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1 Trajectories
A trajectory in R" is a function « : [tg, t1] — R™ of the form
C((t) = (&l(t)a 042(t)7 s 705n<t))'

The graph of the trajectory is

{a(t) : t € [to, t1]}-

Example 1.1. Let « : [0,27] — R? be defined by
a(t) = (cost,sint).

The graph of a is {(z,y) € R?: 22 + y* = 1}, the unit circle.




Example 1.2. Let « : [0,27] — R? be defined by

a(t) = (8cost, 3sint).

The graph of « is {(z,y) € R?: g—; + g—i = 1}, the ellipse with major axis of

length 16 and minor axis of length 6.

Example 1.3. Let «a : [0, 137] — R3 be defined by

a(t) = (2cost, 2sint, V).

The graph of « is a helix of radius 1. As ¢ increases the graph becomes

increasingly compressed.




2 Direction vectors

Each point a(t) of a trajectory « can be regarded as a vector which begins
at the origin and ends at «(t). The displacement from position a(t) to a(t')
is the vector a(t + h) — a(t). The average rate of change of position from
time ¢ to time ¢ + h is

1
E(oz(t + h) — a(t)).

The instantaneous rate of change of the position vector at time ¢ is the limit

1
/ . _ _
a(t) = }lllir(l] h(a(t + h) —a(t)).
If

at) = (a1(t), as(t), ..., au(t)),
then

o (t) = (o (1), a(t), - ., (1))
We can interpret o/(t) as the direction a particle is heading in at time ¢ as

it is traveling along the trajectory a. If a(t) = (z(t),y(t)) then the slope of

518, assuming z’(t) # 0.

Example 2.1. In Example 1.1, o/(t) = (—sint,cost). At time ¢t = 7, the

particle is in position a(}) = (‘/75, \/75) and is heading in direction
=29
(=)= (——,—
4 27 2

with slope —1.

Example 2.2. In Example 1.2, o/(t) = (—8sint,3cost). At time ¢t = 7, the

particle is in position a(%) = (8£ 3£) and is heading in direction

with slope —%.



Example 2.3. In Example 1.2, o/(t) = (—sint, cos \/i%) At time t = km,

1 < k <12, the particle is in position a(km) = (—1,0,vkn) and is heading
in direction o'(km) = (0,—1, \/%) Notice that the direction vectors are
becoming more horizontal as t increases.

Example 2.4. In Examples 1.1 and 1.2, both trajectories travel exactly once
around their graphs in the counter-clockwise direction. At what times are
both particles traveling in the same direction?

Answer: at those times ¢ in which the direction vectors are parallel to
each other, namely when
(—sint, cost) = \(t)(—8sint, 3 cost)
for some A(t) # 0. When sint # 0 then we must have A(t) = g, which
forces cost = %COS t, which forces cost = 0, which forces sint = 4+1. This
corresponds to t = % and t = 37“ When sint = 0 we must have cost = +1

2
and A(t) = 3. This corresponds to ¢ = 0 and ¢t = .

Exercise 1: Let P be a particle traveling clockwise around the circle x? +
2
y° = 25.

(a) Find the direction P is traveling in at the moment it passes through the
point (—3, —4).

(b) Find both points along the circle at which the particle is traveling in a
direction which is parallel to the line y = 2x. Hint: the line has direction
vector (1,2).

Exercise 2: Let P be a particle traveling clockwise around the ellipse % +

2
[ —
100_1'

(a) Find the direction P is traveling in at the moment it passes through the
point (3, 8).

(b) Find both points along the ellipse at which the particle is traveling in a
direction which is parallel to the line y = 2z.



3 Surfaces

Let f: R™ — R be given. A surface is the set of solutions to

f(fEl,.TQ, RN ,fL’n> =0.

Example 3.1. Let f(z,y) = 2> + y*> — 1. The surface associated with f is
the unit circle (see Example 1.1).

2

Example 3.2. Let f(z,y) = & + g—z — 1. The surface associated with f is

an ellipse (see Example 1.2).

Example 3.3. Let f(z,y,t) = (z — cost?)? + (y — sint?)%2. The surface
associated with f is
{(cost? sint*t):t c R} =

{(cost,sint,v/t) : t € R} U {(cost,sint, —/1) : t € R}.
This is a helix. Compare with Example 1.3.

4 Partial derivatives and the chain rule
Let f(x,y,2) =y — 2zx + 223, The partial derivatives of f are

%(xayv Z) = _22’ g_g(xvya Z) = 17 %(%y’ Z) = —2x + 222-

If we assume that z, y, and z are functions of ¢, then we can define

F(t) = f(x(t),y(@), 2(1) = y(t) — 22(t)2(t) + ;2(75)3-

The derivative is

F'(t) = o/ (t) — 22/ ()x(t) — 22(1)2'(t) + 22(t)%2/(t) =



—2z(t) -2’ (t) + 1/ (t) + (—2z(t) +22(1)%) - 2/(t) =

S a(0.000),0)| 00+ S al0).0(0, 00| 0+ G000, 00| #0)

In short,

d / / /
Ef:fxx +fyy +fzz-

5 Calculating direction vectors on a curve de-
fined as a surface

Let a(t) = (z(t),y(t)) be a trajectory which traces out the curve defined by
the surface

f(x,y) =0.

Then the direction of the trajectory at time ¢ is the vector (z/(t),4/(t)). On
the other hand, we know that

for all ¢, therefore
F,(t) = fa:m/ + fyy/ =0

for all ¢, therefore (2',y’) is perpendicular to (fs, f,) and (2,y’) is parallel
to (_fy: f:p)

Example 5.1. Let f(z,y) = 2> + y> — 1. The direction of any trajectory
along the surface generated by f is parallel to

(_fy> f:c) = (_2y> QZE)

with slope —5 at the point (z,y). In particular, the slope of the direction

vector of a particle traveling around the unit circle 2% + y? = 1 at the point

(@, g) is —1. Compare this with Example 2.1.



Example 5.2. Let f(z,y) = 385—; - g—z — 1. The direction of any trajectory
along the surface generated by f is parallel to

2 2
—_ z) = (—=v, —x
with slope ngj at the point (z,y). In particular, the slope of the direction
vector of a particle traveling around the ellipse “g—z + g—i = 1 at the point

(8‘/75, 3\/75) is 722 = 22. Compare this with Example 2.2.

6 1-parameter families

The function f : R*> — R can be used to define a one-parameter family of
curves. The curve corresponding to z = ¢ is the graph of all (x, y) satisfying

flx,y,c) =0.

Example 6.1. f(z,y,z) =y — 2zx + 22%. For ¢ =1 we get

2
=2r — —.
For ¢ = 2 we get
4 16
=4dr — —.
Y 3

All the curves in this family are straight lines. If we plot the lines corre-
sponding to ¢ = 0.5k for k € {—10,-9,...,9,10} then we obtain




There seems to be a curve which is tangent to all these lines. This is called
the envelope of the 1-parameter family. The envelope is
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7 Calculating the envelope of a 1-parameter
family

Given a l-parameter family of curves defined by f(x,y,z) = 0, we can cal-
culate the envelope (if it exists) as follows: Let «a(t) = (x(t),y(t)) be a
parameterized curve which is a candidate for the envelope. Properties «
must have:

1. It must pass through every curve defined by the equation f(z,y,c) =0
for each c¢. Therefore, for each ¢ there must be a number ¢(t) such that
fz(t),y(t),c(t)) = 0. We can say that o passes through the curve defined
by f(z,y,c(t)) =0 at time ¢.

2. We will make the assumption that ¢(t) is a differentiable function of ¢ and
that the partial derivatives of f can be computed at all points of a. Since
fz(t),y(t),c(t)) is a constant function of ¢, it must have time derivative
equal to 0. Therefore

fo2' () + [y (t) + f.c(t) = 0.

3. Given a fixed time value ¢, we will define F')(x,y) = f(z,y,c(t)). Any
trajectory tracing out the curve defined by F® must have direction vector
parallel to (—F\", Fét)) = (—fy, fz) at the point (x(t),y(t)).

4. We want «a(t) to be tangent to each curve in the l-parameter family
defined by f. Therefore we want (2'(t),y'(t)) to be parallel to the vector
(—fy, fz) for all t. Hence there must be a number A(t) # 0 such that

(@'(),y'(8) = A (= 1y, o)

8



at time t.

5. Combining Properties 2 and 4, we want f.c/(t) = 0. So to find «(t) we will
solve the simultaneous equations f(x,y,z) = 0 and f,(z,y,z) = 0, eliminate
z from this if possible, then parameterize the solutions (z,y) with respect to
a time variable . We must then check that we can define a differentiable
function c¢(t) as in Properties 1 and 2.

Example 7.1. Consider f(z,y,2) =y —2zx + 32° as in Example 6.1. Then
we must solve

2
y—2zx+§z3 =0

—2r+222 = 0.

We can see that o = 22, therefore y = 52°, therefore

1 1
vt = §26 = 561'3.

Hence we can set 2(t) = %, y(t) = 3t3, ¢(t) = t. The envelope traces the
curve defined by 93% — 1623 = 0 and is tangent to the line y = 2tz — §t3 at

the point (2, 5t*) at time ¢.

8 Calculating the orthogonal trajectories of
a l-parameter family

Given a l-parameter family of curves defined by f(z,y,z) = 0, we can ask
which trajectories are perpendicular to each curve in the family. If a(t) =
(x(t),y(t)) is an orthogonal trajectory, then we know that for each ¢ there
must be ¢(t) such that f(z(t),y(t),c(t)) = 0. In order for a(t) to be heading
in a direction perpendicular to the curve defined by f(x,y,c(t)) = 0, we must
have

(@'(t), 9/ (1)) = A(t)(fz, fy)
for each ¢t and some A(t) # 0. So to find a(t) we must solve the system of
equations



(@'(®),y'(t) = A)(fo: fy)
when x = z(t), y = y(t), z = c(t).

Example 8.1. Consider f(x,y, z) = zy—z. The curve defined by f(z,y,c) =
0 is the hyperbola zy—c = 0. Plotting these hyperbolas for ¢ € {—4,-3,...,3,4}

we obtain J &
To find the orthogonal trajectories we must solve the system of equations

2(y(t) —cft) = 0

(@'(®),9' (1) = AO)(y(), (1))

The second equation implies

y'(t) _ =)
z(t)  y(t)
Y (t)y(t) = ' () (t),

y(t)* = a(t)* +k
for any fixed number k. Having chosen k, we can set
c(t) = z(t)y(t) = £x(t)\/z(t)? + k.
The orthogonal trajectories trace the ellipses
vt — a2 =k.

The orthogonal trajectories are the 1-parameter family corresponding to

g(z,y,2) = y* — 2% — z. Superimposing the orthogonal trajectories corre-

sponding to k € {0.5,1.0,2.0} we obtain




Superimposing the orthogonal trajectories corresponding to k € {—0.5, —1.0, —2.0}

we obtain
- %%1; %

9 First order differential equations

Let f: R? — R be given. A first order differential equation is an equation

of the form
dy

A solution is any function ¢ : (a,b) — R such that
¢(x) = f(x, (x)).

In other words, substituting y = ¢(z) satisfies the equation.

Example 9.1. Let f(x,y) = x. A solution to the differential equation

dy B
dr v
18
22
() = 5 +c, x € (—00,00)

for any constant value c.

Example 9.2. Let f(x,y) = z, A solution to the differential equation

dy «x
ey
is
or)=ViZ—ec,  a€ (Vo)

for any constant value ¢ > 0. To verify this, observe that

dy x x

dr ZL‘Q—C_E.

11



Example 9.3. In Example 7.1 we derived the envelope to the 1-parameter
family of curves defined as all solutions to f(z,y,z) = 0, where

f(l’,y72> :y—QZZL’—Z?)

The solution turned on finding a(t) = (x(t), y(t)) such that
(@'(1), 4/ (1) = A (= fy, fa) = AB)(=1, =22(1))

and requiring x = z2. This can be reformulated as

y'(t)
=2z(t) =2 t
L = 2:(0) =250
Setting x(t) = ¢, we are attempting to solve the first order differential equa-
tion J
Y
— = 2vt.
dt Vi
A solution is
= %t% +c
Y73

for any constant ¢. The only solution which satisfies f(x,y,z) = 0 for the
choicesxz?ﬁ,yz%ﬁ%—c, 2 =/t is to use ¢ = 0.

Example 9.4. In Example 8.1 we derived the set of orthogonal trajectories
to the 1-parameter family of curves defined as solutions to f(z,y,z) = 0,
where

flz,y,2) =2y — 2.
The solution turned on finding a(t) = (z(t), y(t)) such that

(@'(t),y' (1)) = AO)(fo, fy) = A (y(), (1))
and requiring xy = z. This can be reformulated as

yt) _ )

2(t)  y(t)

Setting x(t) = ¢, we are attempting to solve the first order differential equa-
tion

dy _t

at vy’

12



A solution to this equation, as we found in Example 9.2, is
y=Vt:—k

for an arbitrary k. The graph of y versus t is orthogonal to the curve defined
by f(x,y,c) = 0 at the point (a,va? — k), where a is any solution to

ava?—k=c.

Exercises:

Section 1.1, Problems 1-10
Section 1.2, Problems 1-4, 6, 8
Section 1.3, Problems 1-5, 7

10 Methods for Solving First-Order Differen-
tial Equations of the form M dx+ N dy =0
Let M : R? — R and N : R? — R be given. The notation
M dr+ N dy =0
is shorthand for the differential equation

dy _ M(z,y)

dr — N(z,y)

Suppose it is possible to find a function F' : R? — R such that

Fo(z,y) = M(z,y)

and
Fy(xay> = N($7y)

Then any trajectory of the form a(x) = (z,y(z)) in the surface defined by
F(x,y) = c gives rise to a solution to the differential equation

M dx + N dy = 0.

13



To see this, set f(x) = F(x,y(z)). Then f(z) = c for all z, therefore
f'(x) =0 for all z. Using the chain rule, we obtain

That is,

Example 10.1. Let F(z,y) = xy. The surface F(x,y) = ¢ determines the
trajectory y(x) = <. Using the formula above with g—i =y and 88—5 = we
must conclude that y = £ satisfies the differential equation

y dr + x dy = 0.
To check that this is correct, note that
@ ¢y Y
dx x2 x2 T
Using this idea, we can now solve several types of first-order differential

equations of the form M dx + N dy = 0:

1. Exact. Just find F(z,y) so that %—F = M and %—F = N. This requires
z Y

oM _ ON
oy ~ Oz

2. Separable. These are differential equations which can be put into the form

. Then solve for y in terms of x in the equation F(z,y) = c.

m(x) dx + n(y) dy = 0.

97 Tn this case we can

Equations of this form are exact because Im _ () = o

Dy
use F(z,y) = [m(z) dz+ [ n(

3. Homogeneous. These are dlfferentlal equations which can be put into the
form

Y~ gly/)

The change of variables v = £ converts this equation into



which is separable.

4. Linear. These are differential equations which can be put into the form

Y+ Play = Qo).

Rearranged, this is
(P(z)y — Q(x)) da +dy = 0.

While this equation may not be exact, if we use the integrating factor p =
e/ P() dz then the equation

u(P(x)y — Q(z)) dv+ p dy =0
is exact. The solution to this equation is the one-parameter family

Lo drtc
W

5. Bernoulli. These are differential equations which can be put into the form

dy

s P(z)y = Q(x)y".

The change of variables v = y'~™ converts this to the linear equation
dv .
dz

which can be solved using the methods of 4.

(1 =n)P(z) = (1 -n)Q(x),

6. Equations in which

1 {OM ON
¥ oy~ =1

for some f(z). In this case we look for an integrating factor of the form pu(x).
Since we want
puM dx + pN dy =0

to be exact, we want

d(uM)  d(uN)

oy oxr '

15



“(w)a—y = (@)N + pla) 5,

ple) 1 [OM ONT _ .

,u(x)_N{ay axl f (@),
WD) _ yay,

Note that 4 is a special case of 6. In this case we have M = P(z)y — Q(x)
and N = 1, therefore

1 {oM ON
— |- =P
therefore
W= ef%[%{*%] do _ [ P(z) dx
Multiplying
B Py = Q)
dx y=

by u we obtain

dz
[(efp(z) dz) ) = (efP(z) dz> Q).
(hy)' = p@Q,
Hy = /MQ dr + c,
y=rddere

16



7. Equations in which

1 [ON oM
M[%—a—y}:f@)

for some f(y). This is just 6 with = and y reversed, and we get the integrating

factor

p=el fw dy — of i[5 -%] dv,

8. Equations which can be put into the form

(ax + by +¢) de + (dx+Vy+ ) dy = 0.

If det Z, é), # 0 then the change of variables u = ax + by + c and v =
a'x +b'y + ¢ results in a homogeneous equation in u and v. If det s, 5,‘ =0

then the change of variables u = ax + by + c results a separable equation in
x and u.

Exercises:

Section 2.1: Problems: 5, 8, 13, 15, 22-24

Section 2.2: Problems: 5, 11, 12, 14, 17, 25

Section 2.3: Problems: 7, 20, 23, 28, 31, 32, 33, 34, 37, 38, 40
Section 2.4: Problems: 4, 6, 8, 9, 12, 13, 17, 18, 19, 20, 21
Section 3.1: Problems: 5, 6, 9. 10, 11-13, 15, 16, 18

Section 3.2: Problems: 1, 3, 11, 13, 15, 18, 19

Section 3.3: Problems 1, 3, 9, 10, 14, 18, 19, 22, 26, 31, 32

11 Methods for solving general order linear
differential equations of the form

an(2)y™ + a1 (2)y" Y + -+ aglz)y = Fl(2).

17



1. First, find n linearly independent solutions y = f1(z), ..., y = fu(z) to the
homogeneous equation

an(2)y™ + ap_y (2)y™ V) 4+ ag(z)y = 0.
The general solution to the homogeneous equation must then be of the form
Ye = lel(x) +ot Cnfn(x)a

where ¢; through c¢,, are arbitrary constants.

2. Second, find one particular solution y = ¥, to the original differential
equation.

3. The general solution to the original differential equation is then

y:yp+yc'

4. Methods for finding linearly independent solutions to n'"-order linear
homogeneous differential equations:

(4.a) Reduction of order. Assume that f(z) is one solution to
as(2)y" + a1 (x)y' + ag(z)y = 0.

Another solution to this differential equation is g(z)f(x), where

1
9(z) = | ———— dx.
w=f e

More generally, if f(z) is a solution to

an(x)y(") + an_l(x)y("_l) + -4 ap(z)y =0,

and we want to find g(z) so that g(z)f(z) is another solution, then substi-
tuting y = ¢ f into the differential equation and noting that

k
(@hH® =3 (k) g0 =)
]

=0

18



then we can see that ¢ is a solution to the differential equation

k . .
. ( '>g(z>f(k—z> —0,
k=0 =0 L

tgw

or
Since

this leaves us with

(Z ()akf(’“)) gV =0.
=1 k=1 L

Substituting G = ¢’ we obtain
3 (S5 (o) oo
i=1 \k=i \'
Therefore G satisfies the (n — 1)*-order linear differential equation
b1 ()y "™ - 4 bo(x)y = 0,

where

bi(x) = i (ifl)akf(kil)

k=i+1
for each 7. Solve this for GG, then set

g / G(x) de.

(4.b) Equations with constant coefficients. If we guess y = e as a solution
to

19



then after substitution we obtain
At e™ + a1 e 4 e’ = 0.
Dividing by e"*, we find that
A" + @y 7"+ ag = 0.
This can be factored into the form
an(r—r)(r—re)---(r—mr,) =0.
Therefore the solutions are
T=T1,T, ., Ty

Since the coefficients a; are real, any complex roots must occur in complex-
conjugate pairs. For example, suppose we find are dealing with a 11*-order
linear homogeneous differential equation with constant coefficients, and we
find that the solutions to r are

r=1,1,1,2,2,3+4i,3 + 4i,3 — 4i, 3 — 4i, 5i, —5i.

Then 11 linearly independent solutions are

2 2x
Y

e”, we”, x?e”, e** we*™, e cos(4x), re®® cos(4x), € sin(4x), xe*” sin(4x), cos(5z), sin(5z).

5. Methods of finding one particular solution to

an(x)y(") + an_l(a:)y(”_l) + -+ ap(x)y = F(x).

(5.a) Undetermined coefficients. The idea is to guess at the form of the
solution, then plug in and determine the unknown coefficients. Example:

y" — Ay + 4y = ze®®.
First find the general solution to the homogeneous equation:

Ye = 1% + coxe®.

20



Then form the UC set corresponding to F'(x):
erm _ {62:p7x€2x}.

Multiply this set by the lowest non-negative power of x needed so that none
of the resulting functions is a solution to the homogeneous equation:

x2{€2x’x62$} — {x2€217$362x}.

Combine the functions in the UC set to create a particular solution y, with
undetermined coefficients:

y, = Az’e* + Ba’e®.

Now determine the coefficients by requiring y, to satisfy the differential equa-
tion:

(Ax262m —|—BCL’362I>N _4(Ax2e2m +B$3621>,—|—4(A(L’262I + Bx3€2r) — ZE62I.

After taking all the derivatives and simplifying the left-hand side of this
equation, we obtain
2Ae* + 6Bre* = xe*.

Equating coefficients, we have
2A=0,6B = 1.

Now we have

1
yp — 6:L,3€2m.

(5.b) Divide and Conquer. Suppose we need to find a particular solution to
an(2)y™ + a1 (2)y" Y - Fag()y = Fi(x) + Fy(x) + - + Fi(z).
Let y; be a particular solution to
an(2)y"™ + an 1 (2)y" Y + -+ ag(x)y = Fi(x)

for 1 <¢ < k. Then
Yp =Y1+ Y2+ + Yk

21



is a particular solution to the original differential equation. For example,
suppose we want a particular solution to

y/1_4y/+4y — J}€2x+l’2.

We know that

1
Y = 6x3€29r

is a solution to
y// . 4y/ +4y — xe%,

and it is easy to verify that

1 2_|_1 +3
Ym gt Tt TR

is a solution to
y' =4y + Ay = a2,

therefore

1, 1 3
+ -+ s+

1
yp*y1+y2*6xe 1 5 3

is a solution to
Y — 4y + dy = ze*® + 22

(5.c) Variation of parameters. We will illustrate the method for the second-
order linear equation

y"' + a1 (z)y + ap(x)y = F(x).

First find two linearly independent solutions fi(z) and fs(z) to the homoge-
neous equation
y" + ar(z)y" + ao(z)y = 0.

Now we attempt to find g;(z) and go(x) so that

Yp = 1.1+ g2/

is a particular solution to the original differential equation. Plugging in y,
we obtain

(g1f1 + g202)" +ar(gifi + g202)" + ao(g1.fr + g2 f2) = F(x).

22



Therefore

(V1 + 20001+ 91 /Y + 952+ 205 f5 + 9215+

a1 (g1 fr + g1 f1 + gofo + g2 fo)+
ao(g1f1 + g92f2) = F(x).

However, we know that

V4 afi+aofi = fi +aifs+agfo =0,

therefore we are left with

(971 + 29111 + g5 2 + 295 f3) + ar (g fr + 95.f2) =

To simplify this, we will impose the condition that
gifi+gofo=0.
This leaves us with
g fi+ 200 /1 + 9 2 + 295 f5 = F(a).
Note however that we have
(911 +92f2) =0,

gifi+afi+ g3 fa+g2fs =0,
therefore
91f1 + gofs = F(x).

In summary, ¢g; and g, must satisfy two equations:

gifi+dgyifa = 0
gfi +9fs = F.

Solving for ¢g; and ¢g) we obtain

R 7 A £ Y ,__hF

SiF

N=R = W) P RA—fif

Therefore

P
= W(f17f2) dz /W f17f2

23
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and finally
=t [ et g

6. The Cauchy-Euler equation. This is any n'*-order linear differential equa-
tion of the form

"y ™ + a, 2"y gy = F(a).
The associated homogeneous linear differential equation is
an "y ™ + ap 2"y gy @ = 0.
If we make the change of variables x = ¢! and guess y = €™, then we obtain

d
dy G _re" iy

dx ‘jl—f et ’

and finally

Therefore for all £ we have

2by® =r(r = 1) (r—k+ D =r(r—1)---(r—k+1)y.
Therefore the homogeneous equation becomes
ap[r(r=1) - (r=n+Dly+ana[r(r=1)---(r=n)ly+---+ary+ay =0,
and letting r = ry,79,...,7, be the solutions to
ap[r(r—=1)---(r—=n+1)]4+apalr(r—=1)---(r—=n)]+ -+ ayr +ao =0,

we can find n linearly independent solutions y = fi(t),y = fao(t),...,y =
fn(t) to the homogeneous equation. To solve the original linear differential
equation, we can use either undetermined coefficients or variation of param-
eters.
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Example:

22y + xy + 4y = 2z ln .

The homogeneous equation is

22y" + xy' + 4y = 0.

Setting x = e’ and guessing y = €™ for the homogeneous solution we obtain
rir—1)+r+4=0,
r?+4=0,
r=0+4 20— 2.
Therefore the general solution to the homogenous equation is
Yo = ¢1 cos(2t) 4 cosin(2t).

Since F'(e') = 2te’, we can use variation of parameters with W (cos(2t), sin(2t)) =
2 to obtain

—sin(2t) - 2tet 2t) - 2tet
y, = cos(2t) / Sm(z)  dt +sin(2t) / % dt,

which looks hard to simplify. Another approach is to use undetermined
coefficients: the UC set of 2te! is {te’, €'}, which does not need to be modified.
If we guess

y, = Ae' + Bte' = Az + BrInux,

then

nyg + 2y, +4y, = 2rInz

becomes
B
r*—+2(A+Blnz+ B) +4(Az + Brlnz) = 2zInw.
T

Equating coefficients of x and z Inx, we find
5A+2B=0,5B =2,

hence 4 5
A=—— B=—,
25 5
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42
= ——X -TrInx.
Ip= 55" T3

In this case the general solution to the original differential equation is

4 2 ,
Y="Yp+ Y= T + gmlnm +cicos(2Inz) + ¢y sin(2nz).

Exercises:

Section 4.1, page 122: Problems 1,2, 3, 9, 10, 11

Section 4.1, page 132: Problems 1, 5, 9, 11

Section 4.2: Problems 1, 11, 26, 32, 37, 51, 55, 57, 59, 61
Section 4.3: Problems 1, 11, 21, 31, 41, 51, 61

Section 4.4: Problems 1, 3, 13, 17, 19, 25

Section 4.5: Problems 1, 6, 11, 16, 21, 26, 31

Section 5.2: Problems 1, 3, 5, 7, 8,9

Section 5.3: 1, 3,5, 7,9, 11, 13

Section 5.4: 1, 3,5, 7,9

12 Systems of two linear differential equa-
tions with independent variables r and y

1. Review of second order linear differential equations:

(E) az(t)r” + ay(t)x' + ao(t) = F(t).
The homogeneous equation is
(H)  a(t)2” + a1(t)z’ + ap(t) = 0.

Two linearly independent solutions fi, fo to (H) are guaranteed, and the
general solution to (H) is

T = c1f1 + cafa.
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If x, is any particular solution to (E), then the general solution to (£) is
T = T.+ Tp.

2. Transition to systems of two first order linear differential equations:

The second order linear differential equation (E) can be converted to a
system of two first order linear differential equations:

We will rearrange this to
(E)

In matrix form:
® |y = e ) o] * L)

3. General systems of two first order linear differential equations:
ZL’/ = Cbll(t)l' + am(t)y + F1 (t)
(E)
y, = a921 (t)x + 0/22<t)y + Fg(t)

In matrix form:

More simply:

where



4. Theory of systems of two first order linear differential equations.

(4.1) Theorem 7.1: The boundary value problem

x x F (t)] {x(to)} {a]
= A(t + , =
Il HRa Pt B A
has a unique solution, given the appropriate hypotheses on the coefficient
functions and forcing functions.

(4.2) Notation: (E) and (H) are the original differential equation and the
associated homogeneous differential equation:

(4.3) Theorem 7.3: The homogeneous equation (H) has two linearly inde-

pendent solutions:
[IL‘:| |: 1:|
Yy A1

|:x:| { 2:|

Yy g2 .

The general solution to (H) is
|:x:| “ |: 1:| “ |: 2:| .
Yy an g2

(4.4) The Wronskian of [fl} and {f 2]:
g1 92

and

i fe
g1 9o

W(t) =
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(4.5) Theorem 7.4: Bl} and {f] are linearly independent if and only if
1 2

W (t) # 0 at some point t.
(4.6) Theorem 7.6: Let o
Lp
LY ]
be any particular solution to (E), and let
o
[Ye.

be the general solution to (H). Then

W=l

is the general solution to (F).

5. Method for solving (H) if the matrix A(t) has constant coefficients:
x x
H =Al|"|.
- M M
(5.1) Guess

Then

Substituting into (H ), obtain

)\ekt

)

Therefore

>
O v
I
N
2
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In other words, is an eigenvector of A corresponding to the eigenvalue

P
Q

A. From matrix theory, to find A we need to solve the determinant equation

A0
A |0
Having found A, we can then solve for P and Q.

(5.2) Two real roots A; and Ag:

[Zj = creM! {Sﬂ + coe™?! {Sj :

(5.3) Complex conjugate roots A\; = a + bi and Ay = a — bi: multiply out

pla+bi)t P+ 1Py
Q1 + Q2

using

eV = ¢ cos at + ie® sin bt

and separate into real and imaginary parts. These are two linearly indepen-
dent solutions.

(5.4) Repeated real roots A, A\: Suppose a solution of

2= (a]

is obtained. Look for a second solution of the form

3= 10] e o)

It must satisfy

Making the substitution, it must satisfy

e {g:} + (M + MeM) {g} = AeM {g;} + AteM {g} :
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Dividing by e, we must have

A [g] (14 ) {g} — A {g} b At {g} .

[g)-+[]

we can subtract this quantity from both sides to obtain

P’ P P’
4 M y {@] - M |
Therefore we must solve

(-1 ) le] = Lol

Since
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