ln x+c_{1} \cos (2 \ln x)+c_{2} \sin (2 \ln x) .
$$

Exercises:

Section 4.1, page 122: Problems 1,2, 3, 9, 10, 11
Section 4.1, page 132: Problems 1, 5, 9, 11
Section 4.2: Problems 1, 11, 26, 32, 37, 51, 55, 57, 59, 61
Section 4.3: Problems 1, 11, 21, 31, 41, 51, 61
Section 4.4: Problems 1, 3, 13, 17, 19, 25
Section 4.5: Problems 1, 6, 11, 16, 21, 26, 31
Section 5.2: Problems 1, 3, 5, 7, 8, 9
Section 5.3: 1, 3, 5, 7, 9, 11, 13
Section 5.4: 1, 3, 5, 7, 9

12 Systems of two linear differential equations with independent variables x and y

1. Review of second order linear differential equations:

$$
(E) \quad a_{2}(t) x^{\prime \prime}+a_{1}(t) x^{\prime}+a_{0}(t)=F(t) .
$$

The homogeneous equation is

$$
(H) \quad a_{2}(t) x^{\prime \prime}+a_{1}(t) x^{\prime}+a_{0}(t)=0 .
$$

Two linearly independent solutions f_{1}, f_{2} to (H) are guaranteed, and the general solution to (H) is

$$
x_{c}=c_{1} f_{1}+c_{2} f_{2}
$$

If x_{p} is any particular solution to (E), then the general solution to (E) is $x=x_{c}+x_{p}$.
2. Transition to systems of two first order linear differential equations:

The second order linear differential equation (E) can be converted to a system of two first order linear differential equations:

$$
(E) \quad \begin{cases}y & =x^{\prime} \\ a_{2}(t) y^{\prime}+a_{1}(t) y+a_{0}(t) x & =F(t)\end{cases}
$$

We will rearrange this to

$$
(E) \quad \begin{cases}x^{\prime} & =y \\ y^{\prime} & =-a_{0}(t) x-a_{1}(t) y+F(t)\end{cases}
$$

In matrix form:

$$
(E) \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-a_{0}(t) & -a_{1}(t)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
0 \\
F(t)
\end{array}\right] .
$$

3. General systems of two first order linear differential equations:

$$
(E) \quad\left\{\begin{array}{l}
x^{\prime}=a_{11}(t) x+a_{12}(t) y+F_{1}(t) \\
y^{\prime}=a_{21}(t) x+a_{22}(t) y+F_{2}(t)
\end{array}\right.
$$

In matrix form:

$$
(E) \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t)
\end{array}\right] .
$$

More simply:

$$
(E) \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=A(t)\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t)
\end{array}\right],
$$

where

$$
A(t)=\left[\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right]
$$

4. Theory of systems of two first order linear differential equations.
(4.1) Theorem 7.1: The boundary value problem

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=A(t)\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t)
\end{array}\right], \quad\left[\begin{array}{l}
x\left(t_{0}\right) \\
y\left(t_{0}\right)
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

has a unique solution, given the appropriate hypotheses on the coefficient functions and forcing functions.
(4.2) Notation: (E) and (H) are the original differential equation and the associated homogeneous differential equation:

$$
\begin{gathered}
(E) \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=A(t)\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t)
\end{array}\right], \\
(H) \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=A(t)\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{gathered}
$$

(4.3) Theorem 7.3: The homogeneous equation (H) has two linearly independent solutions:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
g_{1}
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f_{2} \\
g_{2}
\end{array}\right]
$$

The general solution to (H) is

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1}\left[\begin{array}{l}
f_{1} \\
g_{1}
\end{array}\right]+c_{2}\left[\begin{array}{l}
f_{2} \\
g_{2}
\end{array}\right] .
$$

(4.4) The Wronskian of $\left[\begin{array}{l}f_{1} \\ g_{1}\end{array}\right]$ and $\left[\begin{array}{l}f_{2} \\ g_{2}\end{array}\right]$:

$$
W(t)=\left|\begin{array}{ll}
f_{1} & f_{2} \\
g_{1} & g_{2}
\end{array}\right|
$$

(4.5) Theorem 7.4: $\left[\begin{array}{l}f_{1} \\ g_{1}\end{array}\right]$ and $\left[\begin{array}{l}f_{2} \\ g_{2}\end{array}\right]$ are linearly independent if and only if $W(t) \neq 0$ at some point t.
(4.6) Theorem 7.6: Let

$$
\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right]
$$

be any particular solution to (E), and let

$$
\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]
$$

be the general solution to (H). Then

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right]+\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]
$$

is the general solution to (E).
5. Method for solving (H) if the matrix $A(t)$ has constant coefficients:

$$
(H) \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

(5.1) Guess

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=e^{\lambda t}\left[\begin{array}{l}
P \\
Q
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\lambda e^{\lambda t}\left[\begin{array}{l}
P \\
Q
\end{array}\right] .
$$

Substituting into (H), obtain

$$
\lambda e^{\lambda t}\left[\begin{array}{l}
P \\
Q
\end{array}\right]=A e^{\lambda t}\left[\begin{array}{l}
P \\
Q
\end{array}\right] .
$$

Therefore

$$
\lambda\left[\begin{array}{l}
P \\
Q
\end{array}\right]=A\left[\begin{array}{l}
P \\
Q
\end{array}\right] .
$$

In other words, $\left[\begin{array}{l}P \\ Q\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue λ. From matrix theory, to find λ we need to solve the determinant equation

$$
\left|A-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right|=0
$$

Having found λ, we can then solve for P and Q.
(5.2) Two real roots λ_{1} and λ_{2} :

$$
\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=c_{1} e^{\lambda_{1} t}\left[\begin{array}{l}
P_{1} \\
Q_{1}
\end{array}\right]+c_{2} e^{\lambda_{2} t}\left[\begin{array}{l}
P_{2} \\
Q_{2}
\end{array}\right]
$$

(5.3) Complex conjugate roots $\lambda_{1}=a+b i$ and $\lambda_{2}=a-b i$: multiply out

$$
e^{(a+b i) t}\left[\begin{array}{c}
P_{1}+i P_{2} \\
Q_{1}+i Q_{2}
\end{array}\right]
$$

using

$$
e^{a+b i}=e^{a} \cos a t+i e^{a} \sin b t
$$

and separate into real and imaginary parts. These are two linearly independent solutions.
(5.4) Repeated real roots λ, λ : Suppose a solution of

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=e^{\lambda t}\left[\begin{array}{c}
P \\
Q
\end{array}\right]
$$

is obtained. Look for a second solution of the form

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=e^{\lambda t}\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right]+t e^{\lambda t}\left[\begin{array}{l}
P \\
Q
\end{array}\right] .
$$

It must satisfy

$$
(H) \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Making the substitution, it must satisfy

$$
\lambda e^{\lambda t}\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right]+\left(e^{\lambda t}+\lambda t e^{\lambda t}\right)\left[\begin{array}{l}
P \\
Q
\end{array}\right]=A e^{\lambda t}\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right]+A t e^{\lambda t}\left[\begin{array}{l}
P \\
Q
\end{array}\right] .
$$

Dividing by $e^{\lambda t}$, we must have

$$
\lambda\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right]+(1+\lambda t)\left[\begin{array}{l}
P \\
Q
\end{array}\right]=A\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right]+A t\left[\begin{array}{l}
P \\
Q
\end{array}\right] .
$$

Since

$$
A t\left[\begin{array}{l}
P \\
Q
\end{array}\right]=\lambda t\left[\begin{array}{l}
P \\
Q
\end{array}\right]
$$

we can subtract this quantity from both sides to obtain

$$
\lambda\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right]+\left[\begin{array}{l}
P \\
Q
\end{array}\right]=A\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right] .
$$

Therefore we must solve

$$
\left(A-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right)\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime}
\end{array}\right]=\left[\begin{array}{l}
P \\
Q
\end{array}\right]
$$

