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1 Trajectories

A trajectory in Rn is a function α : [t0, t1] → Rn of the form

α(t) = (α1(t), α2(t), . . . , αn(t)).

The graph of the trajectory is

{α(t) : t ∈ [t0, t1]}.

Example 1.1. Let α : [0, 2π] → R2 be defined by

α(t) = (cos t, sin t).

The graph of α is {(x, y) ∈ R2 : x2 + y2 = 1}, the unit circle.
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Example 1.2. Let α : [0, 2π] → R2 be defined by

α(t) = (8 cos t, 3 sin t).

The graph of α is {(x, y) ∈ R2 : x2

82 + y2

32 = 1}, the ellipse with major axis of
length 16 and minor axis of length 6.
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Example 1.3. Let α : [0, 13π] → R3 be defined by

α(t) = (2 cos t, 2 sin t,
√

t).

The graph of α is a helix of radius 1. As t increases the graph becomes
increasingly compressed.
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2 Direction vectors

Each point α(t) of a trajectory α can be regarded as a vector which begins
at the origin and ends at α(t). The displacement from position α(t) to α(t′)
is the vector α(t + h) − α(t). The average rate of change of position from
time t to time t + h is

1

h
(α(t + h)− α(t)).

The instantaneous rate of change of the position vector at time t is the limit

α′(t) = lim
h→0

1

h
(α(t + h)− α(t)).

If
α(t) = (α1(t), α2(t), . . . , αn(t)),

then
α′(t) = (α′1(t), α

′
2(t), . . . , α

′
n(t)).

We can interpret α′(t) as the direction a particle is heading in at time t as
it is traveling along the trajectory α. If α(t) = (x(t), y(t)) then the slope of

the direction vector at time t is y′(t)
x′(t) , assuming x′(t) 6= 0.

Example 2.1. In Example 1.1, α′(t) = (− sin t, cos t). At time t = π
4
, the

particle is in position α(π
4
) = (

√
2

2
,
√

2
2

) and is heading in direction

α′(
π

4
) = (−

√
2

2
,

√
2

2
)

with slope −1.

Example 2.2. In Example 1.2, α′(t) = (−8 sin t, 3 cos t). At time t = π
4
, the

particle is in position α(π
4
) = (8

√
2

2
, 3

√
2

2
) and is heading in direction

α′(
π

4
) = (−8

√
2

2
, 3

√
2

2
)

with slope −3
8
.
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Example 2.3. In Example 1.2, α′(t) = (− sin t, cos 1√
t
). At time t = kπ,

1 ≤ k ≤ 12, the particle is in position α(kπ) = (−1, 0,
√

kπ) and is heading
in direction α′(kπ) = (0,−1, 2√

kπ
). Notice that the direction vectors are

becoming more horizontal as t increases.

Example 2.4. In Examples 1.1 and 1.2, both trajectories travel exactly once
around their graphs in the counter-clockwise direction. At what times are
both particles traveling in the same direction?

Answer: at those times t in which the direction vectors are parallel to
each other, namely when

(− sin t, cos t) = λ(t)(−8 sin t, 3 cos t)

for some λ(t) 6= 0. When sin t 6= 0 then we must have λ(t) = 1
8
, which

forces cos t = 3
8
cos t, which forces cos t = 0, which forces sin t = ±1. This

corresponds to t = π
2

and t = 3π
2

. When sin t = 0 we must have cos t = ±1
and λ(t) = 1

3
. This corresponds to t = 0 and t = π.

Exercise 1: Let P be a particle traveling clockwise around the circle x2 +
y2 = 25.

(a) Find the direction P is traveling in at the moment it passes through the
point (−3,−4).

(b) Find both points along the circle at which the particle is traveling in a
direction which is parallel to the line y = 2x. Hint: the line has direction
vector (1, 2).

Exercise 2: Let P be a particle traveling clockwise around the ellipse x2

25
+

y2

100
= 1.

(a) Find the direction P is traveling in at the moment it passes through the
point (3, 8).

(b) Find both points along the ellipse at which the particle is traveling in a
direction which is parallel to the line y = 2x.
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3 Surfaces

Let f : Rn → R be given. A surface is the set of solutions to

f(x1, x2, . . . , xn) = 0.

Example 3.1. Let f(x, y) = x2 + y2 − 1. The surface associated with f is
the unit circle (see Example 1.1).

Example 3.2. Let f(x, y) = x2

82 + y2

32 − 1. The surface associated with f is
an ellipse (see Example 1.2).

Example 3.3. Let f(x, y, t) = (x − cos t2)2 + (y − sin t2)2. The surface
associated with f is

{(cos t2, sin t2, t) : t ∈ R} =

{(cos t, sin t,
√

t) : t ∈ R} ∪ {(cos t, sin t,−
√

t) : t ∈ R}.
This is a helix. Compare with Example 1.3.

4 Partial derivatives and the chain rule

Let f(x, y, z) = y − 2zx + 2
3
z3. The partial derivatives of f are

∂f

∂x
(x, y, z) = −2z,

∂f

∂y
(x, y, z) = 1,

∂f

∂z
(x, y, z) = −2x + 2z2.

If we assume that x, y, and z are functions of t, then we can define

F (t) = f(x(t), y(t), z(t)) = y(t)− 2z(t)x(t) +
2

3
z(t)3.

The derivative is

F ′(t) = y′(t)− 2z′(t)x(t)− 2z(t)x′(t) + 2z(t)2z′(t) =
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−2z(t) · x′(t) + 1 · y′(t) + (−2x(t) + 2z(t)2) · x′(t) =
[
∂f

∂x
(x(t), y(t), z(t))

]
x′(t)+

[
∂f

∂x
(x(t), y(t), z(t))

]
y′(t)+

[
∂f

∂x
(x(t), y(t), z(t))

]
z′(t).

In short,
d

dt
f = fxx

′ + fyy
′ + fzz

′.

5 Calculating direction vectors on a curve de-

fined as a surface

Let α(t) = (x(t), y(t)) be a trajectory which traces out the curve defined by
the surface

f(x, y) = 0.

Then the direction of the trajectory at time t is the vector (x′(t), y′(t)). On
the other hand, we know that

F (t) = f(x(t), y(t)) = 0

for all t, therefore
F ′(t) = fxx

′ + fyy
′ = 0

for all t, therefore (x′, y′) is perpendicular to (fx, fy) and (x′, y′) is parallel
to (−fy, fx).

Example 5.1. Let f(x, y) = x2 + y2 − 1. The direction of any trajectory
along the surface generated by f is parallel to

(−fy, fx) = (−2y, 2x)

with slope −x
y

at the point (x, y). In particular, the slope of the direction

vector of a particle traveling around the unit circle x2 + y2 = 1 at the point
(
√

2
2

,
√

2
2

) is −1. Compare this with Example 2.1.
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Example 5.2. Let f(x, y) = x2

82 + y2

32 − 1. The direction of any trajectory
along the surface generated by f is parallel to

(−fy, fx) = (−2

9
y,

2

64
x)

with slope −9x
64y

at the point (x, y). In particular, the slope of the direction

vector of a particle traveling around the ellipse x2

82 + y2

32 = 1 at the point

(8
√

2
2

, 3
√

2
2

) is −72
192

= −3
8

. Compare this with Example 2.2.

6 1-parameter families

The function f : R3 → R can be used to define a one-parameter family of
curves. The curve corresponding to z = c is the graph of all (x, y) satisfying

f(x, y, c) = 0.

Example 6.1. f(x, y, z) = y − 2zx + 2
3
z3. For c = 1 we get

y = 2x− 2

3
.

For c = 2 we get

y = 4x− 16

3
.

All the curves in this family are straight lines. If we plot the lines corre-
sponding to c = 0.5k for k ∈ {−10,−9, . . . , 9, 10} then we obtain
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There seems to be a curve which is tangent to all these lines. This is called
the envelope of the 1-parameter family. The envelope is

5 10 15 20

-100
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50

100

7 Calculating the envelope of a 1-parameter

family

Given a 1-parameter family of curves defined by f(x, y, z) = 0, we can cal-
culate the envelope (if it exists) as follows: Let α(t) = (x(t), y(t)) be a
parameterized curve which is a candidate for the envelope. Properties α
must have:

1. It must pass through every curve defined by the equation f(x, y, c) = 0
for each c. Therefore, for each t there must be a number c(t) such that
f(x(t), y(t), c(t)) = 0. We can say that α passes through the curve defined
by f(x, y, c(t)) = 0 at time t.

2. We will make the assumption that c(t) is a differentiable function of t and
that the partial derivatives of f can be computed at all points of α. Since
f(x(t), y(t), c(t)) is a constant function of t, it must have time derivative
equal to 0. Therefore

fxx
′(t) + fyy

′(t) + fzc
′(t) = 0.

3. Given a fixed time value t, we will define F (t)(x, y) = f(x, y, c(t)). Any
trajectory tracing out the curve defined by F (t) must have direction vector
parallel to (−F

(t)
y , F

(t)
x ) = (−fy, fx) at the point (x(t), y(t)).

4. We want α(t) to be tangent to each curve in the 1-parameter family
defined by f . Therefore we want (x′(t), y′(t)) to be parallel to the vector
(−fy, fx) for all t. Hence there must be a number λ(t) 6= 0 such that

(x′(t), y′(t)) = λ(t)(−fy, fx)
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at time t.

5. Combining Properties 2 and 4, we want fzc
′(t) = 0. So to find α(t) we will

solve the simultaneous equations f(x, y, z) = 0 and fz(x, y, z) = 0, eliminate
z from this if possible, then parameterize the solutions (x, y) with respect to
a time variable t. We must then check that we can define a differentiable
function c(t) as in Properties 1 and 2.

Example 7.1. Consider f(x, y, z) = y− 2zx + 2
3
z3 as in Example 6.1. Then

we must solve

y − 2zx +
2

3
z3 = 0

−2x + 2z2 = 0.

We can see that x = z2, therefore y = 4
3
z3, therefore

y2 =
16

9
z6 =

16

9
x3.

Hence we can set x(t) = t2, y(t) = 4
3
t3, c(t) = t. The envelope traces the

curve defined by 9y2 − 16x3 = 0 and is tangent to the line y = 2tx − 2
3
t3 at

the point (t2, 4
3
t3) at time t.

8 Calculating the orthogonal trajectories of

a 1-parameter family

Given a 1-parameter family of curves defined by f(x, y, z) = 0, we can ask
which trajectories are perpendicular to each curve in the family. If α(t) =
(x(t), y(t)) is an orthogonal trajectory, then we know that for each t there
must be c(t) such that f(x(t), y(t), c(t)) = 0. In order for α(t) to be heading
in a direction perpendicular to the curve defined by f(x, y, c(t)) = 0, we must
have

(x′(t), y′(t)) = λ(t)(fx, fy)

for each t and some λ(t) 6= 0. So to find α(t) we must solve the system of
equations

f(x(t), y(t), c(t)) = 0

9



(x′(t), y′(t)) = λ(t)(fx, fy)

when x = x(t), y = y(t), z = c(t).

Example 8.1. Consider f(x, y, z) = xy−z. The curve defined by f(x, y, c) =
0 is the hyperbola xy−c = 0. Plotting these hyperbolas for c ∈ {−4,−3, . . . , 3, 4}
we obtain
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To find the orthogonal trajectories we must solve the system of equations

x(t)y(t)− c(t) = 0

(x′(t), y′(t)) = λ(t)(y(t), x(t)).

The second equation implies

y′(t)
x′(t)

=
x(t)

y(t)
,

y′(t)y(t) = x′(t)x(t),

(y(t)2)′ = (x(t)2)′,

y(t)2 = x(t)2 + k

for any fixed number k. Having chosen k, we can set

c(t) = x(t)y(t) = ±x(t)
√

x(t)2 + k.

The orthogonal trajectories trace the ellipses

y2 − x2 = k.

The orthogonal trajectories are the 1-parameter family corresponding to
g(x, y, z) = y2 − x2 − z. Superimposing the orthogonal trajectories corre-
sponding to k ∈ {0.5, 1.0, 2.0} we obtain
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Superimposing the orthogonal trajectories corresponding to k ∈ {−0.5,−1.0,−2.0}
we obtain

-10 -5 5 10
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3

9 First order differential equations

Let f : R2 → R be given. A first order differential equation is an equation
of the form

dy

dx
= f(x, y).

A solution is any function φ : (a, b) → R such that

φ(x) = f(x, φ(x)).

In other words, substituting y = φ(x) satisfies the equation.

Example 9.1. Let f(x, y) = x. A solution to the differential equation

dy

dx
= x

is

φ(x) =
x2

2
+ c, x ∈ (−∞,∞)

for any constant value c.

Example 9.2. Let f(x, y) = x
y
. A solution to the differential equation

dy

dx
=

x

y

is
φ(x) =

√
x2 − c, x ∈ (

√
c,∞)

for any constant value c ≥ 0. To verify this, observe that

dy

dx
=

x√
x2 − c

=
x

y
.
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Example 9.3. In Example 7.1 we derived the envelope to the 1-parameter
family of curves defined as all solutions to f(x, y, z) = 0, where

f(x, y, z) = y − 2zx− z3.

The solution turned on finding α(t) = (x(t), y(t)) such that

(x′(t), y′(t)) = λ(t)(−fy, fx) = λ(t)(−1,−2z(t))

and requiring x = z2. This can be reformulated as

y′(t)
x′(t)

= 2z(t) = 2
√

x(t).

Setting x(t) = t, we are attempting to solve the first order differential equa-
tion

dy

dt
= 2

√
t.

A solution is

y =
4

3
t

3
2 + c

for any constant c. The only solution which satisfies f(x, y, z) = 0 for the

choices x = t, y = 4
3
t

3
2 + c, z =

√
t is to use c = 0.

Example 9.4. In Example 8.1 we derived the set of orthogonal trajectories
to the 1-parameter family of curves defined as solutions to f(x, y, z) = 0,
where

f(x, y, z) = xy − z.

The solution turned on finding α(t) = (x(t), y(t)) such that

(x′(t), y′(t)) = λ(t)(fx, fy) = λ(t)(y(t), x(t))

and requiring xy = z. This can be reformulated as

y′(t)
x′(t)

=
x(t)

y(t)
.

Setting x(t) = t, we are attempting to solve the first order differential equa-
tion

dy

dt
=

t

y
.

12



A solution to this equation, as we found in Example 9.2, is

y =
√

t2 − k

for an arbitrary k. The graph of y versus t is orthogonal to the curve defined
by f(x, y, c) = 0 at the point (a,

√
a2 − k), where a is any solution to

a
√

a2 − k = c.

Exercises:

Section 1.1, Problems 1-10

Section 1.2, Problems 1-4, 6, 8

Section 1.3, Problems 1-5, 7

10 Methods for Solving First-Order Differen-

tial Equations of the form M dx+N dy = 0

Let M : R2 → R and N : R2 → R be given. The notation

M dx + N dy = 0

is shorthand for the differential equation

dy

dx
= −M(x, y)

N(x, y)
.

Suppose it is possible to find a function F : R2 → R such that

Fx(x, y) = M(x, y)

and
Fy(x, y) = N(x, y).

Then any trajectory of the form α(x) = (x, y(x)) in the surface defined by
F (x, y) = c gives rise to a solution to the differential equation

M dx + N dy = 0.
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To see this, set f(x) = F (x, y(x)). Then f(x) = c for all x, therefore
f ′(x) = 0 for all x. Using the chain rule, we obtain

Fx + Fy
dy

dx
= 0.

That is,
dy

dx
= −Fy

Fx

= −M

N
.

Example 10.1. Let F (x, y) = xy. The surface F (x, y) = c determines the
trajectory y(x) = c

x
. Using the formula above with ∂F

∂x
= y and ∂F

∂y
= x we

must conclude that y = c
x

satisfies the differential equation

y dx + x dy = 0.

To check that this is correct, note that

dy

dx
= − c

x2
= −xy

x2
= −y

x
.

Using this idea, we can now solve several types of first-order differential
equations of the form M dx + N dy = 0:

1. Exact. Just find F (x, y) so that ∂F
∂x

= M and ∂F
∂y

= N . This requires
∂M
∂y

= ∂N
∂x

. Then solve for y in terms of x in the equation F (x, y) = c.

2. Separable. These are differential equations which can be put into the form

m(x) dx + n(y) dy = 0.

Equations of this form are exact, because ∂m
∂y

= 0 = ∂n
∂x

. In this case we can

use F (x, y) =
∫

m(x) dx +
∫

n(y) dy.

3. Homogeneous. These are differential equations which can be put into the
form

dy

dx
= g(y/x).

The change of variables v = y
x

converts this equation into

dv

v − g(v)
+

dx

x
= 0,
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which is separable.

4. Linear. These are differential equations which can be put into the form

dy

dx
+ P (x)y = Q(x).

Rearranged, this is
(P (x)y −Q(x)) dx + dy = 0.

While this equation may not be exact, if we use the integrating factor µ =
e
R

P (x) dx then the equation

µ(P (x)y −Q(x)) dx + µ dy = 0

is exact. The solution to this equation is the one-parameter family

y =

∫
µQ(x) dx + c

µ
.

5. Bernoulli. These are differential equations which can be put into the form

dy

dx
+ P (x)y = Q(x)yn.

The change of variables v = y1−n converts this to the linear equation

dv

dx
+ (1− n)P (x) = (1− n)Q(x),

which can be solved using the methods of 4.

6. Equations in which

1

N

[
∂M

∂y
− ∂N

∂x

]
= f(x)

for some f(x). In this case we look for an integrating factor of the form µ(x).
Since we want

µM dx + µN dy = 0

to be exact, we want
∂(µM)

∂y
=

∂(µN)

∂x
,
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µ(x)
∂M

∂y
= µ′(x)N + µ(x)

∂N

∂x
,

µ′(x)

µ(x)
=

1

N

[
∂M

∂y
− ∂N

∂x

]
= f(x),

d(ln µ(x))

dx
= f(x),

ln µ(x) =

∫
f(x) dx,

µ = e
R

f(x) dx = e
R

1
N [ ∂M

∂y
− ∂N

∂x ] dx.

Note that 4 is a special case of 6. In this case we have M = P (x)y−Q(x)
and N = 1, therefore

1

N

[
∂M

∂y
− ∂N

∂x

]
= P (x),

therefore
µ = e

R
1
N [ ∂M

∂y
− ∂N

∂x ] dx = e
R

P (x) dx.

Multiplying
dy

dx
+ P (x)y = Q(x)

by µ we obtain

(
e
R

P (x) dx
) dy

dx
+

(
e
R

P (x) dx
)

P (x)y =
(
e
R

P (x) dx
)

Q(x),

[
(
e
R

P (x) dx
)

y]′ =
(
e
R

P (x) dx
)

Q(x),

(µy)′ = µQ,

µy =

∫
µQ dx + c,

y =

∫
µQ dx + c

µ
.
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7. Equations in which

1

M

[
∂N

∂x
− ∂M

∂y

]
= f(y)

for some f(y). This is just 6 with x and y reversed, and we get the integrating
factor

µ = e
R

f(y) dy = e
R

1
M [ ∂N

∂x
− ∂M

∂y ] dy.

8. Equations which can be put into the form

(ax + by + c) dx + (a′x + b′y + c′) dy = 0.

If det

∣∣∣∣
a b
a′ b′

∣∣∣∣ 6= 0 then the change of variables u = ax + by + c and v =

a′x+ b′y + c′ results in a homogeneous equation in u and v. If det

∣∣∣∣
a b
a′ b′

∣∣∣∣ = 0

then the change of variables u = ax + by + c results a separable equation in
x and u.

Exercises:

Section 2.1: Problems: 5, 8, 13, 15, 22-24

Section 2.2: Problems: 5, 11, 12, 14, 17, 25

Section 2.3: Problems: 7, 20, 23, 28, 31, 32, 33, 34, 37, 38, 40

Section 2.4: Problems: 4, 6, 8, 9, 12, 13, 17, 18, 19, 20, 21

Section 3.1: Problems: 5, 6, 9. 10, 11-13, 15, 16, 18

Section 3.2: Problems: 1, 3, 11, 13, 15, 18, 19

Section 3.3: Problems 1, 3, 9, 10, 14, 18, 19, 22, 26, 31, 32

11 Methods for solving general order linear

differential equations of the form

an(x)y(n) + an−1(x)y(n−1) + · · · + a0(x)y = F (x).

17



1. First, find n linearly independent solutions y = f1(x), ..., y = fn(x) to the
homogeneous equation

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = 0.

The general solution to the homogeneous equation must then be of the form

yc = c1f1(x) + · · ·+ cnfn(x),

where c1 through cn are arbitrary constants.

2. Second, find one particular solution y = yp to the original differential
equation.

3. The general solution to the original differential equation is then

y = yp + yc.

4. Methods for finding linearly independent solutions to nth-order linear
homogeneous differential equations:

(4.a) Reduction of order. Assume that f(x) is one solution to

a2(x)y′′ + a1(x)y′ + a0(x)y = 0.

Another solution to this differential equation is g(x)f(x), where

g(x) =

∫
1

f 2e
R a1(x)

a2(x)
dx

dx.

More generally, if f(x) is a solution to

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = 0,

and we want to find g(x) so that g(x)f(x) is another solution, then substi-
tuting y = gf into the differential equation and noting that

(gf)(k) =
k∑

i=0

(
k

i

)
g(i)f (k−i)

18



then we can see that g is a solution to the differential equation

n∑

k=0

k∑
i=0

ak

(
k

i

)
g(i)f (k−i) = 0,

or
n∑

i=0

(
n∑

k=i

(
k

i

)
akf

(k−i)

)
g(i) = 0.

Since
n∑

k=0

akf
(k) = 0,

this leaves us with

n∑
i=1

(
n∑

k=i

(
k

i

)
akf

(k−i)

)
g(i) = 0.

Substituting G = g′ we obtain

n∑
i=1

(
n∑

k=i

(
k

i

)
akf

(k−i)

)
G(i−1) = 0.

Therefore G satisfies the (n− 1)st-order linear differential equation

bn−1(x)y(n−1) + · · ·+ b0(x)y = 0,

where

bi(x) =
n∑

k=i+1

(
k

i + 1

)
akf

(k−i−1)

for each i. Solve this for G, then set

g =

∫
G(x) dx.

(4.b) Equations with constant coefficients. If we guess y = erx as a solution
to

any
(n) + an−1y

(n−1) + · · ·+ a0y
(0) = 0,
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then after substitution we obtain

anr
nerx + an−1r

n−1erx + · · ·+ a0e
rx = 0.

Dividing by erx, we find that

anrn + an−1r
n−1 + · · ·+ a0 = 0.

This can be factored into the form

an(r − r1)(r − r2) · · · (r − rn) = 0.

Therefore the solutions are

r = r1, r2, . . . , rn.

Since the coefficients ai are real, any complex roots must occur in complex-
conjugate pairs. For example, suppose we find are dealing with a 11th-order
linear homogeneous differential equation with constant coefficients, and we
find that the solutions to r are

r = 1, 1, 1, 2, 2, 3 + 4i, 3 + 4i, 3− 4i, 3− 4i, 5i,−5i.

Then 11 linearly independent solutions are

ex, xex, x2ex, e2x, xe2x, e3x cos(4x), xe3x cos(4x), e3x sin(4x), xe3x sin(4x), cos(5x), sin(5x).

5. Methods of finding one particular solution to

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = F (x).

(5.a) Undetermined coefficients. The idea is to guess at the form of the
solution, then plug in and determine the unknown coefficients. Example:

y′′ − 4y + 4y = xe2x.

First find the general solution to the homogeneous equation:

yc = c1e
2x + c2xe2x.
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Then form the UC set corresponding to F (x):

xe2x → {e2x, xe2x}.

Multiply this set by the lowest non-negative power of x needed so that none
of the resulting functions is a solution to the homogeneous equation:

x2{e2x, xe2x} = {x2e2x, x3e2x}.

Combine the functions in the UC set to create a particular solution yp with
undetermined coefficients:

yp = Ax2e2x + Bx3e2x.

Now determine the coefficients by requiring yp to satisfy the differential equa-
tion:

(Ax2e2x + Bx3e2x)′′ − 4(Ax2e2x + Bx3e2x)′ + 4(Ax2e2x + Bx3e2x) = xe2x.

After taking all the derivatives and simplifying the left-hand side of this
equation, we obtain

2Ae2x + 6Bxe2x = xe2x.

Equating coefficients, we have

2A = 0, 6B = 1.

Now we have

yp =
1

6
x3e2x.

(5.b) Divide and Conquer. Suppose we need to find a particular solution to

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = F1(x) + F2(x) + · · ·+ Fk(x).

Let yi be a particular solution to

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = Fi(x)

for 1 ≤ i ≤ k. Then
yp = y1 + y2 + · · ·+ yk
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is a particular solution to the original differential equation. For example,
suppose we want a particular solution to

y′′ − 4y′ + 4y = xe2x + x2.

We know that

y1 =
1

6
x3e2x

is a solution to
y′′ − 4y′ + 4y = xe2x,

and it is easy to verify that

y2 =
1

4
x2 +

1

2
x +

3

8

is a solution to
y′′ − 4y′ + 4y = x2,

therefore

yp = y1 + y2 =
1

6
x3e2x +

1

4
x2 +

1

2
x +

3

8

is a solution to
y′′ − 4y′ + 4y = xe2x + x2.

(5.c) Variation of parameters. We will illustrate the method for the second-
order linear equation

y′′ + a1(x)y′ + a0(x)y = F (x).

First find two linearly independent solutions f1(x) and f2(x) to the homoge-
neous equation

y′′ + a1(x)y′ + a0(x)y = 0.

Now we attempt to find g1(x) and g2(x) so that

yp = g1f1 + g2f2

is a particular solution to the original differential equation. Plugging in yp

we obtain

(g1f1 + g2f2)
′′ + a1(g1f1 + g2f2)

′ + a0(g1f1 + g2f2) = F (x).
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Therefore
(g′′1f1 + 2g′1f

′
1 + g1f

′′
1 + g′′2f2 + 2g′2f

′
2 + g2f

′′
2 )+

a1(g
′
1f1 + g1f

′
1 + g′2f2 + g2f

′
2)+

a0(g1f1 + g2f2) = F (x).

However, we know that

f ′′1 + a1f
′
1 + a0f1 = f ′′2 + a1f

′
2 + a0f2 = 0,

therefore we are left with

(g′′1f1 + 2g′1f
′
1 + g′′2f2 + 2g′2f

′
2) + a1(g

′
1f1 + g′2f2) = F (x).

To simplify this, we will impose the condition that

g′1f1 + g′2f2 = 0.

This leaves us with

g′′1f1 + 2g′1f
′
1 + g′′2f2 + 2g′2f

′
2 = F (x).

Note however that we have

(g′1f1 + g′2f2)
′ = 0,

g′′1f1 + g′1f
′
1 + g′′2f2 + g′2f

′
2 = 0,

therefore
g′1f

′
1 + g′2f

′
2 = F (x).

In summary, g1 and g2 must satisfy two equations:

g′1f1 + g′2f2 = 0
g′1f

′
1 + g′2f

′
2 = F.

Solving for g′1 and g′2 we obtain

g′1 =
−f2F

f1f ′2 − f ′1f2

=
−f2F

W (f1, f2)
, g′2 =

f1F

f1f ′2 − f ′1f2

=
f1F

W (f1, f2)
.

Therefore

g1 =

∫ −f2F

W (f1, f2)
dx, g2 =

∫
f1F

W (f1, f2)
dx,
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and finally

yp = f1

∫ −f2F

W (f1, f2)
dx + f2

∫
f1F

W (f1, f2)
dx.

6. The Cauchy-Euler equation. This is any nth-order linear differential equa-
tion of the form

anxny(n) + an−1x
n−1y(n−1) + · · ·+ a0y

(0) = F (x).

The associated homogeneous linear differential equation is

anxny(n) + an−1x
n−1y(n−1) + · · ·+ a0y

(0) = 0.

If we make the change of variables x = et and guess y = ert, then we obtain

dy

dx
=

dy
dt
dx
dt

=
rert

et
= re(r−1)t,

d2y

dx2
=

d( dy
dx

)

dt
dx
dt

=
r(r − 1)e(r−1)t

et
= r(r − 1)e(r−2)t,

and finally
dnt

dxn
= r(r − 1) · · · (r − n + 1)e(r−n)t.

Therefore for all k we have

xky(k) = r(r − 1) · · · (r − k + 1)ert = r(r − 1) · · · (r − k + 1)y.

Therefore the homogeneous equation becomes

an[r(r−1) · · · (r−n+1)]y +an−1[r(r−1) · · · (r−n)]y + · · ·+a1ry +a0y = 0,

and letting r = r1, r2, . . . , rn be the solutions to

an[r(r − 1) · · · (r − n + 1)] + an−1[r(r − 1) · · · (r − n)] + · · ·+ a1r + a0 = 0,

we can find n linearly independent solutions y = f1(t), y = f2(t), . . . , y =
fn(t) to the homogeneous equation. To solve the original linear differential
equation, we can use either undetermined coefficients or variation of param-
eters.
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Example:
x2y′′ + xy′ + 4y = 2x ln x.

The homogeneous equation is

x2y′′ + xy′ + 4y = 0.

Setting x = et and guessing y = ert for the homogeneous solution we obtain

r(r − 1) + r + 4 = 0,

r2 + 4 = 0,

r = 0 + 2i, 0− 2i.

Therefore the general solution to the homogenous equation is

yc = c1 cos(2t) + c2 sin(2t).

Since F (et) = 2tet, we can use variation of parameters with W (cos(2t), sin(2t)) =
2 to obtain

yp = cos(2t)

∫ − sin(2t) · 2tet

2
dt + sin(2t)

∫
cos(2t) · 2tet

2
dt,

which looks hard to simplify. Another approach is to use undetermined
coefficients: the UC set of 2tet is {tet, et}, which does not need to be modified.
If we guess

yp = Aet + Btet = Ax + Bx ln x,

then
x2y′′p + xy′p + 4yp = 2x ln x

becomes

x2B

x
+ x(A + B ln x + B) + 4(Ax + Bx ln x) = 2x ln x.

Equating coefficients of x and x ln x, we find

5A + 2B = 0, 5B = 2,

hence

A = − 4

25
, B =

2

5
,
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yp = − 4

25
x +

2

5
x ln x.

In this case the general solution to the original differential equation is

y = yp + yc = − 4

25
x +

2

5
x ln x + c1 cos(2 ln x) + c2 sin(2 ln x).

Exercises:

Section 4.1, page 122: Problems 1,2, 3, 9, 10, 11

Section 4.1, page 132: Problems 1, 5, 9, 11

Section 4.2: Problems 1, 11, 26, 32, 37, 51, 55, 57, 59, 61

Section 4.3: Problems 1, 11, 21, 31, 41, 51, 61

Section 4.4: Problems 1, 3, 13, 17, 19, 25

Section 4.5: Problems 1, 6, 11, 16, 21, 26, 31

Section 5.2: Problems 1, 3, 5, 7, 8, 9

Section 5.3: 1, 3, 5, 7, 9, 11, 13

Section 5.4: 1, 3, 5, 7, 9

12 Systems of two linear differential equa-

tions with independent variables x and y

1. Review of second order linear differential equations:

(E) a2(t)x
′′ + a1(t)x

′ + a0(t) = F (t).

The homogeneous equation is

(H) a2(t)x
′′ + a1(t)x

′ + a0(t) = 0.

Two linearly independent solutions f1, f2 to (H) are guaranteed, and the
general solution to (H) is

xc = c1f1 + c2f2.
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If xp is any particular solution to (E), then the general solution to (E) is
x = xc + xp.

2. Transition to systems of two first order linear differential equations:

The second order linear differential equation (E) can be converted to a
system of two first order linear differential equations:

(E)





y = x′

a2(t)y
′ + a1(t)y + a0(t)x = F (t).

We will rearrange this to

(E)





x′ = y

y′ = −a0(t)x− a1(t)y + F (t).

In matrix form:

(E)

[
x′

y′

]
=

[
0 1

−a0(t) −a1(t)

] [
x
y

]
+

[
0

F (t)

]
.

3. General systems of two first order linear differential equations:

(E)





x′ = a11(t)x + a12(t)y + F1(t)

y′ = a21(t)x + a22(t)y + F2(t).

In matrix form:

(E)

[
x′

y′

]
=

[
a11(t) a12(t)
a21(t) a22(t)

] [
x
y

]
+

[
F1(t)
F2(t)

]
.

More simply:

(E)

[
x′

y′

]
= A(t)

[
x
y

]
+

[
F1(t)
F2(t)

]
,

where

A(t) =

[
a11(t) a12(t)
a21(t) a22(t)

]
.
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4. Theory of systems of two first order linear differential equations.

(4.1) Theorem 7.1: The boundary value problem

[
x′

y′

]
= A(t)

[
x
y

]
+

[
F1(t)
F2(t)

]
,

[
x(t0)
y(t0)

]
=

[
a
b

]

has a unique solution, given the appropriate hypotheses on the coefficient
functions and forcing functions.

(4.2) Notation: (E) and (H) are the original differential equation and the
associated homogeneous differential equation:

(E)

[
x′

y′

]
= A(t)

[
x
y

]
+

[
F1(t)
F2(t)

]
,

(H)

[
x′

y′

]
= A(t)

[
x
y

]
.

(4.3) Theorem 7.3: The homogeneous equation (H) has two linearly inde-
pendent solutions: [

x
y

]
=

[
f1

g1

]

and [
x
y

]
=

[
f2

g2

]
.

The general solution to (H) is

[
x
y

]
= c1

[
f1

g1

]
+ c2

[
f2

g2

]
.

(4.4) The Wronskian of

[
f1

g1

]
and

[
f2

g2

]
:

W (t) =

∣∣∣∣
f1 f2

g1 g2

∣∣∣∣ .
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(4.5) Theorem 7.4:

[
f1

g1

]
and

[
f2

g2

]
are linearly independent if and only if

W (t) 6= 0 at some point t.

(4.6) Theorem 7.6: Let [
xp

yp

]

be any particular solution to (E), and let

[
xc

yc

]

be the general solution to (H). Then

[
x
y

]
=

[
xp

yp

]
+

[
xc

yc

]

is the general solution to (E).

5. Method for solving (H) if the matrix A(t) has constant coefficients:

(H)

[
x′

y′

]
= A

[
x
y

]
.

(5.1) Guess [
x
y

]
= eλt

[
P
Q

]
.

Then [
x′

y′

]
= λeλt

[
P
Q

]
.

Substituting into (H), obtain

λeλt

[
P
Q

]
= Aeλt

[
P
Q

]
.

Therefore

λ

[
P
Q

]
= A

[
P
Q

]
.
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In other words,

[
P
Q

]
is an eigenvector of A corresponding to the eigenvalue

λ. From matrix theory, to find λ we need to solve the determinant equation
∣∣∣∣A−

[
λ 0
0 λ

]∣∣∣∣ = 0.

Having found λ, we can then solve for P and Q.

(5.2) Two real roots λ1 and λ2:

[
xc

yc

]
= c1e

λ1t

[
P1

Q1

]
+ c2e

λ2t

[
P2

Q2

]
.

(5.3) Complex conjugate roots λ1 = a + bi and λ2 = a− bi: multiply out

e(a+bi)t

[
P1 + iP2

Q1 + iQ2

]

using
ea+bi = ea cos at + iea sin bt

and separate into real and imaginary parts. These are two linearly indepen-
dent solutions.

(5.4) Repeated real roots λ, λ: Suppose a solution of

[
x
y

]
= eλt

[
P
Q

]

is obtained. Look for a second solution of the form
[
x
y

]
= eλt

[
P ′

Q′

]
+ teλt

[
P
Q

]
.

It must satisfy

(H)

[
x′

y′

]
= A

[
x
y

]
.

Making the substitution, it must satisfy

λeλt

[
P ′

Q′

]
+ (eλt + λteλt)

[
P
Q

]
= Aeλt

[
P ′

Q′

]
+ Ateλt

[
P
Q

]
.
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Dividing by eλt, we must have

λ

[
P ′

Q′

]
+ (1 + λt)

[
P
Q

]
= A

[
P ′

Q′

]
+ At

[
P
Q

]
.

Since

At

[
P
Q

]
= λt

[
P
Q

]
,

we can subtract this quantity from both sides to obtain

λ

[
P ′

Q′

]
+

[
P
Q

]
= A

[
P ′

Q′

]
.

Therefore we must solve
(

A−
[
λ 0
0 λ

])[
P ′

Q′

]
=

[
P
Q

]
.
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