Evaluating a double integral by means of iterated integral in polar coordinates

Area in plane corresponding to polar coordinates $r_{1} \leq r \leq r_{2}$ and $\theta_{1} \leq \theta \leq \theta_{2}$: total area between circles is $\pi\left(r_{2}^{2}-r_{1}^{2}\right)$. Fraction of this area represented is $\frac{\theta_{2}-\theta_{1}}{2 \pi}$. Product is $\frac{1}{2}\left(r_{1}+r_{2}\right) \Delta_{r} \Delta_{\theta}$.

Now consider evaluating $\iint_{A} f(x, y) d A$ where $\theta_{1} \leq \theta \leq \theta_{2}$ and $r_{1} \leq \theta \leq$ r_{2}. Approximate mass of region above is $f\left(r^{*} \cos \theta^{*}, r^{*} \sin \theta^{*}\right) r^{*} \Delta_{r} \Delta_{\theta}$, where r^{*} and θ^{*} are the midpoints. Add up these regions and get Riemann sum for the double integral

$$
\iint_{\substack{\theta_{1} \leq \theta \leq \theta_{2} \\ r_{1} \leq \theta \leq r_{2}}} r f(r \cos \theta, r \sin \theta) d A .
$$

This yields formula for polar coordinates evaluation.

